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Abstract

Players receive a return to investment that is increasing in the proportion of others

who invest and the state, and incur a small cost for acquiring information about the

state. Their information is reflected in a stochastic choice rule, specifying the prob-

ability of a signal leading to investment. If discontinuous stochastic choice rules are

infinitely costly, there is a unique equilibrium as costs become small, in which actions

are a best response to a uniform (Laplacian) belief over the proportion of others invest-

ing. Infeasibility of discontinuous stochastic choice rules captures the idea that it is

impossible to perfectly distinguish states that are arbitrarily close together and is both

empirically documented and satisfied by many natural micro-founded cost functionals

on information. Our results generalize global game selection results (Carlsson and van

Damme (1993) and Morris and Shin (2003)), and establish that they do not depend on

the specific additive noise information structure.
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1 Introduction

Consider a canonical binary action coordination game, where each player receives a payoff to

investing that is increasing in the proportion of other players investing and the payoffrelevant

state of the world. Suppose that before playing the coordination game, players acquire

information about the state of the world. By a now standard observation (reviewed below),

if the cost of information is increasing in its informativeness (in the sense of Blackwell),1 it

is without loss of generality to assume that players facing a binary choice will only acquire

binary signals about the state of the world and choose to invest after observing one signal

and to not invest after the other signal. Thus first choosing a costly experiment and then

a strategy for the induced Bayesian game is equivalent to choosing a stochastic choice rule

specifying a probability of investing in each state of the world.

We therefore study a stochastic choice game where each player chooses a stochastic

choice rule and payoffs are given by the induced payoff in the base coordination game minus

a small cost of information associated with the stochastic choice rule. We study what

happens when we fix a cost functional on stochastic choice rules and multiply the cost

functional by a constant that becomes small. Two properties of the cost functional are

key. Infeasible perfect discrimination requires that discontinuous stochastic choice rules are

infinitely costly (and thus infeasible). Infeasible perfect discrimination thus requires that

it is impossible to perfectly discriminate between states that are arbitrarily close together.

Translation insensitivity requires that translating a stochastic choice rule does not induce

a discontinuous change in the cost. Translation insensitivity requires that the cost of

information depends on how much discrimination between states occurs but does not change

abruptly when the focus of that discrimination moves a small amount. Our main result is

that - if the cost functional satisfies these two properties - there is a unique equilibrium of the

stochastic choice game in the small cost limit. In particular, the unique equilibrium of the

stochastic choice game selects a particular Nash equilibrium of each complete information

game corresponding to a state of the world. In the limit, the Laplacian equilibrium of

the complete information game is played: players invest when invest is a best response to

a uniform belief over the proportion of other players choosing to invest in the complete

information game.2 Thus an arbitrarily small cost of information gives rise to a natural

equilibrium selection with the selected outcome independent of the fine details of the cost

functional.

Our infeasible perfect discrimination (IPD) property makes sense if the distance between

states matters and nearby states are relatively hard to distinguish. Experimental evidence is

consistent with IPD (and discussed in Section 5.3). We illustrate IPD (and other properties

1That is, if an experiment is a Blackwell garbling of another, then it is cheaper.
2This is also the equilibrium selected by the global games approach, which is a special case of our theory

as discussed below.
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of the cost of information in the paper) by considering pairwise-separable cost functionals,

a variant of the log-likelihood ratio cost functions recently introduced and axiomatized by

Pomatto, Strack, and Tamuz (2019) (their axiomatization is discussed in Section 5.2). This

cost functional sums up, over pairs of states, the product of the indistinguishability of the

two states and divergence between the distributions of signals at those two states. We

focus on a parameterization where the indistinguishability of states θ and θ′ is
∣∣θ − θ′∣∣−α,

so a higher α corresponds to a greater relative cost of distinguishing nearby versus distant

states; IPD is satisfied if α ≥ 2.

Infeasible perfect discrimination (together with translation insensitivity) is suffi cient for

Laplacian selection and is intuitive, easy to check and easy to interpret. To better under-

stand what is driving our result, we also provide a partial converse and a weaker suffi cient

condition. If nearby states are relatively easy to distinguish - we say that there is cheap

perfect discrimination (CPD) - then multiplicity is restored. It has become common in the

recent literature to measure the cost of information by the reduction in entropy. Entropy

is an information theoretic notion under which the distance between states has no meaning

or significance. This implies that the entropy reduction cost functional satisfies our cheap

perfect discrimination property and thus gives rise to multiple equilibria. For the pairwise-

separable cost functional, CPD is satisfied when α is zero (and possibly for positive values

of α less than 2).

The key to our main result is that players choose continuous stochastic choice rules in

equilibrium, and continuous stochastic choice is the observable implication of IPD. Infeasible

perfect discrimination directly imposes continuous stochastic choice. We also report a

weaker condition - expensive perfect discrimination (EPD) - which implies that players will

choose continuous stochastic choice rules in equilibrium, even when it is feasible to choose

discontinuous stochastic choice rules that perfectly discriminate between neighboring states

at finite cost. EPD may be satisfied if α is greater than 0 but smaller than 2.

Our results cleanly embed and generalize a leading result on global games as a special

case. Suppose that each player could observe a signal equal to the true state plus some

additive noise. A higher precision of the signal (i.e., lower variance of the noise) is more

expensive. But it is infeasible to acquire a perfect signal. The induced cost functional on

stochastic choice rules satisfies infeasible perfect discrimination (because perfect signals are

infeasible) and translation insensitivity (because noise is additive) and our main result thus

implies leading results about equilibrium selection in global games (we review the relevant

literature below).3 Our results thus establish that the conclusions of the global games

literature do not rely on the particular (additive noise) information structure but follow

3The global game result is not quite a special case of our main result, because we maintain a submodularity
restriction on cost functionals in order to maintain supermodularity of the underlying game that fails for
the global game cost functional. But in Section 5.1, we discuss how the global game result is a special case
of a variation of our main result.
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much more generally from infeasible perfect discrimination.

An alternative approach to modelling our problem would be to consider a two stage game

where players first decide what information to acquire about the state of the world, and then

decide a strategy in the induced game. But any experiment acquired and strategy chosen

will induce a stochastic choice rule, which can be understood as a two-signal experiment.

Now suppose that the cost of information satisfies Blackwell-consistency, i.e., an experiment

that is weakly less informative in the sense of Blackwell (1953)) than another, is always

weakly less expensive. Thus it is without loss of generality to consider the one stage

game, where players choose a stochastic choice rule that can be understood as both a two-

signal experiment and the effective strategy of the player.4 Our focus on stochastic choice

rules is thus motivated by appeal to Blackwell-consistency on cost functionals on general

experiments. Almost all the cost functionals we study in this paper (pairwise-separable,

entropy reduction, Fisher information, etc.) are defined on general experiments and satisfy

Blackwell-consistency in that general space. The additive noise cost in global games does

not satisfy it, but where we discuss this case (in Section 5.2.3), we work with a Blackwell-

consistent version where players have free disposal of information.

Our main treatment relies on a maintained restriction of submodularity on cost func-

tionals. This ensures that the game is supermodular and thus simplifies our analysis.

Submodularity requires that the sum of the cost of two stochastic choice rules is more than

the cost of the maximum of the stochastic choice rules plus the cost of the minimum. How-

ever, we also discuss the case without submodular costs, noting that submodularity is not

necessary and also noting that our results continue to hold if we restricted players to choose

monotonic stochastic choice rules (in Section 5.1).

While we have an information acquisition interpretation of the cost of stochastic choice

rules, our results are independent of the interpretation of the cost functional. Alternative

interpretations are possible, including "control costs" of taking an action, and all our results

are of interest also with these alternative interpretations. We focus on the informational

interpretation in the body of the paper, but briefly discuss alternative interpretations in

Section 5.4.

The properties of cost functional we appeal to (e.g., IPD, EPD and CPD) are rather

abstract. We discuss the relation of these properties to various cost functionals studied

in the literature (in addition to the pairwise-separable cost functionals) and discuss their

foundations (based on axioms, sequential choice foundations, additive noise and coding) in

Section 5.2.

The observable implication of IPD is continuous stochastic choice and we discuss variety

of empirical (field and experimental) evidence in favor of continuous stochastic choice in Sec-

tion 5.3. We also discuss the experimental work of Goryunov and Rigos (2020), confirming

4See Woodford (2009), Yang (2015) and the working paper version of this paper, Morris and Yang (2016)
for formal versions of this argument.
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our theory.

We proceed as follows. Section 2 sets up the model of a stochastic choice game. Section

3 contains our main result about stochastic choice games. Section 4 reports a converse and

weaker suffi cient conditions for Laplacian selection, in order to deepen our understanding

of the main result. Section 5 collects together discussion of assumptions, extensions, and

alternative foundations and interpretations of the cost functionals.

All proofs are in the Appendix unless otherwise stated.

1.1 Related Literature and Broader Context

Carlsson and Damme (1993) introduced global games, where players exogenously observe

the true payoffs with a small amount of additive noise, and showed that there is a unique

equilibrium played in the limit as noise goes to zero. These results have since been sig-

nificantly generalized and widely applied. Morris and Shin (2003) provide an early survey

of theory and applications; the class of continuum player, binary action, symmetric payoff

games studied in this paper is essentially that of Morris and Shin (2003), which embeds

most applications of global games. Szkup and Trevino (2015) and Yang (2015)5 showed

that global game uniqueness and selection results will go through essentially unchanged if

players endogenously choose the precision of their private signals, in the small cost limit.

Yang (2015) emphasized that the global game information structure was inflexible -

players were constrained to a very restrictive parameterized class of information structures,

with all other information structures being infeasible. Sims (2003) suggested that the ability

to process information is a binding constraint, which implies - via results in information

theory - that there is a bound on feasible entropy reduction. If information capacity can be

bought, this suggests a cost functional that is an increasing function of entropy reduction.

An attractive feature of entropy reduction treated as a cost of information is that it is flexible.

But Yang (2015) showed that global game uniqueness and selection results are reversed if

entropy reduction is used as a cost functional. One contribution of this paper is to reconcile

these results. We show how flexible information acquisition is consistent with global game

uniqueness results: the key property of the global game information structure is not its

inflexibility, but rather the natural implicit assumption of infeasible perfect discrimination.

Our paper has implications for the widespread use of entropy reduction in economic

applications. Because of its purely information theoretic foundations, this cost function is

not sensitive to the labelling of states, and thus it is built in that it is as easy to distinguish

nearby states as distant states. Because entropy reduction has a tractable functional form

for the cost of information, it has been widely used in economic settings where it does not

reflect information processing costs and where the insensitivity to the distance between states

does not make sense. While this may not be important in single person decision making,

5The formal statement of this result appears in the working paper version, Yang (2013).
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this paper contains a warning about use of entropy reduction as a cost of information in

strategic settings. Important papers of Hébert and Woodford (2021a) and Pomatto, Strack,

and Tamuz (2019) have recently highlighted these themes and proposed alternative micro-

founded cost functionals that satisfy IPD. We will discuss these papers in Section 5.

Our results address a debate about equilibrium uniqueness and selection without common

knowledge. Weinstein and Yildiz (2007) have emphasized that equilibrium selection argu-

ments in the global games literature rely on a particular relaxation of common knowledge

(noisy signals of payoffs). They show that while other natural exogenous local perturba-

tions from common knowledge imply uniqueness, any rationalizable play may be selected

depending on the perturbation. We show that an alternative perturbation - based on costly

information acquisition - selects the same outcome as the global game literature but does

not rely on the specific additive noisy structure of information in the global games literature,

but only on infeasible perfect discrimination.

While our limit uniqueness result generalizes the global games literature initiated by

Carlsson and Damme (1993), we cannot appeal to the arguments in Carlsson and Damme

(1993) and later papers on binary action games because the relevant space of stochastic

choice rules cannot be characterized by a threshold. Our results are closer to the argument

for uniqueness in general (many action) supermodular games in Frankel, Morris, and Pauzner

(2003). Here too, translation insensitivity has a crucial role, with contraction like properties

giving rise to uniqueness.6 Mathevet and Steiner (2013) highlighted the role of translation

insensitivity in obtaining uniqueness results. All these papers assume noisy information

structures, depend on translation insensitivity and implicitly use a more restrictive form of

continuous stochastic choice. In contrast, we show that translation insensitivity leads to

limit uniqueness (multiplicity) if continuous stochastic choice holds (fails) in equilibrium,

and thus highlight continuous stochastic choice as the essential property that leads to the

equilibrium uniqueness.

