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Identifying causal risk and protective factors for human disease and development is a critical 

endeavour across social and biomedical sciences. Examples of causal questions that can be 
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interrogated using the methods discussed in this collection include the following: Does Vitamin 

D protect against multiple sclerosis1?  Does Selenium supplementation protect against cancer2? 

Do elevated inflammation biomarkers such as C-Reactive Protein increase the risk of 

depression3? Do high levels of circulating testosterone increase bone mineral density and 

decrease body fat4? Does maternal smoking during pregnancy lower birth weight or increase 

the risk of child Attention-Deficit Hyperactivity Disorder5? Does higher education worsen 

myopia6? Does victimisation worsen adolescent mental health7? Does a tuberculosis infection 

increase the risk of lung adenocarcinoma8? Or, as an example of particular interest at the time 

of writing, can inflammatory biomarkers such as IL6 be targeted to decrease the risk of severe 

outcomes following SARs-CoV-2 infection9? 

These questions only begin to capture the wide array of modifiable risk factors that can be 

investigated, including dietary supplements, biomarkers, lifestyles, social environments, or 

infections. More elaborate causal questions can also be asked by jointly modelling several risk 

factors. For example, is high-density lipoprotein cholesterol (HDL-C) really 'good cholesterol' 

(i.e. does it independently protect against CHD, even after accounting for the effect of other 

lipoproteins)10? Or, what is the role of epigenetic markers (such as DNA methylation) in 

mediating the effect of obesity on cardiometabolic diseases11? 

Answering those questions not only provides insights into the aetiology of human disease and 

development but can also directly inform interventions. Conversely, inaccurate answers can 

lead to costly research dead ends and adverse public health consequences, such as the 

widespread consumption of inefficient and potentially iatrogenic supplements. Causal inference 

methods can be implemented to help answer those questions, by first providing evidence for or 

against the existence of a causal effect and by identifying its direction and estimating its 

magnitude. 
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In this collection, we focus on a subset of such methods that use genetic data to strengthen 

causal inference in observational studies. We note that philosophers and scientists have 

grappled with the notion and definition of cause over centuries. We do not aim to contribute to 

this debate. Instead, in this collection, we focus on causal inference methods as tools to identify 

modifiable factors that, when changed, should lead to a change in the outcome of interest. 

This collection has emerged from the convergence of two scientific fields – genetics and causal 

inference. We will discuss each in turn before demonstrating how they have converged to feed 

into genetically informed causal inference methods. 

From Mendelian to molecular genes 

Modern genetics can be traced back to Gregor Mendel’s experimental work, published in 1866, 

and the suggestion that discrete entities randomly transmitted across generations can explain 

the inheritance of discrete phenotypic (i.e. nongenetic) features, such as the colour of peas12. 

The focus on complex continuous traits such as human height came with the Biometricians, 

Francis Galton13 and Karl Pearson14, from the latter decades of the 19th to the start of the 20th 

century. Rather than from breeding experiments, within the context of human traits, 

biometricians used observed trait associations between family members to derive the role of 

genetic influences. Genetic influences were quantified using the concept of correlation 

introduced by Galton and formalized by Pearson. 

The apparent paradox of discrete entities – the genes – having to account not only for discrete 

characteristics but also continuous traits initially divided Mendel’s disciples and biometricians. 

Several contributions early in the 20th century contributed to the resolution of this debate (see 

15,16). In 1911, Brownlee stated explicitly that “there is nothing necessarily antagonistic between 

the evidence advanced by the biometricians and the Mendelian theory”. He showed that 

discrete elements consistent with the Mendelian theory could result in a normal distribution, 

concluding: “If the inheritance of stature depends upon a Mendelian mechanism, then the 
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distribution of the population as regards height will be that which is actually found, namely, a 

distribution closely represented by the normal curve”17. In 1918, Ronald Fisher proposed an 

extended model including environmental effects in addition to many discrete genetic variants, or 

“cumulative Mendelian factors”18.  Fisher’s extended model showed how the resulting 

phenotypic variance of complex traits could be partitioned into genetic and nongenetic 

components, laying the foundations of the field of quantitative genetics. Quantitative genetics 

has developed considerably since by relying on the known genetic relatedness between 

relatives (e.g. twins) to better understand the respective importance of genetic and 

environmental factors and their interplay in explaining individual differences. Such aetiological 

studies partition the variance of a single trait or the covariance between traits into genetic, 

shared and non-shared environmental components (the non-shared component conflates 

external environmental influences but also measurement error and a likely substantial 

component due to variation explained by the intrinsic stochasticity of molecular processes19–22). 

        

        

Following the discovery of DNA as the substrate for genes, followed by the uncovering of the 

structure of DNA, the notion of ‘genes’ has evolved from ‘Mendelian genes’ – abstract statistical 

entities explaining inheritance – to incarnate sequences of DNA or ‘molecular genes’. These 

discoveries sparked the quest to identify molecular genes associated with diseases and traits. 

Among methods used to this end, Genome-Wide Association Studies (GWAS) have played a 

key role in the past 15 years. GWAS test the association of millions of genetic variants, typically 

Single Nucleotide Polymorphisms (SNPs), with a given trait. A vast array of downstream 

analyses can then be implemented to identify the genetic variants causing the disease. 

