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ABSTRACT

We study many-particle transport in randomly jammed packing of spheres at different particle P�eclet numbers (Pe�). We demonstrate that a
modified Nakagami-m function describes particle velocity probability distributions when particle deposition occurs. We assess the universal-
ity of said function through comparison against Lagrangian simulations of various particle types as well as experimental data from the litera-
ture. We construe the function’s physical meaning as its ability to explain particle deposition in terms of Pe� and the competition between
distributions of energy barriers for particle release and particles’ diffusive energy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060668

Many-particle systems in porous media are ubiquitous in nature,
yielding a wealth of important phenomena ranging from clustering in
granular gases,1 localization transition during colloidal gelation,2 bio-
films formation,3 solute dispersion,4 and nanoparticles’ deposition in
porous media.5–7 Understanding the particles’ kinetic probability dis-
tribution in real porous media is essential to achieve particulate con-
trol.8,9 Prior studies described how such distributions depend on pore
structural variables (e.g., obstacle size,10 porosity,11–13 pore structure14)
by fitting the probability data into standard probability distribution
functions (PDFs), such as exponential,10,15,16 stretched exponen-
tial,11,17 power-law,14,18 and power-exponential ones.12 However, the
assessment of their predictive ability remains elusive, because these
functions contain fitting parameters that often lack a solid physical
foundation.

Phenomenologically, laboratory particle-tracking data for solutes,
nanoparticles (NPs), and microparticles (MPs) through random packs
of spheres manifest non-Gaussian velocity probability distribu-
tions,3,10,19,20 indicating that the fluid velocity is in general different
from the particle transport velocity.21 The similarity among these dis-
tributions further suggests that a universal function might be able to
describe particle kinetics. Should such universal function exist, it
should be consistent with rigorous mathematical derivations, such as
the Maxwell–Boltzmann (MB) distribution when real particles can be
regarded as ideal gas particles.22 The former condition holds when
particles are not interacting with each other nor with porous media. In

porous media, however, particles travel complex paths that are largely
governed by local fluctuations in the velocity field of the fluid that car-
ries them, in addition to other mechanisms, such as particle deposi-
tion23 and exclusion effects,24 in which case the MB distribution is
likely to break down.25 This observation calls for new theoretical devel-
opments to describe statistical particles’ kinetics in porous media.

In this Letter, we study the transport of three typical types of par-
ticle ensembles—solutes, NPs, and MPs, in an incompressible, viscous,
laminar fluid flowing through a rigid heterogeneous medium at
steady-state under a constant pressure gradient. The medium is
obtained via a three-dimensional, randomly jammed pack of spheres;
the particles, whose sizes are much smaller than the average pore size,
transport advectively following the heterogeneous flow field generated
by the variation of pore structures, ranging from micropores (>10�6

m) to connected pore networks (�10�3 m); for particles transported
near the pore walls, e.g., within �100nm (<10�7 m) from the walls,
advective transport becomes negligible and diffusion dominates; par-
ticles may deposit if the particle–wall electrostatic interactions are suf-
ficiently attractive; particle–particle interactions are not considered in
our model. We derive a seemingly universal function able to describe
the particles’ velocity distribution in the medium by modeling par-
ticles’ behaviors near the pore center and the pore wall, respectively.
The model proposed rationalizes that particle P�eclet number and the
strength of particle-wall interactions govern particle kinetic
distributions.
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Let us consider the longitudinal transport of particles driven by a
pressure gradient ðrPÞ in the porous medium. Particles near the pore
center are unaffected by particle–wall interactions because studied par-
ticle sizes are much smaller than the average pore diameter. Under
such conditions, the particle longitudinal velocity (vpL) can be decom-
posed into advective (upL) and diffusive components (wpL), i.e.,
vpL ¼ upL þ wpL. We consider a wide range of the particle P�eclet
numbers Pe� ¼ hvwidp=Dw

26 (where hvwi is the mean ambient fluid
velocity; dp is particle size; Dw is molecular diffusion coefficient of the
ambient fluid): when Pe� � 1, the mean magnitude of velocities
hvpLi < hwpLi; when Pe� > 1; hvpLi > hwpLi. The correspondent
(longitudinal) total energy of each particle is E ¼ mpv2pL=2.