2 Setting

We first describe a canonical class of games with symmetric payoffs and strategic comple-

mentarities, parameterized by a payoff relevant state of the world. This class of games

is widely used in applications and corresponds to the class studied in the survey of global

games of Morris and Shin (2003). We then describe the stochastic choice game in which each

player chooses a stochastic choice rule mapping the state space to the probability simplex

of the actions, and pays a cost for the stochastic choice rule.

6Mathevet (2008) provided a proof of the results of Frankel, Morris, and Pauzner (2003) using the
contraction mapping theorem under slightly stronger assumptions
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2.1 The Base Game

A continuum of players simultaneously choose an action, "not invest" or "invest".7 The

mass of players is normalized to 1 and a generic player is indexed by i ∈ [0, 1]. A player’s

return if she invests is π (l, θ), where l ∈ [0, 1] is the proportion of players investing and θ ∈ R
is a payoff relevant state. The return to not investing is normalized to 0. Note that while

we find it convenient to label actions "invest" and "not invest" as an aid to comprehension,

the return of 0 to "not invest" is just a normalization and, modulo this normalization, we

are allowing for arbitrary continuum player, binary action, symmetric payoff games.

The following three substantive assumptions on the payoff function π (l, θ) are the key

properties of the game.

Assumption A1 (Strategic Complementarities): π (l, θ) is non-decreasing in l.

Assumption A2 (State Monotonicity): π (l, θ) is non-decreasing in θ.

Assumption A3 (Limit Dominance): There exist θmin ∈ R and θmax ∈ R such that
(i) π (l, θ) < 0 for all l ∈ [0, 1] and θ < θmin; and (ii) π (l, θ) > 0 for all l ∈ [0, 1] and

θ > θmax.

Assumption A1 and A2 are basic monotonicity assumptions. A1 states that the incentive

to invest is increasing in the proportion of other players who are also investing. Assumption

A2 states that the incentive to invest is increasing in the state.

Assumption A3 requires that players have a dominant strategy to not invest or invest

when the state is, respectively, suffi ciently low or suffi ciently high. As in the global games

literature, small information frictions will not be able to select among equilibria unless it is

sometimes a dominant strategy to choose a particular action.

We need some additional assumptions of strict monotonicity and continuity. It would

be enough for us to assume that π (l, θ) is continuous and strictly increasing in l and θ, but

this would rule out important applications. Assumptions A4-A6 are weaker strictness and

continuity requirements.

Assumption A4 (State Single Crossing): For any l ∈ [0, 1], there exists a θl ∈ R
such that π (l, θ) > 0 if θ > θl and π (l, θ) < 0 if θ < θl.

Given assumption A2, assumption A4 simply rules out the possibility that there is an

open interval of θ for which π (l, θ) = 0. Notice also that A2 and A4 imply A3 limit

dominance. Specifically, we can define θmin and θmax by setting θmin = θ1 and θmax = θ0

as defined in assumption A4. Then for any l ∈ [0, 1], π (l, θ) ≤ π (1, θ) < 0 for all θ < θmin,

and π (l, θ) ≥ π (0, θ) > 0 for all θ > θmax, i.e., limit dominance holds.

We will be especially concerned about a player’s "Laplacian payoff" when he has a

7The continuum player assumption is for convenience. The same results go through for a finite number
of players.
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uniform, or "Laplacian", belief about the proportion of opponents who invest in state θ, or

Π (θ) =

∫ 1

0

π (l, θ) dl.

We impose two assumptions on the Laplacian payoff. First, we slightly strengthen A4 by

requiring that the Laplacian payoff also satisfies state single crossing:

Assumption A5 (Laplacian Single Crossing): There exists θ∗∗ ∈ R such that

Π (θ) > 0 if θ > θ∗∗ and Π (θ) < 0 if θ < θ∗∗.

We will refer to θ∗∗ as the Laplacian threshold, which will play a key role in our analysis.

A player with the Laplacian belief who knows the state will invest if the state exceeds θ∗∗

and not invest if the state is less than θ∗∗.

Second, we impose a continuity assumption on the Laplacian payoff (note that we impose

no continuity assumption on individual payoffs).

Assumption A6 (Laplacian Continuity): Π is continuous, and Π−1 exists on an

open neighborhood of Π (θ∗∗).

Finally, we require:

Assumption A7 (Bounded Payoffs): |π (l, θ)| is uniformly bounded.
Assumption A7 simplifies the proof but could be relaxed.

We will refer to a game satisfying the above assumptions as the base game. To illustrate

the assumptions, we will describe two games widely studied in the applied literature.

The following regime change game8 will be analyzed in Section 5.1.

Example 1 [Regime Change Game] Each player has a cost t ∈ (0, 1) of investing and

gets a gross return of 1 from investing if the proportion of players investing is at least 1− θ.
Thus

π (l, θ) =

{
1− t, if l ≥ 1− θ
−t, otherwise

.

This example satisfies assumptions A1 through A7, even though it fails stronger strict

monotonicity and continuity properties. In particular, π (l, θ) is not strictly increasing in θ

for each l ∈ [0, 1]; but setting θl = 1− l, we do have π (l, θ) > 0 if θ > θl and π (l, θ) < 0 if

θ < θl, and thus we do have the weaker single crossing condition A4. Also, π (l, θ) is not

continuous in θ for each l ∈ [0, 1] ; but the Laplacian payoff is:

Π (θ) =

∫ 1

0

π (l, θ) dl =


1− t, if θ ≥ 1

θ − t, if 0 ≤ θ ≤ 1

−t, if θ ≤ 0

.

8Morris and Shin (1998) introduced a more complicated version. Morris and Shin (2004) studied this
stripped down version and Angeletos, Hellwig, and Pavan (2007) popularized this name.
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So Laplacian continuity is easily verified. Finally, observe that the Laplacian threshold

solving Π (θ) = 0 is θ∗∗ = t.

The following investment game satisfies stronger continuity and monotonicity proper-

ties.

Example 2 [Investment Game] Each player enjoys a return f (θ)− r · (1− l) from in-

vesting and zero otherwise, i.e.,

π (l, θ) = f (θ)− r · (1− l) ,

where f : R → R is a continuous function that is strictly increasing, bounded, and there

exist θ and θ′ such that f (θ) ≤ 0 and f
(
θ′
)
≥ r.

This example satisfies assumptions A1 through A7. In particular, π (l, θ) is strictly

increasing in θ and l and so A4 (state single crossing) holds with θl the unique solution to

f (θl) = r · (1− l). The Laplacian payoff is

Π (θ) =

∫ 1

0

π (l, θ) dl = f (θ)− r

2
,

so A5 (Laplacian single crossing) and A6 (Laplacian continuity) hold, with the Laplacian

threshold the unique solution to f (θ∗∗) = r
2 , so that θ

∗∗ = θ1/2.

2.2 The Stochastic Choice Game

We now define a stochastic choice game to model a situation where there is an additional

component of payoffs reflecting the informational cost of the stochastic choice rule. Players

share a common prior on θ, denoted by probability density g, which is continuous and

strictly positive on [θmin, θmax]. We also assume that the common prior assigns positive

probability to both dominance regions.

A generic player i chooses a stochastic choice rule (henceforth SCR) si : R→ [0, 1], with

si (θ) being the player’s probability of investing conditional on the state being θ. The SCR

can be viewed as a binary signal experiment, where si (θ) is the probability of observing

signal 1 and 1 − si (θ) is the probability of observing signal 0. We write S for the set

of all SCRs, which consists of all Lebesgue measurable functions that map from the real

line to [0, 1]. Players privately and simultaneously choose their SCRs so that their actions

are independent conditional on the state. As is usual, we adopt the law of large numbers

convention that given a strategy profile {sj}j∈[0,1], the proportion of players that invest

when the state is θ is
∫
sj (θ) dj.9

9The law of large numbers is not well defined for a continuum of random variables (Sun (2006)). Our
convention is equivalent to assuming that opponents’play is the limit of play of finite selections from the
population.
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The first component of a player’s payoff in the stochastic choice game is his base game

payoff

u
(
si, {sj}j∈[0,1]

)
=

∫
si (θ)π

(∫
sj (θ) dj, θ

)
g (θ) dθ . (1)

The second component of a player’s payoff depends only on his own SCR. This compo-

nent reflects the informational cost of the SCR. A cost functional c : S → R+ ∪ {∞} maps
SCRs to the extended positive real line. Here c (s) =∞ will be interpreted to mean that s

is not feasible. To guarantee the existence of best responses of players’decision problems,

we assume that c is lower semi-continuous in SCRs.

A player incurs cost λ · c (s) if she chooses s ∈ S. We will hold the cost functional c

fixed in our analysis and vary λ ≥ 0, a parameter that represents the cost of information;

we will refer to the resulting stochastic choice game as the λ-game. The payoff of player i

in the λ-game is thus given by

vλ

(
si, {sj}j∈[0,1]

)
= u

(
si, {sj}j∈[0,1]

)
− λ · c (si) . (2)

Since u
(
si, {sj}j∈[0,1]

)
is linear in si and c (si) lower semi-continuous, vλ

(
si, {sj}j∈[0,1]

)
is

upper semi-continuous in si. Hence, each player i’s best responses to her opponents strategy

profile exist. Then, the Nash equilibrium of the stochastic game is defined as follows:

Definition 3 (Nash Equilibrium) A strategy profile {sj}j∈[0,1] is a Nash equilibrium of

the λ-game if

si ∈ arg max
s′i

vλ

(
s′i, {sj}j∈[0,1]

)
for each i ∈ [0, 1].

Note that when λ = 0, the players can choose actions fully contingent on θ at no cost

and the stochastic choice game reduces to a continuum of complete information games

parameterized by θ. We will perturb these complete information games by letting λ be

strictly positive but close to zero. Focussing on small but positive λ sharpens the statement

and intuition of our results.

We equip the SCR space S with the L1-metric, so that the distance between SCRs s1

and s2 is given by

‖s1, s2‖ =

∫
R
|s1 (θ)− s2 (θ)| g (θ) dθ ;

and write Bδ (s) for the open set of SCRs within distance δ of s under this metric. This

metric captures one notion of closeness that will be relevant for evaluating base game payoffs,

but we emphasize that our focus will be on cost functionals that are not continuous in

metric.

We also equip the SCR space S with a partial order� . In particular, for any s1 and s2 in
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S, s2 � s1 if and only if s2 (θ) ≥ s1 (θ) almost surely under the common prior. Accordingly,

∨ and ∧, the join and meet operators, take the form [s2 ∨ s1] (θ) = max {s2 (θ) , s1 (θ)} and
[s2 ∧ s1] (θ) = min {s2 (θ) , s1 (θ)}, respectively. It is straightforward to see that for any s1

and s2 in S, both their join and meet belong to S, so that (S,�) forms a complete lattice.

We now describe two maintained assumptions on the cost functional c (·).
Intuitively, "flatter" SCRs are less informative than steeper ones and so should be

cheaper. The following restriction reflects this intuition.

Assumption A8 (Submodularity): The cost functional c (·) is submodular on (S,�);

i.e., c (s2 ∨ s1) + c (s2 ∧ s1) ≤ c (s1) + c (s2) for all s1 and s2 in S.

Here, the meet and the join are "flatter" than the original SCRs and thus jointly cheaper.

An important SCR will be the (discontinuous) step function 1{θ≥ψ}, where a player

invests if and only if the state exceeds a threshold ψ. While allowing such discontinuous

SCRs to be infeasible, we want to require that they can at least be approximated by feasible

(i.e., finite cost) SCRs.

Assumption A9 (Feasible Almost Perfect Discrimination): For any ψ ∈ R and
δ > 0, there exists an SCR s ∈ S such that s ∈ Bδ

(
1{θ≥ψ}

)
and c (s) <∞.

We will see that if information is costless (λ = 0), the best response for a player who

expects other players to follow a step function SCR would be to choose a step function. As-

sumption A9 ensures that it is at least feasible to approximate this best response arbitrarily

closely (even if with a continuous SCR). Without this assumption, there would be step

function SCRs that cannot be approximated by finite-cost SCRs, and complete-information

equilibria consisting of such SCRs are thus exogenously precluded in the analysis of equilib-

rium selection. This assumption holds for almost all cost functionals used in the literature,

such as entropy reduction and those used in Hébert and Woodford (2021a) and Pomatto,

Strack, and Tamuz (2019).