Analyses to identify causal variants in humans have typically relied on statistical methods, for 

example testing which genetic variant stays the most associated to the trait after accounting for 
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neighbouring genetic variants (so-called “conditional analysis”)23. The advent of genome editing 

methods so precise that they can edit out and/or replace a few genetic variants in vivo24 offers 

exciting opportunities to identify causal variants experimentally. The downstream effects of 

changing a given variant can be directly tested, consistent with the aforementioned notion that a 

risk factor is causal for an outcome when changing the risk factor also changes the outcome. 

Recent methods in the area hold considerable promise in uncovering the true causal variants 

and genes leading to diseases25.  

        

Although the focus of the molecular era has mainly been to identify causal genetic variants, it 

has profoundly changed quantitative genetics and our ability to study the genetic architecture of 

traits. Genetic relatedness between distantly related individuals can also be calculated based on 

genome-wide markers. Similarly to family-based studies, this can then be exploited to derive the 

role of genetics in the variance and covariance of traits. For example, SNP-heritability is the 

proportion of variance in a trait explained by the additive effects of all measured SNPs26. Based 

on those measured SNPs, additional methods can be implemented to estimate the genetic 

correlation – e.g. how correlated are the genetic factors underlying schizophrenia and bipolar 

disorder27? In turn, models based on genetic correlation matrices for many traits can help us to 

better understand the genetic architecture of families of traits (e.g. how psychiatric traits cluster 

into subsets that are closely genetically related)28,29. Such advances that jointly model all 

measured SNPs largely mimic what was possible with family-based studies, i.e. estimating 

population-level statistics like heritabilities or genetic correlations. However, a decisive 

advantage of the molecular era is that the information available at the individual level is 

considerably richer. Instead of knowing the place of an individual in a particular pedigree (e.g. 

as a member of a twin pair) we have access to millions of genetic variants for that individual. 

The cumulative effect of genetic variants can be thus captured by a polygenic score for any 

given trait, i.e. an individual-level score computed by summing risk variants weighted by effect 
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sizes derived from GWAS30,31. Polygenic scores can be computed based on genome-wide data 

or a subset of variants (e.g. genome-wide significant variants). Current polygenic scores based 

on GWAS for height and education predict 24% and 11% of the variance in their respective 

phenotype32,33. Such scores can then be used in (multivariate) models to examine genetic 

influences on an array of traits34,35. As individual-level variables, they can improve predictive 

models of disease (e.g. cardiovascular disease36) and may lead to clinical applications37,38. 

        

Of note is that, despite often being labelled ‘aetiological’, investigations decomposing the 

variance of traits into genetic and environmental components have little to do with the 

identification of causal risk factors. This is because, in any particular study, the variance 

explained by genetics may largely depend on the distribution of environmental factors; 

conversely, the variance explained by environmental factors may depend on allele frequency in 

the study population. The decomposition of variance is therefore local to a study population and 

can be entirely different from the true role of genetics and the environment in explaining trait 

variation for a given trait. Only with an assumption of strict additivity – i.e. genetic effects are the 

same across all environments and vice versa – can study estimates reflect the respective 

aetiological role of genetic and environmental influences. As Lewontin put it: “In view of the 

terrible mischief that has been done by confusing spatiotemporally local analysis of variance 

with the global analysis of cause, I suggest that we stop the endless search for better methods 

of estimating useless quantities39.” As noted later, however, ‘the local objection’ is not really an 

objection regarding causal interpretation, but rather regarding “the generalisability of particular 

research findings”, which is not only a problem for the analysis of variance but for any causal 

analysis40. More fundamental, however, is the realization that high heritability estimates may 

simply reflect a restricted range of observed environmental conditions in a given study. 

Changing environmental factors, for example by intervention, can therefore still shift the 

distribution of a trait despite low estimates of environmental influences. Thus, heritability 
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estimates say little about the malleability of traits to change; they reflect what is, rather than 

what could be. In addition, the concepts of heritable and environmental factors remain abstract 

in the sense that they do not identify specific modifiable factors that can be targeted for 

intervention, as is essential in useful causal analysis. This is true not only of classic methods of 

analysis of variance – e.g. twin heritability – referred to by Lewontin but also of newer methods 

such as SNP-heritability, which estimate the variance explained by all common SNPs, rather 

than identify specific genetic variants. 

Despite their importance, this collection does not focus on methods aiming to elucidate the 

genetic architecture of traits or identify causal genetic variants. Instead, we focus on the use of 

genetics as a powerful tool for establishing causal relationships at the phenotypic level. We aim 

to delineate how specific phenotypic risk factors cause phenotypic outcomes. That said, 

methods aiming to elucidate the genetic architecture of traits or identify causal genetic variants 

provide an essential background to the methods presented in this collection. 

Causal inference in observational data   

Randomised experiments and their implementation in clinical medicine as Randomised 

Controlled Trials (RCTs) have come to be considered the gold standard for causal inference. 

The fundamental intuition is that if a treatment is allocated randomly to different units (e.g. 

human participants) then the treatment and control group will only differ due to the treatment. 