27

Due to the imposed rP, particles that transport in the fluid at
location x experience an energy contributed by a flow potential
uðxÞ ¼ �rPx=�nmp,

28 where �n is the mean particle number density
and mp is the mean particle mass. The flow potential here is the
mechanical energy required to move a fluid mass unit from a reference
position to the position of interest at a constant velocity.29 Note that x
defines positions within the porous matrix rather than the instanta-
neous position nor displacement of the particles (see the supplemen-
tary material for details). To model the local particle number density
n(x) in the flow potential field, we consider the Boltzmann distribution
because of the distribution’s applicability to an external space-
dependent potential field25 (e.g., gravitational28 or electric fields30). At
time t !þ1, (i.e., the equilibrium state in the flow potential is
reached28) n(x) obeys the Boltzmann distribution as a function of
uðxÞ: nðxÞ ¼ nðx ¼ 0Þ �exp ðrPx=�nkBTÞ, where kB is the
Boltzmann constant and T is the absolute temperature.

By coupling n(x) with the local MB distribution,31 we derive (see
the supplementary material, Sec. II) the velocity PDF for particles near
the pore center,

fV vpLð Þ / exp �
�rP

�n
x þ 1

2
mpw

2
pL

kBT1

0
@

1
A
/ exp �

mpv2pL
2kBT1

 !
; (1)

where T1 is the temperature that reflects the mean hEi ¼ mphv2pLi=2
¼ kBT1=2. Equation (1) considers that after the particles are intro-
duced at the upstream of the porous medium (at x¼ 0) with zero
velocity, their flow potential decreases as the advective kinetic energy
increases, i.e.,�rPx=�n ¼ mpu2pL=2.

For particles near the pore wall (i.e., obstacle surfaces), it is
assumed that advective velocity is negligible (i.e., upL ¼ 0) because of
fluid stagnation. The particles’ longitudinal velocity near the pore wall
(vpL) is the sum of the diffusive velocity (wpL) and an additional veloc-
ity term (h) affected by the particle–wall interactions: vpL ¼ wpL þ h.
To quantify such particle–wall interactions, we adopt the extended
Derjaguin–Landau–Verwey–Overbeek (XDLVO) formalism, where
the net interaction energy is due to the combination of London–van
der Waals, electric double layer, and short-range Born interactions.32

A typical XDLVO curve of net interaction energy vs separation dis-
tance features a deep primary minimum and a shallow secondary min-
imum, separated by a repulsive maximum (see the supplementary
material, Sec. II). The difference between the local interaction energy
and the repulsive energy maximum is the energy barrier (DE), which
hinders deposited particles from leaving the primary minimum.
Therefore, DE is regarded as an activation energy for particle release.33

Once escaped from the primary minimum, depending on local

thermal conditions, particles may escape from the secondary mini-
mum, becoming free particles that transport along with the fluid
stream.

To quantify the impact of the activation energy on vpL; we adopt
the Arrhenius equation,23 i.e.,

vpL ¼ v0 exp � DE
kBT

� �
; (2)

where v0 is the escaping velocity when the energy barrier is absent, i.e.,
DE ¼ 0.

In a realistic porous medium, where the ion distribution on the pore
wall and the particles’ instantaneous positions are inhomogeneous, the
probability distribution of DE matters.34,35 Considering a typical disordered
medium obtained by randomly packed spheres, DE can be described by a
Boltzmann distribution,22 i.e., fEðDEÞ ¼ ðkBT0Þ�1 exp ð�DE=kBT0Þ,
where T0 is the temperature that represents the mean
hDEi ¼

Ðþ1
0 DEfEðDEÞdDE ¼ kBT0.