2.3 Pairwise-Separable Cost Functionals

We will illustrate maintained assumptions A8 (submodularity) and A9 (feasible almost per-

fect discrimination), and other key properties of cost functionals introduced throughout the

paper with pairwise-separable (henceforth PS) cost functionals of the form:

cPS (s) =

∫
θ

∫
θ′

∣∣θ′ − θ∣∣−αD (s (θ) , s
(
θ′
))
h
(
θ, θ′

)
dθ′dθ , (3)

where 0 ≤ α < β + 1, h
(
θ, θ′

)
is any density on R2 such that both

h(θ,θ′)
g(θ)g(θ′) and

g(θ)g(θ′)
h(θ,θ′)

are bounded above, and D is a divergence function satisfying (i) D (x1, x2) > 0 if x1 6= x2;

(ii) D (x1, x2) = O
(
|x1 − x2|β

)
as x1−x2 → 0, for some β ≥ 1;10 (iii) differentiability; and

10Note that (ii) implies D (x1, x2) = 0 if x1 = x2. We require β ≥ 1 so that popular functional forms like
|x1 − x2|β satisfy decreasing differences as required by Condition (iv).
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(iv) decreasing differences, i.e.,

[D (x′1, x
′
2)−D (x′1, x2)]− [D (x1, x

′
2)−D (x1, x2)] ≤ 0

if x1 ≤ x′1 and x2 ≤ x′2.
Thus PS cost functionals are the sum of terms that represent the diffi culty of distin-

guishing pairs of states θ and θ′, where those terms are the product of (i)
∣∣θ′ − θ∣∣−α mea-

suring the the intrinsic diffi culty of distinguishing the two states; and (ii) the divergence

D
(
s (θ) , s

(
θ′
))
measuring the difference between the distributions of signals at those states.

We require α < β+ 1 to ensure absolutely continuous SCRs have finite cost. The density h

is a weight function required only to ensure that the double integral is well-defined, and our

results do not depend on the specific form of this density.11 The intuition for decreasing

differences is that if s
(
θ′
)
≥ s (θ), increasing s

(
θ′
)
better differentiates state θ′ from θ, but

to a lesser extent than if s (θ) also increases. Note that decreasing differences is equivalent

to the assumption that ∂
2D(x1,x2)
∂x1∂x2

≤ 0 if D is second-order differentiable.

The pairwise-separable cost function is an adaptation to our context of the log-likelihood

ratio cost function recently introduced and elegantly axiomatized by Pomatto, Strack, and

Tamuz (2019). In particular, Pomatto, Strack, and Tamuz (2019) considered a finite state

space, a uniform prior on the state space, a more general indistinguishability function12 and

the particular Kullback-Leibler divergence.13 Note that we cannot have a uniform prior

on
(
θ, θ′

)
on R2, but our results hold independent on the density h.14 We will discuss

the axiomatic foundations for the log-likelihood ratio cost functional provided by Pomatto,

Strack, and Tamuz (2019) in Section 5.2. The PS cost functional is a particularly useful

example to illustrate our results since the one parameter α captures the intrinsic diffi culty

to distinguishing pairs of states; if α = 0, all pairs of states are treated equally, and as α

increases, it becomes increasingly harder to distinguish nearby states than distant states.

We now verify that the PS cost functional satisfies our two maintained assumptions on

cost functions. Consider first A8 (submodularity). For any two SCRs s1 and s2, we have

cPS (s2 ∨ s1) + cPS (s2 ∧ s1)− cPS (s1)− cPS (s2)

=

∫
θ

∫
θ′

∣∣θ′ − θ∣∣−α
 D

(
max (s2 (θ) , s1 (θ)) ,max

(
s2

(
θ′
)
, s1

(
θ′
)))

+D
(
min (s2 (θ) , s1 (θ)) ,min

(
s2

(
θ′
)
, s1

(
θ′
)))

−D
(
s2 (θ) , s2

(
θ′
))
−D

(
s1 (θ) , s1

(
θ′
))

h (θ, θ′) dθ′dθ ,
11Note that |θ′ − θ|−α →∞ as θ′ − θ vanishes, while h (θ, θ′) is of the same order of g (θ) g (θ′). Thus h

will not completely undo the functional form restrictions of (3).
12They also gave conditions under which the indistinguishability function was |θ − θ′|−2 as we will discuss

in Section 5.2.
13The Kullback-Leibler divergence in our binary signal case is DKL (x1, x2) = x1 ln

x1
x2
+(1− x1) ln 1−x1

1−x2
,

and satisfies the decreasing-difference property since ∂2DKL(x1,x2)
∂x1∂x2

= − 1
x2(1−x2)

< 0.
14We also could have restricted our analysis to a bounded interval of real line, maintained uniformity of

the prior on (θ, θ′), at the cost of extra cases to deal with in our analysis.
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and cPS is submodular if the term of the square brackets (for each pair of θ and θ′) in the

integral is always non-positive. This is indeed the case because of the decreasing-difference

property of D.

To establish A9 (feasible almost perfect discrimination), it is enough to identify a se-

quence of finite cost SCRs that approach the step function 1{θ≥ψ}. We will consider the

piecewise linear approximation:

ŝk,ψ (θ) =


0, if θ ≤ ψ − 1

2k
1
2 + k (θ − ψ) , if ψ − 1

2k ≤ θ ≤ ψ + 1
2k

1, if θ ≥ ψ + 1
2k

, (4)

which is illustrated in Figure 2.3. This approximation will be used throughout the paper

and we will refer to ŝk,ψ as the "slope k threshold ψ approximation" of 1{θ≥ψ}.

Figure 2.3: the slope k jump ψ approximation to the step function at ψ.

Note that
∥∥ŝk,ψ, 1{θ≥ψ}∥∥ is of order 1

k , so as k →∞,
∥∥ŝk,ψ, 1{θ≥ψ}∥∥→ 0. Lemma 19 in the

Online Appendix shows that ŝk,ψ has finite cost under the PS cost functional for all finite

k and ψ.

2.4 Supermodularity and Symmetric Monotonic Equilibria

Because the first component of player i’s payoff is linear in si and the cost functional is

submodular, each player’s payoff in the λ-game, vλ
(
si, {sj}j∈[0,1]

)
, is supermodular in his

own SCR si. Assumption A1 (strategic complementarities) implies that vλ
(
si, {sj}j∈[0,1]

)
has increasing differences over si and other players’SCRs {sj}j∈[0,1]. Hence, the stochastic

choice game is a symmetric payoff supermodular game. Thus, its equilibria exist and form

a sub-lattice of (S,�) with both the largest and the smallest equilibria being monotonic and

symmetric SCRs (Van Zandt and Vives (2007)). If these two monotonic equilibria converge

to a unique one as λ vanishes, so do all other equilibria (if they exist) between them. We

thus establish the uniqueness among all (possibly non-monotonic and asymmetric) equilibria.

Therefore, it suffi ces to focus on symmetric equilibria in monotonic (non-decreasing) SCRs
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in the analysis.15

Thus we will write SM for the set of monotonic SCRs and restrict attention to monotonic

SCRs in the body of the paper. In the light of this, we will adapt our notation by now

writing

u (s̃, s) =

∫
s̃ (θ)π (s (θ) , θ) g (θ) dθ

and

vλ (s̃, s) = u (s̃, s)− λ · c (s̃)

for a player’s payoff from the base game and the λ-game respectively if he chooses SCR s̃

and others all choose SCR s.

Definition 4 (Symmetric Monotonic Nash Equilibrium) An SCR s is a symmetric

monotonic Nash equilibrium of the λ-game if

s ∈ arg max
s̃∈S

vλ (s̃, s)

and s ∈ SM , where SM is the set of monotonic SCRs.

In what follows, we will refer to symmetric monotonic Nash equilibria as simply "equi-

libria".

3 Main Result

Our main result will establish that in the low cost limit (i.e., when λ → 0), players choose

the Laplacian action, i.e., a best response to the Laplacian conjecture that the proportion of

others investing is uniformly distributed between 0 and 1. Thus they invest when the state

exceeds the Laplacian threshold θ∗∗, as defined in Assumption A5, and they do not invest

when the state is less than θ∗∗. Then for small λ, equilibrium SCRs are well approximated

by the step function 1{θ≥θ∗∗}. The following definition gives the formal statement of this

property.

Definition 5 (Laplacian Selection) Laplacian selection occurs if, for any δ > 0, there

exists λ > 0 such that
∥∥s, 1{θ≥θ∗∗}∥∥ ≤ δ whenever s is an equilibrium of the λ-game and

λ ∈
(
0, λ
)
.

We have two key suffi cient conditions for Laplacian selection. First:

Definition 6 (IPD) Cost functional c (·) satisfies infeasible perfect discrimination (IPD)
if any SCR that is not absolutely continuous has infinite cost.

15We review what happens if submodularity of the cost functional fails in Section 5.1.
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IPD implies that the probability of observing a given signal cannot jump discontinuously

(e.g., from 0 to 1) at some θ. To do so, it would have to be feasible to perfectly discriminate

between states below θ and states above θ. We consider this property to be intuitive and

consistent with empirical evidence reviewed in Section 5.3.

The PS cost functional (3) provides an illustration of IPD. In the cost functional, the

divergence D
(
s (θ) , s

(
θ′
))
, the difference between signals at each pair of states θ and θ′, is

weighted by
∣∣θ′ − θ∣∣−α with α ≥ 0, so that it is more costly to distinguish θ and θ′ if the dis-

tance
∣∣θ′ − θ∣∣ is smaller. Moreover, increasing the parameter α makes it increasingly harder

to distinguish nearby states than to distinguish distant states. The pairwise-separable cost

functional satisfies IPD if and only if α ≥ 2. We refer interested readers to Lemma 20 in

the online Appendix for the proof of this result. We will discuss further examples of cost

functionals satisfying IPD in Section 5.

Our second condition concerns how costs vary as we translate the SCR. Let T∆ : SM →
SM be a translation operator: that is, for any ∆ ∈ R and s ∈ SM ,

(T∆s) (θ) = s (θ + ∆) .

Definition 7 (Translation Insensitivity) Cost functional c (·) satisfies translation in-
sensitivity if for any ψ ∈ [θmin, θmax], there exist δ > 0 and K > 0 such that, for any

feasible s̃ in Bδ
(
1{θ≥ψ}

)
, |c (T∆s̃)− c (s̃)| < K · |∆| for all T∆s̃ in Bδ

(
1{θ≥ψ}

)
.

This property requires that the cost responds at most linearly to translations of finite

cost SCRs in a small neighborhood of any step function of interest. The definition only

involves finite cost SCRs since infinitely costly (i.e., infeasible) SCRs will not be chosen in

equilibrium. Note that this is a local property, which does not require a uniform bound on the

responses of the cost to translations throughout the strategy space. Translation insensitivity

captures the idea that the cost of information acquisition reflects the cost of paying attention

to some neighborhood of the state space, but is not too sensitive to where attention is

paid. We regard this as a mild restriction held by all the cost functionals discussed in

this paper. For example, it is straightforward to see that the PS cost functional satisfies

translation insensitivity, as the distance between any pair of states and the associated weight

are invariant to translations. Now we have our main result:

Proposition 8 (IPD and Laplacian Selection) If the cost functional satisfies infeasible
perfect discrimination and translation insensitivity, then there is Laplacian selection.

Thus when c (·) satisfies infeasible perfect discrimination and translation insensitivity,
and the cost multiplier λ is small, all equilibria are close to the Laplacian switching strategy.
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We will give some intuition for the result and the proof by sketching three key steps in

the argument. Holding fixed the strategy of others s ∈ SM , write

Sλ (s) = arg max
s̃∈SM

vλ (s̃, s)

for a player’s best responses in the λ-game. We will first show that, for small λ, a player’s

best response will approximate a step function. To see why, observe that Assumptions A1

(strategic complementarities) and A4 (state single crossing) and the monotonicity of s imply

that there exists a threshold ψ such that π (s (θ) , θ) > 0 if θ > ψ and π (s (θ) , θ) < 0 if θ < ψ.

So if λ = 0, it is optimal to choose the step function with cutoff ψ, so Sλ (s) =
{

1{θ≥ψ}
}
.

Now the base game payoff loss from choosing strategy s̃ instead of 1{θ≥ψ} is given by

u
(
1{θ≥ψ}, s

)
− u (s̃, s) =

∫
θ

(
1{θ≥ψ} (θ)− s̃ (θ)

)
π (s (θ) , θ) g (θ) dθ

≤
∥∥1{θ≥ψ} − s̃

∥∥ · sup
θ
|π (s (θ) , θ)| .

By A7, the latter term is finite and so the payoff loss is of order
∥∥s̃, 1{θ≥ψ}∥∥. But Assump-

tion A9 (feasible almost perfect discrimination) implies that we can approximate the step

function to an arbitrary degree of accuracy with a nearby SCR with finite cost. Thus as λ

approaches 0, the player’s payoff from his best response to s will approach his payoff when

λ = 0 and his best response must approximate the step function with cutoff ψ arbitrarily

closely. Hence, to show there is Laplacian selection, it suffi ces to show that the critical

threshold ψ is close to the Laplacian threshold θ∗∗ when λ is small.