Comparing treatment and control groups on any outcome of interest (e.g. disease) thus allows 

us to establish the causal effect of the treatment and estimate its magnitude. Establishing 

causation has become so intertwined with experimentation and randomization that mentioning 

the ‘C-word’ within observational research has been largely taboo in some fields41,42.  That 

said, as discussed below, this taboo has been far from absolute with key contributions to causal 

reflection and modelling in observational settings in the second half of the 20th century. Still, 

authors are regularly compelled by journal policies to change wording from ‘effect’ or ‘impact’ to 



 

8 

‘association’ or ‘link’, thwarting the need for explicit and transparent reporting of the aim and 

methods of causal inference studies41. Such a rigid application of the mantra “correlation is not 

causation” has long contributed to stalling the debate on causal inference in observational 

settings. Reducing causal inference to experimentation is not tenable. First, RCTs have their 

own limitations, for example that randomization may not balance confounders in any single trial 

or that it may be difficult to generalize their findings43,44. In addition, RCTs are often not feasible 

or ethical. Yet, public health may require that a pragmatic, even if imperfect, consensus is 

reached on the causal status of a given risk factor. In such cases, simply computing observed 

correlations between variables is often unhelpful and investigations within an explicit causal 

inference framework are required. 

 

 

For example, no one now contests that smoking cigarettes is a causal risk factor for lung 

cancer. The causal status of smoking was hotly debated and contested by some including RA 

Fisher on the basis that confounding (BOX 1) – including genetic confounding – prevented 

causal inference in observational data45,46. But such objections were discarded based on 

converging observational evidence. In particular, Jerome Cornfield argued that the strength of 

confounding from genetic factors or other confounders would need to be implausibly high to 

account for all of the observed effect of smoking and cancer47, laying the foundations of what is 

now known as sensitivity analysis. Concluding the debate, the report of the Royal College of 

Physicians in 1962 and the Surgeon General’s Report in 1964 reached a consensus on the 

causal status of smoking, paving the way for large-scale prevention efforts48,49. This conclusion 

was attained without randomly allocating human participants to smoking, which would have 

been unethical.  
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Since then, and despite the aforementioned resistance, causal inference in observational 

settings has been continuously refined and formalized with inputs from both statistics and 

epidemiology. In 1965, Bill Cochran reflected on how to plan observational studies when 

experimentation is not possible “to elucidate cause-and-effect relationships, or at least to 

investigate the relationships between one set of specified variables xi and a second set yi in a 

way that suggests or appraises hypotheses about causation”50. The choice of words is 

enlightening here: inference in observational settings may not provide definitive answers but can 

shift the cursor on a continuum from correlation to virtual causal certainty. Also in 1965, 

Bradford Hill set out a list of viewpoints to consider when appraising empirical evidence in 

favour or against a causal hypothesis, including temporal relationships, dose-response 

relationships and plausibility51. Importantly, Hill's list was later misconstrued as a set of 'criteria' 

to establish causality,  a mechanical terminology he neither endorsed nor – it is clear – 

advocated52.         

In his words: “Here, then, are nine different viewpoints from all of which we should study 

association before we cry causation. What I do not believe – and this has been suggested – is 

that we can usefully lay down some hard-and-fast rules of evidence that must be obeyed before 

we accept cause and effect. None of my nine viewpoints can bring indisputable evidence for or 

against the cause-and-effect hypothesis and none can be required as a sine qua non. What 

they can do, with greater or less strength, is to help us to make up our minds on the 

fundamental question – is there any other way of explaining the set of facts before us, is there 

any other answer equally, or more likely than cause and effect?” In the same text, Hill also 

criticised the overreliance on tests of significance, suggesting that in some cases, descriptive 

tables are so clear that such tests do not add any value; or that “the glitter” of “magic formulae” 

can divert our attention from substantial study shortcomings. He concluded: “Like fire, the χ2 test 

is an excellent servant and a bad master”. 
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Hill’s informal approach to causal inference was later criticised (see 53) as none of his viewpoints 

is sufficient or necessary to infer causality, which he himself recognized (on the tension between 

Hill's criteria and statistical formalization, see 53,54). The most influential formal causal inference 

frameworks to date are arguably Donald Rubin’s counterfactual or potential outcomes 

framework and Judea Pearl’s structural models55,56. Both frameworks are very general and most 

causal inference designs or statistical methods in observational settings (and even randomised 

trials) can be subsumed under these frameworks. Both formalize assumptions under which 

causal estimates can be attainable in observational data. Exchangeability is a fundamental 

notion in both frameworks and is achieved when exposed and nonexposed groups are balanced 

on all confounders, as occurs in an appropriately randomized trial. Causal models within those 

frameworks can be conveniently represented in formal diagrams, or “Directed Acyclic Graphs” 

(DAGs) (BOX 1). Both frameworks have a dedicated statistical notation that is considerably 

more sophisticated than statistics like the t-test and chi-squared test referred to by Hill. 

        

The divide between empiricists like Hill and advocates of the primacy of formal statistical 

frameworks is unwarranted. First, the focus of both sides is somewhat different. Hill’s address 

was aimed at practitioners of occupational medicine, with a strong focus on pragmatic 

decisions. He concludes his address by a case for action: although scientific knowledge is by 

nature incomplete, acting on such knowledge should not be postponed when required. 