Based on fVðvpLÞ ¼ fEðDEÞjdDE=dvpLj,36 we derive the velocity
PDF of particles near the pore wall as fVðvpLÞ ¼ kvk�1

pL =vk
0 , where

0 � vpL � v0 and k ¼ T=T0.
Considering that particles, if not preexistent in situ, must have

transported to the near-wall region, the velocity probability of particles
near the wall is a conditional probability given that event of particles
reaching the near-wall region has occurred (whose probability is
denoted by P). Therefore, the conditional probability is fVjPðvpLÞ
¼ fVðvpLÞ=P, where we model P by interception efficiency32,37 for
non-preexistent particles in Eq. (3) (also see the supplementary mate-
rial, Sec. II), and P ¼ 1 for preexistent particles near the wall:

P �
dp
l

� �q DwPe�

jw

� �2�q
ðnon-preexistent particlesÞ

1 ðpreexistent particlesÞ;

8><
>: (3)

where q¼ 1.57 and jw is kinematic viscosity of the ambient fluid.
By imposing

Ð v0
0 fV jPðvpLÞdvpL ¼ 1, we obtain the conditional

PDF of velocities near the pore wall,

fVjP vpLð Þ ¼
a
va
0
va�1
pL ; (4)

where a ¼ k=P ¼ T=PT0; the physical significance of a will be elabo-
rated later.

Under the assumption that particles near the pore wall and
near the pore center behave independently from each other at
time t !þ1, we derive the joint PDF for the longitudinal velocity
of the entire particle ensemble via Eqs. (1) and (4): fVðvpLÞ
¼ bva�1

pL exp ð�cv2pLÞ. Parameters b and c are determined by imposing

that
Ðþ1
0 fVðvpLÞdvpL ¼ 1 and

Ðþ1
0 fVðvpLÞv2pLdvpL ¼ hv2pLi.

After defining a dimensionless velocity v ¼ vpL=hvwi, we derive
(see the supplementary material, Sec. II) the velocity PDF ð8v 	 0Þ for
the entire particle ensemble,

fVðvÞ ¼
2mm

CðmÞXm v2m�1 exp �m
X
v2

� �
; (5)

wherem ¼ a=2 andX ¼ hv2i.
Equation (5) manifests as a Nakagami-m distribution in which

the parameters m and X are statistically referred to as shape and scale

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 119, 134101 (2021); doi: 10.1063/5.0060668 119, 134101-2

Published under an exclusive license by AIP Publishing

https://www.scitation.org/doi/suppl/10.1063/5.0060668
https://www.scitation.org/doi/suppl/10.1063/5.0060668
https://www.scitation.org/doi/suppl/10.1063/5.0060668
https://www.scitation.org/doi/suppl/10.1063/5.0060668
https://www.scitation.org/doi/suppl/10.1063/5.0060668
https://www.scitation.org/doi/suppl/10.1063/5.0060668
https://scitation.org/journal/apl


factors, respectively. The Nakagami-m distribution was originally
introduced to describe the fading signal intensity in wireless communi-
cations, which is characterized by m 	 0:5.38 Because we show later
that in particulate systemsm can be< 0.5, we refer to Eq. (5) as amod-
ified Nakagami-m distribution in the remainder of the Letter.

By letting v !þ1 and v! 0; we find that the PDF in Eq. (5)
for fast and slow particles is proportional to exp ð�mv2=XÞ and
v2m�1; respectively, which are proportional to Eqs. (1) and (4), respec-
tively, indicating that the correspondent particles are those near the
pore center and the pore wall, respectively. The rest of the particles,
located between pore centers and walls, occupying a large portion of
the entire ensemble, have intermediate velocities (1 < v < 5, see the
supplementary material, Sec. IX) that represent transition states from
immobile (i.e., slow) to highly mobile (i.e., fast). Based on our analysis,
their velocity distributions are not asymptotic to v2m�1 nor to
exp ð�mv2=XÞ; but to the modified Nakagami-m PDF (see the
supplementary material, Sec. IX). Therefore, the modified Nakagami-m
distribution appears to be a unique, all-inclusive function for describing
particle kinetics.