Second, if we fix a strategy that is continuous but close to a step function with cutoff

ψ, the base game payoff gain to a player from deviating from s to T∆s (when others keep

playing according to s) is approximately proportional to Π (ψ), his Laplacian payoff at ψ.

We first illustrate this argument graphically and then sketch its algebraic counterpart.

Observe that s and T∆s result in different outcomes only when the player does not

invest under s but invests under T∆s. This event is indicated as the yellow-shaded region

in Figure 3. When ∆ is suffi ciently close to zero, s and T∆s vary continuously from almost

0 to almost 1 within a suffi ciently small interval [ψ − η, ψ + η] in which the density g (θ) is

approximately equal to g (ψ). Then the probability that the mass of players investing falls

into [l, l + dl] when this event occurs is approximately equal to g (ψ) ·∆ · dl. Note that this
probability does not depend on l (up to the approximation). Hence the distribution of l

conditional on the event that s and T∆s induce different outcomes is a uniform one, resulting

in a marginal impact on the expected return approximately equal to g (ψ)
∫ 1

0
π (l, ψ) dl.
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Figure 3: translation leads to Laplacian belief

To see the algebraic counterpart to this argument, note that the expected return from

deviating from s to T∆s is

u (T∆s, s)− u (s, s) =

∫
θ

(s (θ + ∆)− s (θ))π (s (θ) , θ) g (θ) dθ .

Thus, the marginal impact on the expected return is

d

d∆
u (T∆s, s)

∣∣∣∣
∆=0

=

∫
θ

s′ (θ)π (s (θ) , θ) g (θ) dθ

=

1∫
l=0

π
(
l, s−1 (l)

)
g
(
s−1 (l)

)
dl ,

where the second equality follows the change of variables l = s (θ). Now for any η > 0,

if s is close enough to a step function with cutoff ψ, we will have
∣∣s−1 (l)− ψ

∣∣ ≤ η for all

l ∈ (η, 1− η). So as s approaches 1{θ≥ψ},

d

d∆
u (T∆s, s)

∣∣∣∣
∆=0

→ g (ψ)

1∫
l=0

π (l, ψ) dl .

The Laplacian belief, which is uniform over all l ∈ [0, 1], reflects a player’s uncertainty about

other players’action, conditional on the event that the translation has changed his action.

His uncertainty takes this form because of the the continuity of the equilibrium strategy

s, in the sense that all l ∈ [0, 1] are possible. In particular, all l ∈ [0, 1] take place with

(approximately) equal probability in a small neighborhood of the cutoff ψ, and there is no

sharp distinction between any pair of states close to ψ.

Now as the third step, consider any sequence of equilibria
{
sλ
}
of the λ-game. By

our first step above, we know that the equilibrium strategy sλ is close to a step function
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with some cutoff ψ when λ is suffi ciently small. As a necessary condition for sλ to be an

equilibrium of the λ-game, it must be that it is suboptimal for a player to translate this

strategy in either direction, so that

d

d∆
vλ
(
T∆s

λ, sλ
)∣∣∣∣

∆=0

=
d

d∆

(
u
(
T∆s

λ, sλ
)
− λ · c

(
T∆s

λ
))∣∣∣∣

∆=0

= 0 .

But translation insensitivity implies that λ · d
d∆c

(
T∆s

λ
)∣∣

∆=0
→ 0 as λ→ 0, since the latter

term is bounded. And our second step implies that

d

d∆
u
(
T∆s

λ, sλ
)∣∣∣∣

∆=0

→ g (ψ)

1∫
l=0

π (l, ψ) dl

as λ→ 0. Hence, for translations not to be optimal as we approach the limit, we must have
1∫

l=0

π (l, ψ) dl = 0 and thus ψ = θ∗∗.

To see the importance of continuity in this argument and preview the converse result in

the next section, suppose instead that s was 1{θ≥ψ}, the step function that is discontinuous

at cutoff ψ. Then when comparing s and T∆s, in the event that they induce different

outcomes the player is sure that l, the proportion of others investing, does not belong to

(0, 1) and takes distinct values at any pair of states on different sides of ψ no matter how

close they are. Thus payoffs for l ∈ (0, 1) cannot play a role in determining the threshold

ψ, and we end up with indeterminacy and multiple equilibria.

The usual intuition for Laplacian selection in global games is very different: for any

signal observed, if noise is small, a player will have a uniform belief about the proportion

of players with higher signals. Now if there is a threshold equilibrium, the threshold state

must be associated with a Laplacian payoff of zero. This intuition is interim, i.e., based

on a player’s beliefs conditional on his signal. There is no such interim stage in our model,

so there is no analogous intuition in this context. On the other hand, one can give an

alternative intuition for Laplacian selection in global games based on an ex ante perspective

used here.

4 Tightening Results and Continuous Stochastic Choice

Our main result gave natural and interpretable suffi cient conditions for Laplacian selection:

the mild translation insensitivity property and infeasible perfect discrimination. But the

only observable implication of IPD is that players will choose continuous stochastic choice

rules, and the optimality of continuous stochastic choice is all that is needed to obtain
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Laplacian selection. In this section, we identify a weaker suffi cient condition for continuous

stochastic choice. We also show that Laplacian selection fails and there are multiple equi-

libria if discontinuous stochastic choice rules are optimal, which occurs when discontinuous

stochastic choice rules are suffi ciently cheap relative to continuous stochastic choice rules.

Thus this section shows that the (dis-)continuity of optimal stochastic choice rules is the

key - and observable - property that determines uniqueness (multiplicity) of equilibria.

4.1 A Converse

Yang (2015) showed that there is limit multiplicity if the cost of information is given by

entropy reduction:

cER (s) = E [H (s (θ))]−H (E [s (θ)]) ,

where H : [0, 1]→ R is given by

H (x) = x lnx+ (1− x) ln (1− x) .

This cost functional is of interest because it is widely used across areas of applied economics.

However, this cost functional has the feature that the distance between states does not

affect the cost. For illustration, suppose the prior on θ is given by Pr [θ = θ1] = p and

Pr [θ = θ2] = 1− p. Then we have

cER (s) = p ·H (s (θ1)) + (1− p) ·H (s (θ2))−H (p · s (θ1) + (1− p) · s (θ2)) .

Observe that effectively, θ1 and θ2 are just labels: given the values of s (θ1) and s (θ2), cER (s)

is independent of the values of θ1 and θ2, and thus independent of the distance between

them. Later in this section we generalize this feature to cheap perfect discrimination

(CPD) and formally show in Lemma 18 in the online appendix that the entropy reduction

cost functional indeed falls into this category.

Yang (2015) also reported another class of cost functionals where there is also limit

multiplicity. Say that a cost functional is Lipschitz if it is Lipschitz continuous with respect

to the metric on SCRs introduced in Section 2.2, i.e., there exists a K > 0 such that

|c (s1)− c (s2)| < K · ‖s1, s2‖

for all s1, s2 ∈ S.
This condition directly captures the idea that changing an SCR at a small set of states

results in a cost change of the same order, even if the SCR is discontinuous. The en-

tropy reduction cost functional is not Lipschitz. This is because limx→1H
′ (x) = ∞ and
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limx→0H
′ (x) = −∞ , so that the marginal cost of letting s (θ) approach 1 or 0 is infinite.

We will report a suffi cient condition for multiplicity that covers both the Lipschitz and the

entropy reduction cost functionals.

We first introduce an operation on any monotonic SCR that makes it discontinuous at

ψ and closer to the step function with cutoff ψ. In particular, for any ψ ∈ (θmin, θmax) and

ε ∈ (0, 1/2), define an operator Lεψ : SM → SM such that

(
Lεψs

)
(θ) =

{
max (1− ε, s (θ)) if θ ≥ ψ
min (ε, s (θ)) if θ < ψ

. (5)

Note that Lεψs is discontinuous at ψ and jumps by a magnitude of at least 1− 2ε > 0 at ψ.

It better discriminates event {θ ≥ ψ} from its complement than does s unless s (θ) ≥ 1− ε
for θ > ψ and s (θ) ≤ ε for θ < ψ, in which case Lεψs = s.

Whether it is optimal to replace s by Lεψs when best responding to 1{θ≥ψ} (i.e., whether

vλ

(
Lεψs, 1{θ≥ψ}

)
≥ vλ

(
s, 1{θ≥ψ}

)
) will depend on the trade-off between the positive impact

of replacing s by Lεψs and the possibly negative impact on costs of doing so.

Definition 9 (CPD) The cost functional satisfies cheap perfect discrimination if for any
ψ ∈ R and ε ∈ (0, 1/2), there exists a ρ > 0 and K > 0 such that

∣∣c (Lεψs)− c (s)
∣∣ ≤ K · ∥∥Lεψs, s∥∥ (6)

for all monotonic s ∈ Bρ
(
1{θ≥ψ}

)
.

The change in cost going from s to Lεψs is bounded above by λ ·
∣∣∣c(Lεψs)− c (s)

∣∣∣ while
the change in the base game payoff is of order

∥∥∥Lεψs, s∥∥∥. The CPD condition requires that
the cost responds at most linearly to the operation in a neighborhood of 1{θ≥ψ}. In other

words, once CPD holds, it is inexpensive to sharply discriminate nearby states.

Since CPD only requires the Lipschitz property to hold for a special operation within

a small neighborhood of the step function, it is implied by the Lipschitz property. It is

straightforward to verify that the entropy reduction cost functional satisfies CPD, but the

proof is tedious. We relegate the formal result and the proof to Lemma 18 in the Online

Appendix.

As noted above, both entropy reduction and Lipschitz cost functionals satisfy CPD.

CPD will also satisfied by more general posterior separable cost functionals (Caplin, Dean,

and Leahy (2021)) and the likelihood separable cost functionals analyzed by Flynn and

Sastry (2021b), who show that these cost functionals are much more tractable in many

action games, although they also show that results track those with entropy reduction cost

functionals in binary action games.16

16Flynn and Sastry (2021a) use this cost functional in their theory and empirical work on macroeconomic
attention cycles.
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The importance of the distance between the states is also well illustrated by the PS cost

functional, in which the cost of distinguishing each pair of states θ and θ′ is weighted by∣∣θ′ − θ∣∣−α so that it is less hard to distinguish nearby states than to distinguish distant
states when α is smaller. Intuitively, if α = 0, all pairs of states are treated identically in

the cost functional and thus CPD is satisfied. We argue in the Online Appendix that CPD

is satisfied when α = 0 and if it is satisfied for some α > 0, it is also satisfied for α ∈ [0, α].

Proposition 10 If cost functional c (·) satisfies cheap perfect discrimination, then for any
θ∗ ∈ (θmin, θmax) and ε ∈ (0, 1/2), there exists λ > 0 such that whenever λ ∈

[
0, λ
]
, there

is a symmetric equilibrium s∗λ with s
∗
λ (θ) ≥ 1 − ε for all θ ≥ θ∗ and s∗λ (θ) ≤ 1 − ε for all

θ < θ∗.

The proposition states that if CPD holds, for any threshold θ∗ ∈ (θmin, θmax), as λ

vanishes, there is a sequence of equilibria uniformly converging to 1{θ≥θ∗}, which is the SCR

that perfectly discriminates event {θ ≥ θ∗} from its complement. Hence, the λ-game has

infinitely many equilibria when λ is suffi ciently small, a multiplicity result in sharp contrast

to the limit unique equilibrium obtained in Proposition 8.

CPD requires that the incremental cost of choosing a discontinuous SCR Lεψs over a

continuous rule s is at most proportional to the incremental base game payoff and thus is

negligible at small λ, making Lεψs a better SCR than s.
17 Knowing that others’SCR jumps

at ψ radically reduces the strategic uncertainty a player faces when ε is small (so that the

jump is large). In particular, now a player is pretty sure that l, the fraction of others

investing, exceeds 1− ε for states above threshold ψ and otherwise falls below ε, making his

base game payoff cross zero at exactly ψ. Since CPD holds, he then also prefers such an

SCR that jumps at ψ from below ε to above 1− ε, confirming the equilibrium. This logic
applies to all thresholds within (θmin, θmax) and results in multiple equilibria.