Conversely, formalists focus on methodological advances aiming to provide the best answer to 

a causal question and estimates of causal effects under a given set of assumptions. However, 

even the most sophisticated causal models in observational data can only yield the right causal 

estimates when the specified model is mostly correct (e.g. a sufficient set of confounders, see 

BOX 1). Substantive prior knowledge is required to specify appropriate models, assess their 

assumptions, the plausibility of their findings or even to formulate relevant causal questions in 

the first place. That is, causal inference cannot be reduced to algorithms. In turn, however, 
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formalised tools remove some unwarranted arbitrariness in the decision-making process 

regarding the causal status of risk factors54,57. As in all empirical sciences, a constant dialogue 

must be maintained between theoretical frameworks, statistical methods and empirical 

evidence. 

 

Genetics and phenotypic causal inference 

Genetics and causal inference have developed largely in parallel but have converged along two 

lines of inquiry. First, family-based designs used in quantitative genetics to understand the 

genetic and environmental architecture of traits have also been used explicitly for causal 

inference. The idea of using twins that are genetically identical to identify environmental causes 

of diseases has been present since the 1950s, with, for example, an analysis of smoking habits 

in twins which concluded that a sufficient number of discordant twins would help in establishing 

the injurious effect of tobacco smoking58, which was confirmed much later59,60. The approach 

has then been systematized on large twin samples, based on the principle that identical twins 

exposed to a risk factor can be matched with their non-exposed co-twins61,62, enhancing 

exchangeability. Other family-based designs such as the in-vitro fertilization design can be used 

to account for genetic confounding by comparing genetically related and genetically unrelated 

parent-child pairs5. Many such methods and examples of applications are proposed in this 

collection. 

Second, and more recently, measured genetic variants associated with an exposure (e.g. 

cholesterol) have been used as instruments (BOX 1) to estimate the causal effect of that 

exposure on relevant outcomes (e.g. cardiovascular diseases). This approach was named 

Mendelian randomization, as it capitalises on the randomisation of genetic material occurring at 

conception in order to approximate exchangeability and strengthen inference. Interestingly, the 

idea that randomisation at conception can help for controlled comparison had been grasped by 
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Fisher. Indeed, Fisher established himself the filiation between his central contribution to the 

statistics of randomized experiments and his early work on the transmission of Mendelian 

factors63. In his words: 

“And here I may mention a connection between our two subjects which seem not to be 

altogether accidental, namely that the factorial method of experimentation, now of lively concern 

so far afield as the psychologists, or the industrial chemists, derives its structure and its name, 

from the simultaneous inheritance of Mendelian factors (...) Genetics is indeed in a peculiarly 

favoured condition in that Providence has shielded the geneticist from many of the difficulties of 

a reliably controlled comparison. The different genotypes possible from the same mating have 

been beautifully randomised by the meiotic process. A more perfect control of conditions is 

scarcely possible, than that of different genotypes appearing in the same litter."64.  

As such, Mendelian randomisation can be construed as a return to the roots of causal inference; 

it has developed considerably over the past decade with a flurry of methods and applications 

reviewed in this collection. 

 

Contributions 

Lynch’s contribution discusses the specific meaning of “cause” in genetics from a philosophical 

perspective, building on the distinction between Mendelian and molecular genes. The rest of 

this collection focuses more pragmatically on describing genetically informed methods for 

causal inference and their applications. Thapar & Rice present a range of family-based designs 

for causal inference while McAdams et al. focus on the twin design and its extensions to larger 

pedigrees. Richmond & Davey Smith turn to explaining the fundamentals of Mendelian 

Randomization and how genetic variants and in particular SNPs can be used as instruments for 

causal inference. Dudbridge follows up on the many extensions of Mendelian randomization 
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jointly modelling many SNPs as instruments. Sanderson focuses on a special case of polygenic 

Mendelian randomization using instruments associated with several exposures to identify the 

independent or mediating effects of such exposures on outcomes of interest. Although the two 

major lines of research using genetics for causal inference – i.e. family-based and Mendelian 

randomization – have emerged and evolved independently, Hwang et al. outline the major 

opportunities arising from their recent integration. To some extent, family-based MR returns to 

Fisher’s insight of randomisation of genotypes in the same litter. 

Note that we define phenotypes broadly as including any individual characteristic other than 

genotypes, which includes all omics other than genomics. Methods covered in Kutalik et al. aim 

to query the potential of genetically informed methods in elucidating the role of metabolomics as 

modifiable risk factors for diseases. Such research questions build on large-scale and growing 

datasets and Richardson et al. cover much needed computational tools for causal inference.   

    

Experimental and observational causal inference methods have often been artificially opposed. 

However, formal causal inference languages subsume both under the same theoretical 

frameworks and notations and, in practice, they can and should be complementary. Ference et 

al. show how Mendelian randomization can be used to improve the design of randomised 

control trials and Schmidt et al. how genetics can be used to prioritize drug targets for trials. 

Naturally, each of the methods covered in this collection has its own challenges and limitations. 

Munafò et al. conclude this collection by reflecting on how triangulation of evidence from 

multiple genetically informed and non-genetic methods can help in further strengthening causal 

inference. 