To assess both the uniqueness and the universality of the modi-
fied Nakagami-m distribution [Eq. (5)], we perform numerical simula-
tions of particles transport through a three-dimensional randomly
jammed packing of spheres (obstacles). The transporting particles con-
sidered include uranine (solute), nanoparticles (NPs), and micropar-
ticles (MPs). The relative importance of advection vs diffusion in
establishing the particulate flow distribution and the fluid flow distri-
bution are summarized by the particle P�eclet number
Pe� ¼ hvwidp=Dw,

26 and the pore P�eclet number Pe ¼ hvwil=Dw
39

(where l is average pore size), respectively. In our numerical simula-
tions, particles are subject to hydrodynamic drag, diffusive, and gravity
(buoyancy) forces, and particle–wall interactions. In each simulation,
3000 particles of the same type are studied. Computational details,
including the validation of the algorithm, are presented in the supple-
mentary material, Secs. IV–VII.40–48

We obtain the probability data (PD) for simulated v by sampling
the entire ensemble of particles. To generate the PD for t ! þ1 [the
assumption for Eq. (1)], we analyze the simulated PD at t ¼ 10s for
5� 10�4 � Pe� � 619, as shown in Figs. 1(a) and 2(a), where
s ¼ l=hvwi yields the characteristic advection time for fluid transport
through an average pore size l. As Pe� increases, the probability distri-
butions transition from Gaussian to non-Gaussian, the latter of which
features a sharp peak at near-zero velocities and heavy right tails. The
numerical results agree with the experiments shown in Fig. 1(b). Based
on the maximum-likelihood (ML) estimation, the tail over positive v is
fitted with the modified Nakagami-m PDF and other widely used
PDFs, e.g., exponential, half-normal, lognormal, and gamma distribu-
tions.49 To fit the modified Nakagami-m distribution, parameters m
and X are obtained by solving the derivatives of the logarithmic likeli-
hood function.50 For all cases studied when Pe� 2 ½5� 10�4; 619
, out
of all the functions considered, the modified Nakagami-m distribution
is the one most consistent with the entire range of velocity data, up to
the noise floor. An example shown in Fig. 1(c) at Pe� ¼ 59 along with
the cases at other Pe� values (in the supplementary material, Sec. X)
strongly supports the universality of Eq. (5).

Based on Eq. (5), we also derive the PDF of the dimensionless
total energy e ¼ vv2; where v ¼ qp=qw is the particle specific gravity
(see definition of e and the derived e PDF in the supplementary

material, Sec. III). We use the m and X values, estimated from the ML
Nakagami-m fit of v data, as inputs for the e PDF. The derived e PDF
is then compared against its counterpart obtained computationally for
all Pe�. A similar procedure is performed to derive other e PDFs by
imposing different v PDFs and to compare their e predictions with the
simulation data. Without tuning parameters, good agreement between
the newly derived e PDF and the simulation data. This agreement
demonstrates the predictive ability of Eq. (5) (more details in the
supplementary material, Sec. XI).

Analysis of Eq. (5) shows that the scale parameter X ¼ hv2i
¼ hv2pLi=hv2wi is related to the mean dimensionless total energy hei, i.e.,
the mean total energy of particles compared to that of the ambient fluid,
as X ¼ hei=v. We, therefore, suggest that X is a transport parameter
that reflects particles’ transport strength. Our simulation results show
that when the particles are initially introduced into the media, they
acquire energy from the ambient fluid; consequently,X increases during
the first characteristic advection time ð0 < t � sÞ. Thereafter, the driv-
ing force induced by the pressure gradient compensates the drag force
to reach steady states. The particles at high Pe� (when vpL ¼ upL and
wpL ¼ 0) quickly reach these conditions, so that vpL ! hvwi and
X! 1. Reaching such steady-state conditions can be delayed at lower
Pe�, because diffusion dominates (when vpL ¼ wpL and upL ¼ 0) and the
correspondent disordered motion precludes X from reaching unity (see
the simulated evolution of X with time in the supplementary material,
Sec. VIII). Consistent with this analysis, both simulated and experimental
data show thatX at low Pe� is higher thanX at high Pe� [see Fig. 2(b)].