4.2 Continuous Stochastic Choice and a Strengthening of the Main
Result

The proof of Proposition 8 relies on the property that SCRs used in equilibrium are con-

tinuous. The analysis of CPD cost functionals in the previous section provides a partial

converse, showing that discontinuous equilibrium stochastic choice implies multiplicity. In-

feasible perfect discrimination was a natural and interpretable property that immediately

implies that continuous SCRs will be chosen in equilibrium. However, the proof of Propo-

sition 8 makes clear that it is enough that continuous SCRs be chosen in equilibrium even

if discontinuous SCRs are feasible. In this section, we introduce a condition - expensive

perfect discrimination (EPD) - which is weaker than IPD but also suffi cient for Laplacian

17Note that CPD is a weak restriction in our stochastic choice game in the sense that it just requires
inequality (6) to hold in a small neighborhood of the step function rather than globally.
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selection because it ensures continuous SCRs are chosen in equilibrium. This result thus

helps close the significant gap between IPD and CPD.

Definition 11 (EPD) Cost functional c (·) satisfies expensive perfect discrimination, if for
any SCR s1 ∈ SM that is not absolutely continuous, any K > 0, and any δ > 0, there exists

an absolutely continuous s2 ∈ Bδ (s1) such that c (s1)− c (s2) > K · ‖s1, s2‖.

Instead of precluding discontinuous SCRs by assigning infinite costs, EPD requires that

it is cheap to approximate such SCRs with absolutely continuous ones relative to the degree

of approximation. To see the intuition, consider a PS cost functional with α ∈ (1, 2) and

D (x1, x2) = |x1 − x2|, under which we approximate s1 = 1{θ≥0} with its k-slope 0-threshold

approximation (described in equation 4 and illustrated in Figure 2.3). Assume a uniform

common prior over [−A,A] for some A > 0. Straightforward (but tedious) calculation shows

that as k → ∞, c (s1) − c (s2) and ‖s1, s2‖ are of the order of kα−2 and k−1, respectively.

Since α < 2, we know that c (s1) < ∞ (this proved as Lemma 20 in the Online Appendix)

so that s1 is feasible, but c (s1) − c (s2), the cost saving from using s2 over s1, converges

slower to zero than does ‖s1, s2‖, the degree of approximation, because α > 1.18

In general, the sacrificed expected return from choosing s2 over s1 is of the order ‖s1, s2‖.
If EPD holds, the sacrificed expected return is dominated by the cost saving and a player

would be better off from choosing an absolutely continuous SCR such as s2 rather than s1.

We formalize this result in the following lemma.

Lemma 12 (EPD implies continuous choice) If cost functional c (·) satisfies expensive
perfect discrimination, then Sλ (s) consists only of absolutely continuous SCRs if λ > 0.

Proof. Suppose s1 ∈ Sλ (s) is not absolutely continuous. Then we can find an absolutely

continuous s2 such that

c (s1)− c (s2) >
π

λ
‖s1, s2‖ ,

where π is the uniform bound on |π (l, θ)|. Then, the gain from replacing s1 by s2 is

vλ (s2, s)− vλ (s1, s)

=

∫
[s2 (θ)− s1 (θ)] · π (s (θ) , θ) · g (θ) dθ + λ · [c (s1)− c (s2)]

> −
∫
|s2 (θ)− s1 (θ)| · π · g (θ) dθ + π · ‖s1, s2‖

= 0,

which contradicts the optimality of s1.
18This argument does not establish that PS-cost functionals satisfy EPD, because we only consider one

non absolutely continuous stochastic choice rule. Arguments in the online appendix imply that if a pairwise-
separable cost functional satisfies EPD, we must have 0 < α < 2. The working paper version of this paper
(Morris and Yang (2016)) reports a class of max slope cost functionals where EPD is satisfied.

22



When the cost functional satisfies EPD, even though the step functions could be feasible,

they are too expensive (relative to their continuous approximations) to be optimal. Thus

EPD and translation insensitivity imply the Laplacian selection.

Proposition 13 (EPD and Laplacian Selection) If c (·) satisfies expensive perfect dis-
crimination and translation insensitivity, then there is Laplacian selection.

This proposition in a strengthening of Proposition 8 - showing the same conclusion under

a weaker assumption. But given Lemma 12 establishing that discontinuous stochastic choice

rules are not chosen in equilibrium, the proof of Proposition 8 applies.19

5 Discussion

5.1 Submodular Costs and Monotonicity

All the results in this paper continue to hold without Assumption A8 (submodularity) if one

restricts attention to equilibria in monotonic SCRs (symmetry follows from the fact we have

a continuum of players). Submodularity of the cost functional was used only to establish

supermodularity of the game, which in turn implies that "monotonic Laplacian selection"

(i.e., Laplacian selection restricted to monotonic SCRs) implies Laplacian selection (i.e.,

Laplacian selection in all SCRs, as defined in Definition 5). If there were an independent

argument establishing that the existence of largest and smallest monotonic equilibria, all

our results would hold unchanged. One setting where this is true is in the work of Szkup

and Trevino (2015) and Yang (2015) on global games with endogenous precision. As we will

discuss in Section 5.2.3, the additive noise cost functional implicit in these works actually

fails submodularity, but a separate argument establishes that we can restrict attention to

monotonic strategies. Thus our results generalize these results for global games, modulo

the different argument establishing that we can restrict attention to monotonic strategies.

In fact, we do not have general results or even examples establishing the necessity of

submodularity of cost functionals for (global) Laplacian selection. An intuition why it might

not be necessary comes from the observation that in the limit as λ → 0, the payoffs of the

game approaches supermodularity. Therefore, we conjecture that extra strong continuity

assumptions might establish Laplacian selection even without submodular costs, but would

be diffi cult to prove at the level of generality of the cost functionals we allow.

While we believe that Assumption A8 is intuitive, and well motivated in the body of

the paper by the PS cost functional, there also exist cost functionals of interest that fail

submodularity. In this section, we introduce one such cost functional, establish Laplacian

19The proposition would continue to hold if we replaced the EPD with the following local stochastic
continuous choice property: for all ψ ∈ (θmin, θmax), there exists δ > 0 such that argmaxs̃ vλ (s̃, s) consists
only of absolutely continuous functions for all s ∈ Bδ

(
1{θ≥ψ}

)
and λ ∈ R++.
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selection (without restricting to monotonic SCRs), and provide a closed form solution of

independent interest.

Example 14 [Max Slope Cost Functional] The cost cslope of an SCR s ∈ S is f (k),

where k is the maximum slope of s and f : R+∪{∞} → R+∪{∞} is weakly increasing with
f (0) = 0 and f (k) <∞ for all k ∈ R+. Thus

cslope (s) = f

(
sup
θ
|s′ (θ)|

)
. (7)

If s is discontinuous at θ, then s′ (θ) is understood to be infinity, and the cost is cslope (s) =

f (∞).20

The max slope cost functional satisfies Assumption A9 (feasible almost perfect discrim-

ination), since the k-slope ψ-threshold SCR ŝk,ψ has finite cost and approaches 1{θ≥ψ} as

k →∞. Since translation does not change the slope of SCRs, the max slope cost functional
satisfies translation insensitivity. It also satisfies infeasible perfect discrimination (IPD)

when f (∞) =∞. The max slope cost functional is not submodular in SCRs.21

The slope is a natural measure of local attention to the state. In a very different class

of evolutionary models, Robson (2001), Rayo and Becker (2007) and Netzer (2009), slope is

used as a measure of attention in an analogous way.22 We will discuss in the next section

how the max slope cost functional is closely related the additive noise cost functional in

global games and how the micro-founded Fisher cost functional also depends on the slope of

the SCR, albeit in a richer way. In Morris and Yang (2016), we discuss a rich parameterized

class of cost functionals that are increasing in an average of the derivative of the SCR, where

we can give explicit expressions for when the cost functional satisfies CPD, EPD and IPD.

The next proposition show that Laplacian selection holds in the regime change game

(Example 1) with the max slope cost function, even when do not restrict attention to

monotonic SCRs.

Proposition 15 If the max slope cost functional satisfies IPD and the base game is the

regime change game (Example 1), then for any δ > 0, there exists λ > 0 such that∥∥s, 1{θ≥t}∥∥ ≤ δ whenever s is an equilibrium of the λ-game and λ ∈
(
0, λ
)
.

Our proof of Proposition 15 relies on the fact that the simple functional form of the cost

gives rise to piecewise linear SCRs in equilibrium, which allow piece-by-piece perturbations

that make non-monotonic SCRs suboptimal.

20 If s (θ) is continuous but not differentiable at θ, we can take it to equal the maximum of the left and
right derivatives.
21An example in the Online Appendix that establishes the failure of submodularity of the additive noise

cost functional also establishes the failure of submodularity of the max slope cost functional.
22We are grateful to a referee for pointing out this connection.
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The max slope cost function has the attraction that there is a simple closed form solution

away from the limit. Morris and Yang (2016) solve for equilibria with regime change game

payoffs in the stochastic choice game with the max slope cost functional and generalizations

of it. The following proposition is one implication of this analysis.

Proposition 16 If the prior G is uniform on states [0, 1] and f (∞) =∞, then there exists
a λ > 0 such that for all λ ∈

(
0, λ
)
, the λ-game with the regime-change payoff (Example 1)

has a unique equilibrium ŝk,ξ, where

ξ = t+

(
t− 1

2

)
k−1 ,

and

k = argmax
k̃>0

1

2
[G (1)−G (0)] t (1− t) · k̃−1 − λ · f

(
k̃
)
.

Moreover, in equilibrium the regime changes at threshold ψ = t.

Thus in the special case where f (k) = kγwith γ ≥ 1, we have

k =

[
ĝt (1− t)

2γλ

]1/(1+γ)

.

5.2 Micro-Foundations For Cost Functionals

Our key properties of cost functionals (IPD, EPD and CPD) are rather abstract. In recent

years, there has been much interest in establishing tractable parametric cost functionals of

information that have natural micro-foundations. Here we review cost functionals with

such micro-founded foundations and discuss how they relate to our abstract conditions.

5.2.1 Axiomatic Foundations

We have used pairwise-separable cost functionals to illustrate our results throughout the

paper. As we noted above, these are variations on a class of cost functionals elegantly

axiomatized by Pomatto, Strack, and Tamuz (2019). They propose four natural axioms on

the cost of information: (1) Blackwell-consistency, (2) linearity in independent experiments,

(3) linearity in probability, and (4) continuity. Blackwell-consistency requires that any ex-

periment that is weakly more Blackwell informative than another is weakly more expensive.

The linearity assumptions capture the idea that there is a constant cost of information (and

imply that the cost of zero information is zero). They provide a representation for cost func-

tionals satisfying those four axioms. The cost of information can be written as a weighted

sum - across pairs of states - of the Kullback-Leibler divergences of the distributions over

signals for those two states. The weight on a pair of states is naturally interpreted as the

diffi culty of distinguishing that pair of states.
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Their representation is for a finite state model. As discussed earlier, our pairwise-

separable cost functionals are inspired by this axiomatization. In particular, we assume

the state space to be the real line and apply the functional form of Pomatto, Strack, and

Tamuz (2019). We consider the case where the diffi culty of distinguishing states θ and θ′

takes the form
(
θ − θ′

)−α
and allow the divergence between signal distributions to be given

by an arbitrary decreasing-difference divergence (like the Kullback-Leibler divergence).

Pomatto, Strack, and Tamuz (2019) also provide a microfoundation for the diffi culty

function
(
θ − θ′

)−2
by imposing additional axioms across cost functionals defined on arbi-

trary finite subsets of the real line. And they establish that there is a Lipschitz continuous

choice property in all finite state models in this case. Thus our observation that - when

α = 2 - there is infeasible perfect discrimination and thus continuous choice with the PS

cost functional is a close analogue of their result in a continuous state analogue of their

setting.23

5.2.2 Sequential Learning Foundations

An alternative foundation for cost functionals, pioneered by Hébert and Woodford (2021b),

is to study cost functionals that arise from optimal stopping in a dynamic information

acquisition problem. Strack (2016) considers what happens if players observe an exogenous

drift diffusion process, with drift corresponding to the continuous state, where the cost is

the expected stopping time. If the stopping time is bounded, Strack (2016) observes that

the induced optimal SCR will always be continuous. This note does not discuss the cost of

the stopping time, but any cost functional that gives rise to a bounded stopping time would

thus have to satisfy EPD or IPD.24

Hébert and Woodford (2021a) introduce Fisher cost functionals that are consistent with

sequential learning foundations when players choose what to learn and respect a neighbor-

hood structure on states. And they explicitly construct a continuous state limit to derive

a cost functional which, restricted to our SCRs, is given by

cFisher (s) =

∫ (
[g (θ) s (θ)]

′)2
g (θ) s (θ)

+

(
[g (θ) (1− s (θ))]

′)2
g (θ) (1− s (θ))

dθ .