 

Trends and future developments 



 

14 

Following a more succinct attempt65, this collection is the first to comprehensively cover 

genetically informed designs for causal inference. New trends are already apparent and should 

further develop in the near future. We expect that the development of new methods or the 

refinement of existing ones will continue at a fast pace. At the theoretical level, classical models 

such as the discordant twin models should be rewritten using more formal causal inference 

language to better understand their underlying assumption and the meaning of the resulting 

causal estimates66. Ever more robust Mendelian randomization estimators are continuously 

being developed. In particular, new methods leveraging genome-wide data for causal inference 

are emerging and should become a powerful viable complement to current approaches that use 

a few dozen or hundreds of genetic variants as instruments67,68. Emerging methods further 

discussed by Hwang et al. in this collection like Mendelian randomization within families are 

promising to address some of the shortcomings of Mendelian randomization69. In addition, these 

approaches offer new opportunities to further examine old questions such as what underlying 

processes explain the transmission of risk across generations. Intergenerational causal 

inference can elucidate whether parental risk factors have causal effects on offspring outcomes 

or whether intergenerational associations are better explained by genetic and environmental 

confounding70–72. 

So far, quantitative genetic methods have largely relied on controlling for confounding to 

strengthen inference whereas methods using molecular genetic data like Mendelian 

randomization have relied on instrumental variable approaches (BOX 1). New methods can 

arise from crossing these boundaries. For example, genetic scores can be used as instruments 

within the twin design73. Genetically informed methods can also be combined with more 

classical methods for causal inference. For example, Mendelian randomization can be 

combined with negative control analyses74. Genome-wide polygenic scores can be used to 

implement genetically informed sensitivity analyses65,75, building on the concept of sensitivity 
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analysis that emerged from the work of Jerome Cornfield during the smoking-lung cancer 

controversy.   

The scope of application of methods presented in this collection becomes wider as new 

datasets are made available. The emerging literature on the genetic architecture of COVID-19, 

made possible by the data collected by the COVID-19 Host Genetics Initiative offers a good 

example of how methods presented in this collection can make decisive contributions to 

emerging questions. A genetic instrument for IL6R was found to be associated with a lower risk 

of hospitalisation for COVID-19, suggesting the relevance of therapeutic inhibition of the IL-6 

receptor, which has now been confirmed in clinical trials9,76. Mendelian randomization has also 

been used to systematically scan hundreds of druggable proteins to priorise targets for drug 

trials, for example highlighting 0AS1 as a candidate for drug development77,78. Additional studies 

point towards host antiviral defence mechanisms and mediators of inflammatory organ damage 

as mechanisms underlying critical illness in COVID-1979.  

Although genetically informed causal inference is relatively recent, we expect that we will start 

reaping rewards in the near future, i.e. not only in terms of our understanding of human disease 

and development but in terms of tangible translational applications such as drug development. 

We thank Barbara Acosta and colleagues for their patience and help in putting this collection 

together. We thank contributors who took the time to write valuable contributions to this 

collection and to the field, and to reviewers who read and provided important feedback on the 

contributions.  We hope the reader will learn from these contributions as much as we did. 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

Box 1. Causal diagrams 
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Directed acyclic graphs (DAGs) can be used to encode causal models and assumptions. In (i) 

the directed arrow represents a causal effect of A on B. In (ii) the directed path goes from A to C 

via B. B is here a mediator, in the sense that the causal effect of A on C is happening indirectly 

via B. In DAGs, absent arrows are as important as represented arrows. In (ii) for example, we 

assume that all the effect of A on C is mediated by B, i.e. there is no additional arrow directly 

from A to C or via another variable than B. In (iii) C independently causes A and B. C is 

therefore a confounder of the association between A and B. The path between A and B via C is 

called a 'backdoor' path. Such a backdoor path creates an observed association between A and 

B even in the absence of a causal effect, that is represented by the absence of a directed arrow 

between A and B. This constitutes a fundamental challenge in epidemiology as observed 

associations between two variables cannot be assumed to stem from a causal relationship 

between those two variables. If C has been observed and perfectly measured, then statistically 

adjusting for C will remove confounding and enable the estimation of the causal effect between 

A and B, here a null effect. 
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Directions of arrows matter in DAGs. For example, if the arrow between A and C is reversed in 

(iii) then C becomes a mediator rather than a confounder. In (iv) C is a collider as both arrows 

from A and B ‘collide’ in C. In this situation, the path is blocked in C. As such, and contrary to 

the confounder situation, there is no observed association between A and B. However, if C is 

adjusted for, this creates a spurious association between A and B. This collider bias is another 

key challenge in epidemiology. If C is a collider but mistakenly identified as a confounder, the 

adjusted association will be further from the causal effect than the unadjusted association. 

Collider bias can also generate bias in many study settings. For example, if two independent 

factors (A and B) cause hospitalization (C), then, in a study restricted to hospitalised patients, A 

and B will be associated. This is because the stratification (i.e. focusing only on hospitalised 

rather than hospitalised and non-hospitalised people) is a form of adjustment. 