In the original Nakagami-m distribution, the shape parameter m
was statistically defined asm ¼ ðhv2i=r½v2
Þ238 (r½�
 is standard devia-
tion), which makes itself relevant to the flatness of the PDF
(F ¼ hv4i=hv2i251) via m ¼ 1=ðF � 1Þ. Because (1) F can indicate the
deviation from the Gaussian distribution,51,52 reflecting the degree of
bend in a PDF curve at low velocities (e.g., F¼ 3 and m¼ 0.5 repre-
senting a Gaussian distribution), and (2) such velocities reflect the par-
ticles that may deposit near the wall, F directly and m inversely reflect
the likelihood of particle deposition, i.e.,m is a deposition parameter.

Via the relation m ¼ a=2 ¼ T=2PT0; derived in Eqs. (4)
and (5), we find that the deposition strength (�1=m) depends on (1)
the probability (P) that particles will reach the near-wall region and
(2) the temperature ratio (T=T0) near the pore wall. In other words,

(1) m is a function of P in Eq. (3), i.e., pore structure (e.g., aver-
age pore size, l) and hydrodynamic conditions (e.g., Pe�). With the
decrease in l, the pore space is more crowded, and thus, more particles
will reach the near-wall regions (i.e., P increases), promoting the par-
ticles’ deposition (i.e.,m decreases) near the upstream spheres [see the
supplementary material, Fig. S4(b)].

With the increase in Pe�, the likelihood of interception
increases,32 i.e., the probability P increases; therefore, deposition
strength increases [see the supplementary material, Fig. S4(a)] and m
decreases. Through Eq. (3) and m ¼ T=2PT0; we find that m
/ ðPe�Þ�0:43: Such scaling coincides with the fitted function of the
simulated m, as m / ðPe�Þ�0:4867 in Fig. 2(c), which validates our the-
ory for particles near the pore wall. Note that both theoretical and sim-
ulated m values indicate that when Pe� 	 10, m reaches a plateau,
indicating that the deposition of the maximum strength has occurred
once Pe� reaches an intermediate value.

(2) m also depends on T=T0. The temperature T is related to the
kinetic energy of a particle with the most probable diffusive speed (ŵp)
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in the MB distribution, i.e., the most probable diffusive energy: K̂D

¼ mpŵ
2
p=2 ¼ kBT (see the supplementary material, Sec. II). T0 is

related to the mean energy barrier, i.e., hDEi ¼ kBT0 (see discussion
related to DE distribution). Therefore, m ¼ K̂D=2PhDEi; which indi-
cates that m evaluates the competition between the most probable dif-
fusive energy and the mean energy barrier due to the XDLVO
interactions. Consider P ¼ 1, i.e., under the circumstances that all
particles were originally near the pore walls: As shown in Fig. 2(d),
when m < 0:5; K̂D < hDEi, a net particle deposition occurs; when
m > 0:5; K̂D > hDEi, the frequency of particles’ release is greater
than that of deposition, yielding zero net deposition; when m¼ 0.5,
K̂D ¼ hDEi, a kinetic equilibrium is achieved between the particles’
deposition and release. In the last case, when m¼ 0.5, the modified
Nakagami-m distribution reduces to the one-dimensional MB distri-
bution (8v 	 0), we, therefore, suggest that the MB distribution holds
not only for non-interacting particles, as traditionally believed, but
also for charged particles when K̂D ¼ hDEi andP ¼ 1 both occur.