This cost functional, like the max slope cost functional, depends on the slope of the cost

functional, and thus satisfies IPD. It is submodular (in fact, also supermodular) as we

establish in the Online Appendix. It is easy to verify that it satisfies A9 (feasible almost

23A subtlety is that they establish their continuous stochastic choice property when α > 0; in our setting
α ≥ 2 is necessary for IPD but continuous stochastic choice may also arise under EPD and thus for some
values of a < 2. The apparent discrepancy is resolved if we normalize their finite state cost functional by
the number of states when taking the limit to infinitely many states. Their suffi cient condition continuous
stochastic choice for α > 0 is then analogous to our suffi cient condition for α ≥ 2.
24Morris and Strack (2018) do derive an explicit cost functional in the finite state version of this problem.

However, with more than two states many distributions of posteriors are not feasible.
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perfect discrimination) and translation insensitivity. So Laplacian selection holds.

5.2.3 Additive Noise Foundations, Global Games and the Max Slope Cost
Functional

We restricted information acquisition throughout to SCRs (which are equivalent to binary

signal experiments). However, we noted in the introduction that given a cost functional on

a richer class of experiments, we could always define an induced cost functional on SCRs to

be the cost of the cheapest experiment that allows the player to replicate the SCR. We will

discuss an example of this approach both to illustrate why focussing on SCRs is without

loss of generality and to describe the relation to the global games literature.

Suppose that a player could observe a signal of the true state of the world x = θ + 1
kε,

where ε is distributed on R according to cumulative distribution function H, at cost ĉ (k),

where ĉ (0) = 0, ĉ (k) is increasing in k, and ĉ (k) → ∞ as k → ∞. We will loosely refer

to k as the precision of the signal and thus ĉ as the cost of precision. This was the cost

of information in the global game results with costly private signals in Szkup and Trevino

(2015) and Yang (2013).

Now suppose a player chooses behavioral strategy b : R→ [0, 1], with the interpretation

that he chooses action 1 with probability b (x) if the signal realization is x, and write B for

the set of behavioral strategies. Thus fixing H, a signal of precision k and a behavioral

strategy b induce an SCR

s̃k,b (θ) =

∫
b

(
θ +

1

k
ε

)
h (ε) dε,

where h is the probability density function of ε. Now we define the induced additive noise

cost functional on SCRs to be the cost of smallest precision that would allow that SCR to

be induced in this way by some behavioral strategy.

cAN (s) = ĉ (inf {k ∈ R+ |s = s̃k,b for some b ∈ B }) .

Clearly, this cost functional satisfies IPD. We show in the Online Appendix that it is not

submodular.

It turns out that there is a tight connection between the additive noise cost functionals

and max slope cost functionals introduced in Section 5.1. Consider the special case of the

additive noise cost functional where the distribution of noise is uniform on
[
− 1

2 ,
1
2

]
. Let bψ

be the threshold behavioral strategy where a player chooses action 1 if and only if his signal

is greater than ψ. Observe that in this case s̃k,bψ is equal to ŝk,ψ, the k-slope ψ-threshold

approximation of the step function 1{θ≥ψ}. Now if the cost ĉ of precision in the uniform

additive noise cost functional is the same as the cost f of the maximum slope in the max
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slope cost functional, the uniform additive noise cost functional will agree with the max

slope cost functional discussed earlier on k-slope approximations. In fact, since threshold

strategies end up being optimal in global games and k-slope approximations end up being

optimal under the max slope cost functional, equilibrium analysis with the max slope cost

functional and the uniform additive noise cost functional end up being identical.

5.2.4 Information Processing

Sims (2003) proposed modelling information processing constraints as reflecting limited

capacity for processing information, subject to optimal coding. Results in information

theory establish that entropy reduction measures the size of the channel required to process

the information. Sims (2003) proposed endogenizing the choice of information structure by

assuming that the decision maker was able to optimally choose the information structure

subject to a constraint on entropy reduction. Such problems will naturally have a multiplier

associated with the entropy reduction constraint. There is a natural dual to this problem

where there is no constraint but a cost of entropy reduction corresponding to the multiplier.

Entropy reduction has come to be widely used in applied economics in the last twenty years,

even in cases where the cost of information does not literally refer to information processing

cost. In those applications, the cost of information effectively captures any cost accrued

to the decision maker from distinguishing states to facilitate state-contingent strategies.

For example, besides physical information processing cost, it also includes mental cost of

perceiving states.

The relevant information theory is developed in the case of a finite number of states and

the coding theory foundations build in the property that state labels do not matter. Many

economic applications extend the entropy reduction cost functional to infinite states, but the

cost retains the property that state labels do not matter, and there is no special diffi culty

with choosing discontinuous SCRs. However, in many applications, states refer to values of

particular economic parameters, where distant values are easier to distinguish than nearby

ones either objectively in empirical investigations or subjectively in mental perception. We

discuss evidence on this in the next section.

5.3 Evidence on Continuous Stochastic Choice and Laplacian Se-
lection

This paper shows that if IPD holds, there is Laplacian selection. The key property and

observable implication of IPD is continuous stochastic choice. In this section, we report

experimental evidence in favor of continuous stochastic choice; and evidence that it gives

rise to Laplacian selection, in an experiment designed to test out theory. We discuss each

in turn.
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Jazayeri and Movshon (2007) examine decision makers’ability to discriminate the direc-

tion of dots on the screen when they face a threshold decision problem. There is evidence

that subjects are better at discriminating states on either side of the threshold, consistent

with optimal allocation of scarce resources to discriminate. However, the ability to discrim-

inate between states on either side of the threshold disappears as we approach the threshold,

giving rise to continuous choice in our sense in this setting. The allocation of perceptual

resources in this case is presumably at an unconscious neuro level.25

Caplin and Dean (2015) introduce an experimental framework where the allocation of

resources (time) to distinguish states is presumably a conscious choice. Subjects observe

a screen with a mixture of balls of different colors, say red and blue. Subjects are asked

to distinguish whether there are more red balls or blue balls. Subjects are better at

distinguishing these two states when there is more at stake. Dewan and Neligh (2020) use

this framework to address the relative cost of distinguishing nearby and distant states. They

verify that it is harder to distinguish two mixtures of red and blue balls if the proportions

are closer, verifying the key qualitative assumption in this paper. On the other hand, Dean

and Neligh (2019) consider an alternative treatment where players are asked to distinguish

which letter appears the most on a screen full of letters. There is arguably no natural

order on states in this setting and there is less evidence that any pair of states are easier to

distinguish than any other pair.26 This is thus a finite state analogue of the cheap perfect

discrimination property.

A recent paper of Goryunov and Rigos (2020) conducts a laboratory experiment to test

our predictions and finds supportive results. The experiment uses the Line Treatment

(LT) and the No Line Treatment (NLT) to generate a player’s discontinuous and continuous

SCRs, respectively. In the experiment, each randomly matched pair of subjects following

the same treatment play a coordination game identical across pairs. Each subject first

chooses a cutoff, marked by a vertical line across the horizontal state space on his/her

computer screen. Then the state realizes and appears as a dot on the screen. When the

dot appears, the vertical line shows only on the screen of a LT subject, enabling him/her

to tell whether the state is above or below his/her chosen cutoff (i.e., to the right or left of

the vertical line). For an NLT subject, his/her chosen vertical line does not show on the

screen when the dot appears so that he/she may not be able to sharply tell whether the

state is above or below his/her chosen cutoff. A subject’s chosen cutoff indicates his/her

intention to implement a strategy that takes the risky action (i.e., "invest" in our context)

for the state below the cutoff and the safe action (i.e., "not invest") otherwise. A strategy

is continuous if it induces a probability (proxied by frequency in the experiment) of taking

25See Pomatto, Strack, and Tamuz (2019) and Hébert and Woodford (2021a) for further discussion of this
evidence.
26This treatment was originally developed in work of Dean, Morris and Trevino on "Endogenous Infor-

mation Structures and Play in Global Games."
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risky action as a function of the state is continuous in the state. Intuitively, with the help

of the vertical line, the LT (NLT) subjects are more (less) likely to implement discontinuous

strategies. It is shown that LT indeed induces discontinuous strategies, while NLT does not;

and NLT does induce switching cutoffs close to the unique Laplacian selection equilibrium,

consistent with our theory.

5.4 Alternative Interpretations of the Cost of Stochastic Choice
Rules

Stochastic choice arises in our model because players have imperfect information about the

state. With this motivation for costly stochastic choice rules, it would be natural to impose

the assumptions that (i) the cost of any constant stochastic choice rule is zero; and (ii) the

cost is weakly increasing in the Blackwell more informative order. But we did not assume

these properties because our results did not require them.

Stochastic choice in game theoretic settings has been studied in a variety of other contexts

(where assumptions (i) and (ii) might not be relevant). Stochastic choice arising from payoff

perturbations were introduced in Harsanyi (1973) and is studied in important literatures

on stochastic fictitious play (Fudenberg and Kreps (1993)) and quantal response equilibria

(McKelvey and Palfrey (1995)). van Damme (1983) assumed that players faced control

costs in reducing noise in their action choices. Flynn and Sastry (2021b) recently analyze

stochastic choice games focussing on these interpretations, and with a likelihood separable

cost functional failing property (i) above.

The standard modelling assumption in all these cases is that there is randomness in

action choice that is independent across states. If there is a separable cost associated with

reducing randomness in each state, these problems will fit the framework of this paper.

However, the cost functional will satisfy cheap perfect discrimination.

However, if the cost of controlling actions at different states was not separable, then cost

functionals could satisfy EPD and IPD and Laplacian selection could result. However, we

do not pursue alternative interpretations in this paper, but merely note that our results

continue to apply with natural meaning under alternative interpretations.

5.5 Theoretical Extensions

5.5.1 Learning about Others’Information

A maintained assumption in our analysis is that players privately acquire information about

the state only. Denti (2020) and Hoshino (2018) have initiated a literature on what would

happen if players could also acquire information about others’information (and thus their

actions).
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Denti (2020) shows that - in a model with finite players and an entropy reduction cost

function - Laplacian selection is restored if players can learn about others’information. A

key property of entropy reduction is that it prevents optimal SCRs from attaining 0 or 1

as the marginal cost of doing so is infinite. So while players have an incentive to learn

others’information, their equilibrium stochastic choice rules are continuous, they will not

be able to perfectly coordinate on the state. This allows limit uniqueness arguments to go

through. But if the information cost satisfies the Lipschitz property (also satisfying CPD)

or there were a continuum of players, limit multiplicity would be restored. Under a Lipschitz

cost functional, players could choose step functions like 1{θ≥ψ}, perfectly correlating their

actions. With a continuum of players, aggregate actions/signals could perfectly reveal the

state even if individual actions/signals did not perfectly reveal the state. Either way, the

game reduces to the one studied in Section 4.1 and limit multiplicity would follow.

Hoshino (2018) shows that for some assumptions on the cost of information, there is

limit uniqueness but any equilibrium behavior from the underlying complete information

game can be uniquely selected if the information cost is chosen appropriately. Hoshino

(2018) assumes finite states and does not introduce a distance between states, so there is

no role for building in the idea that nearby states are hard to distinguish. In this sense,

infeasible/expensive perfect discrimination is ruled out.

5.5.2 Potential Games

We established our results for symmetric binary action continuum player games. In the

global games literature, all these assumptions have been relaxed. In particular, Frankel,

Morris, and Pauzner (2003) examine global games where the underlying coordination game

has arbitrary numbers of players and actions, and asymmetric payoffs, maintaining the as-

sumption that payoffs are supermodular in actions and satisfy increasing differences with

respect to the state. They show two kinds of results. The first result is that there is limit

uniqueness in general: if players observe additive noisy signals of payoffs, then there is a

unique equilibrium in the limit as the noise goes to zero. However, in general, the equilib-

rium selected depends on the distribution of the noise. The second result gives suffi cient

conditions for noise independent selection (so the limit equilibrium does not depend on the

shape of the noise). Frankel, Morris, and Pauzner (2003) report some suffi cient conditions

based on generalized potential games; Monderer and Shapley (1996) introduced potential

games and Morris and Ui (2005) analyze the relevant generalizations. While we have not

appealed to potential arguments in this paper, the Laplacian selection in the symmetric

binary action continuum player games is the potential maximizing Nash equilibrium and we

conjecture that generalizations of our results would go through for the generalized potential

games discussed in Frankel, Morris, and Pauzner (2003), but this extension is beyond the

scope of this paper.
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6 Appendix

To prove Proposition 8, we will first introduce some notation and a lemma about best
responses. As argued in Subsection 2.4, it suffi ces to focus on symmetric equilibria in

monotonic SCRs, which are best responses among monotonic strategies to themselves. To

study these equilibria, we write

Sλ (s) = arg max
s̃∈SM

vλ (s̃, s)

for a player’s best monotonic response in the λ-game if he thinks that other players will

follow strategy s ∈ SM . Assumptions A1 and A4 imply, for any monotone SCR s, that

there exists a threshold θs ∈ R such that π (s (θ) , θ) > 0 if θ > θs and π (s (θ) , θ) < 0 if

θ < θs. We will show that it is optimal for players to choose strategies that are close to a

step function jumping at θs when the cost parameter λ is small.