        

In (V) C is a confounder of X and Y and should therefore be adjusted for in order to retrieve the 

causal effect of X on Y. However, C is also a collider of A and B. Adjusting for C thus creates a 

spurious association between A and B, which introduces a backdoor path from X to Y via A and 

B. The induced association upon confounder adjustment in this context has been referred to as 

“M-bias”. In addition to adjusting for C, it is thus necessary to adjust for A or/and B to further 

block the newly created path. Importantly, in theory, if the model DAG corresponds to the true 

model, finding a sufficient set of confounders, here C and A (or B) for example, is sufficient to 

retrieve the causal effect of X and Y. In practice, however, we do not know the underlying 

causal model and the variables are not measured without error. This is a major impediment for 

causal inference based on statistical adjustment only given the nature of epidemiological data 

where unclear underlying models, unmeasured confounders and measurement error are the 

norm. In this collection, we present a number of methods which (partly) adjust by design for 

unobserved confounders (e.g. the twin design). 
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.  

 

        

The DAG (vi) encodes the instrumental variable design. Z is the instrument, which is used in an 

‘instrumental’ fashion to estimate the causal effect of X on Y. Note that the DAG encodes three 

assumptions of the instrumental variable approach which are necessary for Z to be a valid 

instrument, enabling the inference that X causes Y. First, Z needs to be (robustly) associated 

with X (blue arrow), which is called the relevance assumption, i.e. Z needs to be relevant to 

assess the effect of X. The second assumption is exchangeability and is encoded by the 

absence of a common cause of Z and Y. Exchangeability is key to understand why X enables 

us to make causal inference regarding X to Y. To illustrate, if Z is binary and positively predicts 

X, then participants in group Z1 will have higher levels of X than participants Z0. Although they 

differ on the level of X, participants Z0 and Z1 do not differ on any other variables. Participants Z0 

and Z1 are thus exchangeable and only differ on the exposure X. If Z0 and Z1 have different 

outcomes, i.e. different levels of Y, we can conclude that X is causally related to Y. This is 

similar to a RCT, in the sense that Z plays the role of the random assignment which creates two 

groups with a different level of the variable influenced by the treatment X but balanced on all 

other confounders. Third, Z needs to be associated to Y only via its effect on X, which is called 

the restriction exclusion assumption. In other words, similarly to DAG ii, X fully mediates the 

association between Z and Y. When using a genetic instrument, this is often called mediated 

pleiotropy (or vertical pleiotropy) as opposed to unmediated (or horizontal) pleiotropy, which 
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would be represented by a direct arrow from Z to Y. Importantly, even when the DAG in (vi) fully 

holds, we do expect an observed association between Z and Y, which is equal to the path from 

Z to Y via X. 

//////////////////////////////////////////////////////////////////////////// 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



 

20 

 

References 

1. Mokry, L. E. et al. Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization 

Study. PLOS Med. 12, e1001866 (2015). 

2. Kho, P. F., Glubb, D. M., Thompson, D. J., Spurdle, A. B. & O’Mara, T. A. Assessing the Role 

of Selenium in Endometrial Cancer Risk: A Mendelian Randomization Study. Front. Oncol. 9, 

(2019). 

3. Prins, B. P. et al. Investigating the Causal Relationship of C-Reactive Protein with 32 

Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian 

Randomization Study. PLoS Med. 13, (2016). 

4. Mohammadi-Shemirani, P. et al. Effects of lifelong testosterone exposure on health and 

disease using Mendelian randomization. eLife 9, e58914 (2020). 

5. Thapar, A. et al. Prenatal smoking might not cause attention-deficit/hyperactivity disorder: 

evidence from a novel design. Biol. Psychiatry 66, 722–727 (2009). 

6. Mountjoy, E. et al. Education and myopia: assessing the direction of causality by mendelian 

randomisation. The BMJ 361, (2018). 

7. Singham, T. et al. Concurrent and Longitudinal Contribution of Exposure to Bullying in 

Childhood to Mental Health: The Role of Vulnerability and Resilience. JAMA Psychiatry 74, 

1112–1119 (2017). 

8. Wong, J. Y. Y. et al. Tuberculosis infection and lung adenocarcinoma: Mendelian 

randomization and pathway analysis of genome-wide association study data from never-

smoking Asian women. Genomics 112, 1223–1232 (2020). 

9. Bovijn, J., Lindgren, C. M. & Holmes, M. V. Genetic variants mimicking therapeutic inhibition 

of IL-6 receptor signaling and risk of COVID-19. Lancet Rheumatol. 2, e658–e659 (2020). 

10. Davey Smith, G. & Phillips, A. N. Correlation without a cause: an epidemiological 

odyssey. Int. J. Epidemiol. 49, 4–14 (2020). 



 

21 

11. Mendelson, M. M. et al. Association of Body Mass Index with DNA Methylation and 

Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian 

Randomization Approach. PLoS Med. 14, (2017). 

12. Mendel G. Experiments on plant hybrids. in Gregor Mendel’s Experiments on Plant 

Hybrids: A Guided Study (Rutgers University Press, 1993). 

13. Galton, F. Natural Inheritance. (Macmillan, 1889). 

14. Pearson, K. & Henrici, O. M. F. E. VII. Mathematical contributions to the theory of 

evolution.—III. Regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. Ser. 

Contain. Pap. Math. Phys. Character 187, 253–318 (1896). 

15. Visscher, P. M. Commentary: Height and Mendel’s theory: the long and the short of it. 

Int. J. Epidemiol. 42, 944–945 (2013). 