Non-Gaussian distributions (m 6¼ 0:5) have been traditionally
attributed to fluid stagnation and are known to be pronounced in
heterogeneous media.11,14,39,53 We find here that for transport with

suspended particles, non-Gaussian distributions are indeed due to
particle depositions in fluid stagnation regions; such deposition pro-
cesses can be facilitated by factors other than pore structures, such as
hydrodynamics (high Pe�) and particle–wall interactions (low
T=T0).

A putative universal probability distribution function is derived
to describe for particles’ kinetics in disordered porous media. The
function reveals that non-Gaussian velocity distributions are a direct
consequence of particles’ transport and deposition, where their trans-
port (reflected by X) depends on Pe� and their deposition (reflected
by m) depends on Pe�, pore structure, and the energy imbalance near
pore walls. The function’s universality is predicated on the basis of the
theoretical description of particle’s hydrodynamic interception and
transport, and electrokinetic release, and is further underpinned by
Lagrangian particle-tracking simulations and experimental data. The
uniqueness of the function consists in its predictive ability to describe
the entire ensemble, including immobile through highly mobile par-
ticles. Because our analysis of particle–wall interactions is applicable to
particle–particle ones, the function is generalizable to other particulate
systems where different interplays of particles and media arise, e.g.,

FIG. 1. (a) Probability distributions of v as obtained by our Lagrangian simulations at t ¼ 10s under different Pe� (see legend). The same distributions are presented in both
semi-log and log-log plots (insets). (b) Experimental probability distributions of v measured at different Pe� via nuclear magnetic resonance (NMR),20 confocal microscopy
(CM),10 and particle tracking velocimetry (PTV)3 (see details about the experimental data in the supplementary material, Sec. XII). (c) ML estimations of the modified
Nakagami-m and other PDFs (see legend) based on the simulated v data (symbols) at Pe� ¼ 59 (i.e., MP at Pe¼ 1027). (d) PDF predictions of e by the modified Nakagami-
m vs other v PDFs (see legend) are compared to simulated e data (symbols) at Pe� ¼ 59 (i.e., MP at Pe¼ 1027).
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clustered granular gases that exhibit non-Gaussian kinetic
distributions.1,54–57

Because the function proposed here accounts for phenomena,
such as particle size, flow rate, ion strength, it may help explain the
synergy between interaction energy, hydrodynamics, and self-
diffusion in controlling experimental particles deposition patterns.
For example, (1) hydrodynamics, represented by the particle P�eclet
number, has a positive impact on particles deposition, as discussed in

Sec. V of the supplementary material; this effect in our analysis is qual-
itatively consistent with direct experimental confocal microscopy
observations.58 (2) Because the proposed function considers particle–
medium interactions via the XDLVO theory, it may help to interpret
the progressive attachment of particles on medium surfaces when
ionic conditions intensify59 or the enhanced deposition observed as a
function of particles surface charge.58 (3) Our simulation results also
demonstrate a descending deposition pattern along with the porous
medium, as discussed in Sec. V of the supplementary material, in qual-
itative agreement with confocal microscopy58 and core-flooding
experiments on sand/bead packs,60 indicating the applicability of our
approach to designing experiments of particulate flows.

See the supplementary material in which we provide nomenclature
(Sec. I), a detailed derivation of the seemingly universal function, Eq. (5)
(Sec. II), a summary of the derived energy probability distribution func-
tions (Sec. III), details of numerical simulations (Sec. IV), numerical
analysis of deposited particles (Sec. V), statistical check of particle num-
bers (Sec. VI), validation of the numerical simulations (Sec. VII), the
evolution of X with time (Sec. VIII), analysis of slow, intermediate, and
fast particles (Sec. IX), maximum-likelihood estimation of velocity prob-
ability distributions (Sec. X), predictions of energy distributions for dif-
ferent velocity probability distributions (Sec. XI), and discussions about
the experimental data used in this work (Sec. XII).
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