Lemma 17 (Optimal Best Responses) The essentially unique best response to s if λ =

0 is a step function at θs, i.e.,

Sλ (s) =
{

1{θ≥θs}
}
.

Moreover, for any ρ > 0, there exists a λ > 0 such that Sλ (s) ⊂ Bρ
(
1{θ≥θs}

)
for all s ∈ SM

and λ < λ.

Proof. When λ = 0, the player can choose any SCR for free and the optimal SCR is

1{θ≥θs}.

Now consider the case λ > 0. For any δ > 0, define

z (δ) = inf
l∈[0,1]

min (π (l, θl + δ) ,−π (l, θl − δ))

where θl is the threshold defined in Assumption A4. Note that given δ > 0,min (π (l, θl + δ) ,−π (l, θl − δ))
is a function of l on a compact set [0, 1]. By Assumption A4, this function is always strictly

positive. Hence, its infimum on [0, 1] exists and is strictly positive. That is, z (δ) > 0 for

all δ > 0. In addition, for any s ∈ SM and θ /∈ [θs − δ, θs + δ], we have

|π (s (θ) , θ)| ≥ |π (s (θs) , θ)| ≥ z (δ) , (8)

where the first inequality follows Assumptions A1 and A4, and the second inequality follows

the definition of z (δ).
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Let g = supθ∈R g (θ) <∞ and choose δ = ρ
4g . For any sλ ∈ Sλ (s), note that

∞∫
−∞

π (s (θ) , θ) ·
[
1{θ≥θs} − sλ (θ)

]
g (θ) dθ

≥
∫

θ/∈[θs−δ,θs+δ]

π (s (θ) , θ) ·
[
1{θ≥θs} − sλ (θ)

]
g (θ) dθ

≥
∞∫
−∞

z (δ) ·
∣∣1{θ≥θs} − sλ (θ)

∣∣ g (θ) dθ −
θs+δ∫
θs−δ

z (δ) ·
∣∣1{θ≥θs} − sλ (θ)

∣∣ g (θ) dθ

≥ z (δ) ·
[∥∥1{θ≥θs}, sλ

∥∥− 2 · g · δ
]

= z (δ) ·
[∥∥1{θ≥θs}, sλ

∥∥− ρ

2

]
. (9)

The first inequality holds since π (s (θ) , θ) and
[
1{θ≥θs} − sλ (θ)

]
always have the same sign

and thus
θs+δ∫
θs−δ

π (s (θ) , θ) ·
[
1{θ≥θs} − sλ (θ)

]
g (θ) dθ > 0 ,

and the second inequality follows (8).

Let ε = z
(
ρ
4g

)
· ρ

4π , where π is the uniform upper bound of π (l, θ). For each θl ∈
[θmin, θmax], according to Assumption A9, there exists an SCR s̃l ∈ Bε

(
1{θ≥θl}

)
such that

c (s̃l) < ∞. Note that
{

1{θ≥θl} : θs ∈ [θmin, θmax]
}
is sequentially compact and thus com-

pact in S under the L1−metric. Since
{
Bε
(
1{θ≥θl}

)
: θl ∈ [θmin, θmax]

}
is an open cover of{

1{θ≥θl} : θl ∈ [θmin, θmax]
}
, it has a finite sub-cover. Let{

Bε
(
1{θ≥θ1}

)
, Bε

(
1{θ≥θ2}

)
, · · ·, Bε

(
1{θ≥θN}

)}
denote the finite sub-cover, and s̃1 ∈ Bε

(
1{θ≥θ1}

)
, s̃2 ∈ Bε

(
1{θ≥θ2}

)
, ···, s̃N ∈ Bε

(
1{θ≥θN}

)
be the corresponding SCRs with finite costs. Define c = max

(
c
(
s̃1
)
, c
(
s̃2
)
, · · ·, c

(
s̃N
))
,

which is finite. By definition, any s ∈ SM induces a cutoff θs ∈ [θmin, θmax] so that 1{θ≥θs}

belongs to some member Bε
(
1{θ≥θn}

)
of the sub-cover and thus

∥∥1{θ≥θs}, s̃
n
∥∥ < ε. Con-

sider the binary decision problem when the aggregate SCR of all other players is given by

s. Absent the cost, the ideal strategy is 1{θ≥θs}. The sacrificed expected return from using

s̃n instead of 1{θ≥θs} is

∞∫
−∞

π (s (θ) , θ) ·
[
1{θ≥θs} − s̃n (θ)

]
g (θ) dθ

≤ π ·
∥∥1{θ≥θs}, s̃

n
∥∥ < z

(
ρ

4g

)
· ρ

4
. (10)
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Combining (9) and (10) leads to

∞∫
−∞

π (s (θ) , θ) · [s̃n (θ)− sλ (θ)] g (θ) dθ > z

(
ρ

4g

)
·
[∥∥1{θ≥θs}, sλ

∥∥− 3

4
ρ

]
,

where the left hand side is the sacrificed expected return from using s̃n instead of sλ (θ).

The optimality of sλ implies

∞∫
−∞

π (s (θ) , θ) · [s̃n (θ)− sλ (θ)] g (θ) dθ ≤ λ · [c (s̃n)− c (sλ)] ≤ λ · c ,

where the second inequality follows the definition of c. The above two inequalities imply

z

(
ρ

4g

)
·
[∥∥1{θ≥θs}, sλ

∥∥− 3

4
ρ

]
< λ · c,

i.e., ∥∥1{θ≥θs}, sλ
∥∥ < λ · c

z
(
ρ
4g

) +
3

4
ρ .

Let λ =
z( ρ

4g )
4c . Therefore, for all s ∈ SM and λ < λ, we have

∥∥1{θ≥θs}, sλ
∥∥ < ρ.

Proof of Proposition 8.
Proof. We prove the limit uniqueness result from just the absolute continuity of equilibrium
SCRs for λ > 0 (together with translation insensitivity). IPD is thus suffi cient but not

necessary. In other words, it does not matter in the proof if some feasible SCRs are not

absolutely continuous, provided that they will not be chosen in equilibrium. Hence, the

proof here is more general than just for the stated result of the proposition.

By Lemma 17, we have

lim
λ→0

sup
s̃∈Sλ(s) and s∈SM

∥∥s̃, 1{θ≥θs}∥∥ = 0. (11)

Let
{
s∗i,λ

}
i∈[0,1]

denote an equilibrium of the λ-game. Then the aggregate SCR is given

by

ŝ∗λ (θ) =

∫
i∈[0,1]

s∗i,λ (θ) di ,

which by Assumption A4 induces a threshold θ∗λ such that π (ŝ∗λ (θ) , θ) > 0 if θ > θ∗λ and

π (ŝ∗λ (θ) , θ) < 0 if θ < θ∗λ. By (11),

lim
λ→0

∥∥∥s∗i,λ, 1{θ≥θ∗λ}∥∥∥ = 0.
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Since ∥∥s∗i,λ, 1{θ≥θ∗∗}∥∥ ≤ ∥∥∥s∗i,λ, 1{θ≥θ∗λ}∥∥∥+
∥∥∥1{θ≥θ∗λ}, 1{θ≥θ∗∗}

∥∥∥ ,
it suffi ces to show that θ∗λ becomes arbitrarily close to θ

∗∗ as λ→ 0.

We next show that

∞∫
−∞

π (ŝ∗λ (θ) , θ) · g (θ) dŝ∗λ (θ) is arbitrarily close to zero when λ is

small enough. Consider player i’s expected payoff from slightly shifting his equilibrium

strategy s∗i,λ to T∆s
∗
i,λ, which is given by

W (∆) =

∞∫
−∞

π (ŝ∗λ (θ) , θ) · s∗i,λ (θ + ∆) · g (θ) dθ − λ · c
(
T∆s

∗
i,λ

)
.

The player should not benefit from this deviation, which implies W ′ (0) = 0, i.e.,

∞∫
−∞

π (ŝ∗λ (θ) , θ) ·
ds∗i,λ (θ)

dθ
· g (θ) dθ − λ ·

dc
(
T∆s

∗
i,λ

)
d∆

∣∣∣∣∣∣
∆=0

=

∞∫
−∞

π (ŝ∗λ (θ) , θ) · g (θ) ds∗i,λ (θ)− λ ·
dc
(
T∆s

∗
i,λ

)
d∆

∣∣∣∣∣∣
∆=0

= 0.

Here W ′ (0) takes this form because s∗i,λ is absolutely continuous. In addition, translation

insensitivity implies −K <
dc(T∆s

∗
i,λ)

d∆

∣∣∣∣
∆=0

< K for some K > 0. Hence, for any small

ε > 0, by choosing λ ∈ (0, ε) we obtain

−Kε <
∞∫
−∞

π (ŝ∗λ (θ) , θ) · g (θ) ds∗i,λ (θ) < Kε .

The above inequality holds for all i ∈ [0, 1], and thus implies

−Kε <
∞∫
−∞

π (ŝ∗λ (θ) , θ) · g (θ) dŝ∗λ (θ) < Kε ,

i.e., ∣∣∣∣∣∣
∞∫
−∞

π (ŝ∗λ (θ) , θ) · g (θ) dŝ∗λ (θ)

∣∣∣∣∣∣ < Kε . (12)

Since the density function g (θ) is continuous on [θmin, θmax], it is also uniformly contin-

uous on [θmin, θmax]. For the same reason, Π (θ) is also uniformly continuous on [θmin, θmax].

Hence, for any ε > 0, we can find an η > 0 such that
∣∣g (θ)− g

(
θ′
)∣∣ < ε and

∣∣Π (θ)−Π
(
θ′
)∣∣ <
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ε for all θ, θ′ ∈ [θmin, θmax] and
∣∣θ − θ′∣∣ < 2η. Without loss of generality, we can choose

η < ε. By (11), for all i, the effective strategy s∗i,λ converges to 1{θ≥θ∗λ} in L
1 − norm,

so does the aggregate effective strategy ŝ∗λ . Together with the monotonicity of ŝ∗λ, this

implies the existence of a λ1 > 0 such that for all λ ∈ (0, λ1),
∣∣∣ŝ∗λ (θ)− 1{θ≥θ∗λ}

∣∣∣ < ε for all

θ ∈ (−∞, θ∗λ − η) ∪ (θ∗λ + η,∞). Choosing λ ∈ (0,min (λ1, ε)), by (12), we obtain∣∣∣∣∣∣∣
θ∗λ+η∫
θ∗λ−η

π (ŝ∗λ (θ) , θ) · g (θ) dŝ∗λ (θ)

∣∣∣∣∣∣∣
<

θ∗λ−η∫
−∞

|π (ŝ∗λ (θ) , θ)| · g (θ) dŝ∗λ (θ) +

∞∫
θ∗λ+η

|π (ŝ∗λ (θ) , θ)| · g (θ) dŝ∗λ (θ) +Kε

≤ 2Lgε+Kε , (13)

where L > 0 is the uniform bound for |π (l, θ)| and g = supθ∈R g (θ) <∞. By the definition
of η, |g (θ)− g (θ∗λ)| < ε for all θ ∈ [θ∗λ − η, θ∗λ + η]. Hence,∣∣∣∣∣∣∣g (θ∗λ) ·

θ∗λ+η∫
θ∗λ−η

π (ŝ∗λ (θ) , θ) dŝ∗λ (θ)−
θ∗λ+η∫
θ∗λ−η

π (ŝ∗λ (θ) , θ) · g (θ) dŝ∗λ (θ)

∣∣∣∣∣∣∣ < Lε. (14)

Inequalities (13) and (14) imply∣∣∣∣∣∣∣
θ∗λ+η∫
θ∗λ−η

π (ŝ∗λ (θ) , θ) dŝ∗λ (θ)

∣∣∣∣∣∣∣ <
2Lg +K + L

g
ε , (15)

where g = infθ∈[θmin,θmax] g (θ) > 0 since g is continuous and strictly positive on [θmin, θmax]

by assumption.