16. Yule, G. U. Mendel’s Laws and Their Probable Relations to Intra-Racial Heredity. New 

Phytol. 1, 222–238 (1902). 

17. Brownlee, J. The Inheritance of Complex Growth Forms, such as Stature, on Mendel’s 

Theory*. Int. J. Epidemiol. 42, 932–934 (2013). 

18. Fisher, R. A. XV.—The Correlation between Relatives on the Supposition of Mendelian 

Inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 52, 399–433 (1918). 

19. Plomin, R., DeFries, J. C., Knopik, V. S. & Neiderhiser, J. M. Behavioral genetics. (Worth 

Publishers, 2013). 

20. Jonsson, H. et al. Differences between germline genomes of monozygotic twins. Nat. 

Genet. 53, 27–34 (2021). 

21. Tikhodeyev, O. N. & Shcherbakova, О. V. The Problem of Non-Shared Environment in 

Behavioral Genetics. Behav. Genet. 49, 259–269 (2019). 

22. Smith, G. D. Epidemiology, epigenetics and the ‘Gloomy Prospect’: embracing 

randomness in population health research and practice. Int. J. Epidemiol. 40, 537–562 

(2011). 



 

22 

23. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 

identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375, S1-3 

(2012). 

24. Jinek, M. et al. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive 

Bacterial Immunity. Science 337, 816–821 (2012). 

25. Broekema, R. V., Bakker, O. B. & Jonkers, I. H. A practical view of fine-mapping and 

gene prioritization in the post-genome-wide association era. Open Biol. 10, 190221 (2020). 

26. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A Tool for Genome-wide 

Complex Trait Analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 

27. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from 

polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). 

28. Peyre, H. et al. Combining multivariate genomic approaches to elucidate the comorbidity 

between autism spectrum disorder and attention deficit hyperactivity disorder. J. Child 

Psychol. Psychiatry n/a,. 

29. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the 

multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019). 

30. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and 

bipolar disorder. Nature 460, 748–752 (2009). 

31. Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLOS Genet. 9, 

e1003348 (2013). 

32. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body 

mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 

(2018). 

33. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide 

association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–

1121 (2018). 



 

23 

34. Krapohl, E. et al. Phenome-wide analysis of genome-wide polygenic scores. Mol. 

Psychiatry 21, 1188–1193 (2016). 

35. Krapohl, E. et al. Widespread covariation of early environmental exposures and trait-

associated polygenic variation. Proc. Natl. Acad. Sci. 114, 11727–11732 (2017). 

36. Sun, L. et al. Polygenic risk scores in cardiovascular risk prediction: A cohort study and 

modelling analyses. PLoS Med. 18, e1003498 (2021). 

37. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of 

polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018). 

38. Wray, N. R. et al. From Basic Science to Clinical Application of Polygenic Risk Scores: A 

Primer. JAMA Psychiatry 78, 101–109 (2021). 

39. Lewontin, R. C. The analysis of variance and the analysis of causes. 1974. Int. J. 

Epidemiol. 35, 520–525 (2006). 

40. Vreeke, G.-J. Commentary: The attainability of causal knowledge of genetic effects in 

complex human traits. Int. J. Epidemiol. 35, 531–534 (2006). 

41. Hernán, M. A. The C-Word: Scientific Euphemisms Do Not Improve Causal Inference 

From Observational Data. Am. J. Public Health 108, 616–619 (2018). 

42. Grosz, M. P., Rohrer, J. M. & Thoemmes, F. The Taboo Against Explicit Causal 

Inference in Nonexperimental Psychology. Perspect. Psychol. Sci. 15, 1243–1255 (2020). 

43. Imai, K., King, G. & Stuart, E. A. Misunderstandings between experimentalists and 

observationalists about causal inference. J. R. Stat. Soc. Ser. A Stat. Soc. 171, 481–502 

(2008). 

44. Deaton, A. & Cartwright, N. Understanding and misunderstanding randomized controlled 

trials. Soc. Sci. Med. (2017) doi:10.1016/j.socscimed.2017.12.005. 

45. Fisher, R. A. Alleged dangers of cigarette-smoking. Br. Med. J. 2, 4 & 297–298 (1957). 

46. Fisher, R. Cigarettes, Cancer, and Statistics. Centen. Rev. Arts Sci. 2, 151–166 (1958). 

47. Cornfield, J. et al. Smoking and Lung Cancer: Recent Evidence and a Discussion of 



 

24 

Some Questions. JNCI J. Natl. Cancer Inst. 22, 173–203 (1959). 

48. Smoking and Health. Summary of a Report of the Royal College of Physicians of London 

on SMoking in relation to Cancer of the Lung and Other Diseases. (Pitman Medical 

Publishing Co. Ltd., 1962). 

49. Smoking and Health. Report of the advisory committee to the surgeon general of the 

public health service. 386 (1964). 

50. Cochran, W. G. & Chambers, S. P. The Planning of Observational Studies of Human 

Populations. J. R. Stat. Soc. Ser. Gen. 128, 234–266 (1965). 

51. Hill, A. B. The Environment and Disease: Association or Causation? Proc. R. Soc. Med. 

58, 295–300 (1965). 

52. Davey Smith, G. Post–Modern Epidemiology: When Methods Meet Matter. Am. J. 

Epidemiol. 188, 1410–1419 (2019). 

53. Rothman, K. J. The Wrong Message from the Wrong Talk. Obs. Stud. 6, 30–32 (2020). 

54. VanderWeele, T. J. Hill’s Causal Considerations and the Potential Outcomes 

Framework. Obs. Stud. 47–54 (2020). 

55. Imbens, G. W. & Rubin, D. B. Causal Inference for Statistics, Social, and Biomedical 

Sciences. (Cambridge University Press, 2015). 

56. Pearl, J. Causality. (Cambridge University Press, 2009). 

57. Baiocchi, M. Following Bradford Hill, in Reprint of Hill’s ‘The Enviroment and Disease: 

Association or Causation?’ and Comments. Obs. Stud. 6, 1–9 (2020). 

58. Friberg, L., Kaij, L., Dencker, S. J. & Jonsson, E. Smoking Habits of Monozygotic and 

Dizygotic Twins. Br. Med. J. 1, 1090–1092 (1959). 

59. Hjelmborg, J. et al. Lung cancer, genetic predisposition and smoking: the Nordic Twin 

Study of Cancer. Thorax 72, 1021–1027 (2017). 

60. Kaprio, J. & Koskenvuo, M. Twins, smoking and mortality: a 12-year prospective study of 

smoking-discordant twin pairs. Soc. Sci. Med. 1982 29, 1083–1089 (1989). 



 

25 

61. McGue, M., Osler, M. & Christensen, K. Causal inference and observational research: 

the utility of twins. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 5, 546–556 (2010). 

62. Carlin, J. B., Gurrin, L. C., Sterne, J. A., Morley, R. & Dwyer, T. Regression models for 

twin studies: a critical review. Int. J. Epidemiol. 34, 1089–1099 (2005). 

63. Smith, G. D. Commentary: Random Allocation in Observational Data: How Small But 

Robust Effects Could Facilitate Hypothesis-free Causal Inference. Epidemiology 22, 460–463 

(2011). 

64. Fisher, R. Statistical methods in genetics1. Int. J. Epidemiol. 39, 329–335 (2010). 

65. Pingault, J.-B. et al. Using genetic data to strengthen causal inference in observational 

research. Nat. Rev. Genet. 19, 566–580 (2018). 

66. Petersen, A. H. & Lange, T. What Is the Causal Interpretation of Sibling Comparison 

Designs? Epidemiology 31, 75–81 (2020). 

67. Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M. & He, X. Mendelian 

randomization accounting for correlated and uncorrelated pleiotropic effects using genome-

wide summary statistics. Nat. Genet. 52, 740–747 (2020). 

68. Darrous, L., Mounier, N. & Kutalik, Z. Simultaneous estimation of bi-directional causal 

effects and heritable confounding from GWAS summary statistics. medRxiv 

2020.01.27.20018929 (2020) doi:10.1101/2020.01.27.20018929. 

69. Howe, L. J. et al. Within-sibship GWAS improve estimates of direct genetic effects. 

bioRxiv 2021.03.05.433935 (2021) doi:10.1101/2021.03.05.433935. 

70. Balbona, J., Kim, Y. & Keller, M. C. Estimation of parental effects using polygenic 

scores. bioRxiv 2020.08.11.247049 (2020) doi:10.1101/2020.08.11.247049. 

71. Lawlor, D. et al. Using Mendelian randomization to determine causal effects of maternal 

pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for 

assessing them. Wellcome Open Res. 2, 11 (2017). 

72. Kong, A. et al. The nature of nurture: Effects of parental genotypes. Science 359, 424–



 

26 

428 (2018). 

73. Minică, C. C., Dolan, C. V., Boomsma, D. I., de Geus, E. & Neale, M. C. Extending 

Causality Tests with Genetic Instruments: An Integration of Mendelian Randomization with 

the Classical Twin Design. Behav. Genet. 48, 337–349 (2018). 

74. Sanderson, E., Richardson, T. G., Hemani, G. & Davey Smith, G. The use of negative 

control outcomes in Mendelian randomization to detect potential population stratification. Int. 

J. Epidemiol. (2021) doi:10.1093/ije/dyaa288. 

75. Pingault, J.-B. et al. Genetic sensitivity analysis: Adjusting for genetic confounding in 

epidemiological associations. PLOS Genet. 17, e1009590 (2021). 

76. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group 

et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients 

Hospitalized for COVID-19: A Meta-analysis. JAMA (2021) doi:10.1001/jama.2021.11330. 

77. Zhou, S. et al. A Neanderthal OAS1 isoform Protects Against COVID-19 Susceptibility 

and Severity: Results from Mendelian Randomization and Case-Control Studies. medRxiv 

2020.10.13.20212092 (2020) doi:10.1101/2020.10.13.20212092. 

78. Gaziano, L. et al. Actionable druggable genome-wide Mendelian randomization identifies 

repurposing opportunities for COVID-19. medRxiv 2020.11.19.20234120 (2020) 

doi:10.1101/2020.11.19.20234120. 

79. Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in Covid-19. Nature 1–1 

(2020) doi:10.1038/s41586-020-03065-y. 

 

 

 

 

 