Next note that∣∣∣∣∣∣∣∣
ŝ∗λ(θ∗λ+η)∫
ŝ∗λ(θ∗λ−η)

π (s, θ∗λ + η) ds−
ŝ∗λ(θ∗λ+η)∫
ŝ∗λ(θ∗λ−η)

π (s, θ∗λ − η) ds

∣∣∣∣∣∣∣∣ ≤ |Π (θ∗λ + η)−Π (θ∗λ − η)|+ 4Lε

< ε+ 4Lε , (16)

where the first inequality follows because Lemma 17 implies that
∣∣∣ŝ∗λ (θ)− 1{θ≥θ∗λ}

∣∣∣ < ε for

all θ ∈ (−∞, θ∗λ − η)∪ (θ∗λ + η,∞), and the second inequality follows the uniform continuity

of Π (θ) on [θmin, θmax].
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Further note that Assumption A2 implies

ŝ∗λ(θ∗λ+η)∫
ŝ∗λ(θ∗λ−η)

π (s, θ∗λ − η) ds ≤
θ∗λ+η∫
θ∗λ−η

π (ŝ∗λ (θ) , θ) dŝ∗λ (θ) ≤
ŝ∗λ(θ∗λ+η)∫
ŝ∗λ(θ∗λ−η)

π (s, θ∗λ + η) ds,

which together with (15) and (16) implies

−
(

2Lg +K + L

g
+ 4L+ 1

)
ε <

ŝ∗λ(θ∗λ+η)∫
ŝ∗λ(θ∗λ−η)

π (s, θ∗λ − η) ds

≤
ŝ∗λ(θ∗λ+η)∫
ŝ∗λ(θ∗λ−η)

π (s, θ∗λ + η) ds <

(
2Lg +K + L

g
+ 4L+ 1

)
ε .(17)

By Assumption A2, the monotonicity of π (s, θ) in θ implies∣∣∣∣∣∣∣∣
ŝ∗λ(θ∗λ+η)∫
ŝ∗λ(θ∗λ−η)

π (s, θ∗λ) ds

∣∣∣∣∣∣∣∣ <
(

2Lg +K + L

g
+ 4L+ 1

)
ε .

Again, using the fact that
∣∣∣ŝ∗λ (θ)− 1{θ≥θ∗λ}

∣∣∣ < ε for all θ ∈ (−∞, θ∗λ − η) ∪ (θ∗λ + η,∞), the

above inequality implies∣∣∣∣∣∣
1∫

0

π (s, θ∗λ) ds

∣∣∣∣∣∣ <
(

2Lg +K + L

g
+ 6L+ 1

)
ε .

Therefore, we have

lim
λ→0

Π (θ∗λ) = 0,

which implies

lim
λ→0

θ∗λ = θ∗∗

according to Assumptions A5 and A6.

Proof of Proposition 10.
Proof. Without loss of generality, we only need to consider ε suffi ciently small. Let

Nε
θ∗ =

{
s ∈ SM : Pr

(∣∣s (θ)− 1{θ≥θ∗}
∣∣ ≤ ε) = 1

}
.

Suppose the aggregate SCR s ∈ Nε
θ∗ . Since ε is suffi ciently small, the cutoff θs induced by s

is θ∗, as defined in Assumption A4. That is, π (s (θ) , θ) > 0 for θ > θ∗ and π (s (θ) , θ) < 0
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for θ < θ∗. It suffi ces to show that when λ is suffi ciently small, any best response s∗i, λ to

s also belongs to Nε
θ∗ .

Since θ∗ ∈ (θmin, θmax) and ε is suffi ciently small, we have

inf ({π (1− ε, θ) : θ > θ∗}) > 0

and

sup ({π (ε, θ) : θ < θ∗}) < 0 .

Let

b = min {inf ({π (1− ε, θ) : θ > θ∗}) ,− sup ({π (ε, θ) : θ < θ∗})} .

Since the cost functional satisfies cheap perfect discrimination, we can choose ρ > 0 and

K > 0 such that

|c (Lεθ∗s)− c (s)| ≤ K · ‖Lεθ∗s, s‖

for all s ∈ Bρ
(
1{θ≥θ∗}

)
. By Lemma 17, there exists a λ1 > 0 such that Sλ (s) ∈ Bρ

(
1{θ≥θ∗}

)
for all λ ∈ (0, λ1). Let λ = min

(
λ1,

b
K

)
. We show that any s ∈ SM\Nε

θ∗ is strictly

dominated by Lεθ∗s when λ ∈
(
0, λ
)
. The benefit from choosing Lεθ∗s instead of s is

∞∫
−∞

π (s (θ) , θ) · [(Lεθ∗s) (θ)− s (θ)] g (θ) dθ − λ · [c (Lεθ∗s)− c (s)]

≥
θ∗∫
−∞

− b · [(Lεθ∗s) (θ)− s (θ)] g (θ) dθ +

∞∫
θ∗

b · [(Lεθ∗s) (θ)− s (θ)] g (θ) dθ

−λ · [c (Lεθ∗s)− c (s)]

= b · ‖Lεθ∗s, s‖ − λ · [c (Lεθ∗s)− c (s)]

> (b− λK) · ‖Lεθ∗s, s‖ > 0,

where the last inequality holds because λ < b
K and ‖Lεθ∗s, s‖ > 0 by construction.

Hence, the best response to any s ∈ Nε
θ∗ also belongs to N

ε
θ∗ . By Helly’s selection

theorem, Nε
θ∗ is compact. Therefore, for any θ

∗ ∈ (θmin, θmax) and ε ∈ (0, 1/2), there is an

equilibrium in Nε
θ∗ when λ is suffi ciently small. This concludes the proof.

Proof of Proposition 13.
Proof. Let

{
s∗i,λ

}
i∈[0,1]

denote an equilibrium of the λ-game. By Lemma 12, any equi-

librium strategy s∗i,λ is absolutely continuous. Since the proof of Proposition 8 just makes

use of the absolute continuity of equilibrium SCRs for λ > 0, the desired result follows the

same argument.
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Proof of Proposition 15.
Proof. Let sλ be an equilibrium strategy when the cost parameter takes value λ > 0. We

need to show that
∥∥sλ, 1{θ≥t}∥∥ → 0 as λ → 0. Since the cost of sλ is determined by its

largest slope and f (∞) =∞, the largest slope of sλ is finite and sλ is piecewise linear. If
sλ is nondecreasing, then the desired result is obtained as a special case of Proposition 8,

which shows that monotonic equilibria converge to the Laplacian selection as λ→ 0. Now

it is suffi cient to focus on the case that sλ is not monotonic. Let θ
∗ be the lowest state at

which the regime switches, i.e., θ∗ = inf {θ : sλ (θ) ≥ 1− θ}.27 Let k be the maximal slope

of sλ. As the best response to the regime change at θ
∗, sλ (θ) must rise from 0 with slope k

at some state θ1 < θ∗ and reach the critical mass at θ∗, so that k (θ∗ − θ1) = 1− θ∗, which
implies

θ∗ =
kθ1 + 1

k + 1
. (18)

Since sλ is not monotonic, there exists a θ2 > θ∗ such that sλ (θ) = k (θ − θ1) for θ ∈ [θ1, θ2]

and sλ starts to decrease at θ2. Suppose sλ decreases with slope −k′ in a right neighborhood
of θ2.28 By the continuity of sλ, there exists a small ε > 0 such that sλ (θ2 + ε) ≥ 1−θ2−ε.
Thus the regime does not change back in [θ2, θ2 + ε]. Now we consider a small deviation

from sλ. Let

s̃λ =


0 if θ < θ1 + ε

k (θ − θ1 − ε) if θ1 + ε ≤ θ ≤ θ2 + kε
k+k′

sλ (θ) if θ > θ2 + kε
k+k′

.

Note that s̃λ (θ) ≤ sλ (θ) holds globally and the inequality is strict in
(
θ1, θ2 + kε

k+k′

)
. For a

player deviating to s̃λ, the reduction of investment probability in (θ1, θ
∗) where the regime

does not change results in an expected gain relative to using sλ

t ·
[
k (θ∗ − θ1)

2

2
− k (θ∗ − θ1 − ε)2

2

]
· g (θ∗) +O

(
k−1

)
= kεt ·

[
(θ∗ − θ1)− ε

2

]
· g (θ∗) +O

(
k−1

)
,

where the second term O
(
k−1

)
comes from the variation of the density g (θ) in (θ1, θ

∗).

Similarly, the reduction of investment probability in [θ∗, θ2+ kε
k+k′ ) where the regime changes

results in an expected loss relative to using sλ

(1− t) ·
[
(θ2 − θ∗) kε+

kε

2

kε

k + k′

]
· g (θ∗) +O

(
k−1

)
= kε (1− t) ·

[
(θ2 − θ∗) +

kε

2 (k + k′)

]
· g (θ∗) +O

(
k−1

)
,

27Note that such θ∗ exists since by definition the regime must change in [0, 1].
28Actually, since the cost of sλ depends only on its largest slope, we should have k′ = k. But this is not

important for the proof.
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where, again, the second term O
(
k−1

)
comes from the variation of the density g (θ) in

[θ∗, θ2 + kε
k+k′ ). Hence, the net expected payoff from the deviation is

kε

[
t (θ∗ − θ1)− t ε

2
− (1− t) (θ2 − θ∗)− (1− t) kε

2 (k + k′)

]
· g (θ∗) +O

(
k−1

)
,

which should be non-positive due to the optimality of sλ. Since ε > 0 can be chosen

arbitrarily small, and in the limit where λ→ 0, we have k →∞, this requires

t (θ∗ − θ1)− (1− t) (θ2 − θ∗) ≤ 0 . (19)

Note that

t (θ∗ − θ1)− (1− t) (θ2 − θ∗)

= (θ∗ − θ1)− (1− t) (θ2 − θ1)

=
1− θ1

k + 1
− (1− t) (θ2 − θ1)

≥ 1− θ1

k + 1
− 1− t

k
, (20)

where the second equality follows (18), and the inequality follows the fact that θ2−θ1 ≤ k−1.

Combining (19) and (20) leads to θ1 ≥ t− 1−t
k . Since θ

∗ > θ1, we have

θ∗ > t− 1− t
k

. (21)

Let θ∗∗ be the highest state at which the regime switches, i.e., θ∗∗ = sup {θ : sλ (θ) < 1− θ}.
Then similar argument leads to

θ∗∗ < t+
t

k
,

and thus

t− 1− t
k

< θ∗ < θ∗∗ < t+
t

k
.

By construction, θ∗ and θ∗∗ are the lowest and highest states at which the regime switches.

Therefore, as λ→ 0, k goes to infinity and the regime switches at states arbitrarily close to

t. This proves the desired result.
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Proof of Proposition 16.
Proof. Since the cost only depends on the maximal slope of the SCR, the equilibrium SCR

must take the piecewise linear form (4). Let ŝk,ξ denote the equilibrium SCR and ψ the

state at which the regime changes. Then the optimality of ŝk,ξ implies

ξ = ψ +
1

k

(
t− 1

2

)
. (22)

By Lemma 17, the slope k can be arbitrarily large when λ is suffi ciently small. Note that

as a regime-change threshold, ψ belongs to (0, 1). Since k is large, ξ belongs to (0, 1) and

ŝk,ξ (θ) = 1{θ≥ψ} for θ ∈ R\ (0, 1). Then, a player’s expected payoff from playing ŝk,ξ is∫
ŝk,ξ (θ) ·

(
1{θ≥ψ} − t

)
· g (θ) dθ − λ · f (k)

=

∫
R\(0,1)

ŝk,ξ (θ) ·
(
1{θ≥ψ} − t

)
· g (θ) dθ + [G (1)−G (0)]

∫ 1

0

ŝk,ξ (θ) ·
(
1{θ≥ψ} − t

)
dθ − λ · f (k)

=

∫ ∞
1

(
1{θ≥ψ} − t

)
· g (θ) dθ + [G (1)−G (0)]

[
(1− ψ) (1− t)− 1

2
t (1− t) k−1

]
− λ · f (k) ,

where the first equality follows that G is uniform over [0, 1], and the second equality follows

that ŝk,ξ (θ) = 1{θ≥ψ} for θ ∈ R\ (0, 1). Hence, it is straightforward to see that k solves

max
k>0
−1

2
[G (1)−G (0)] t (1− t) · k−1 − λ · f (k) .

Next, by definition, the equilibrium regime-change threshold ψ is pinned down by

1− ψ = ŝk,ξ (ψ)

=
1

2
+ k (ψ − ξ)

= 1− t ,

where the last equality follows (22). Hence, the equilibrium regime-change threshold is

ψ = t.

Finally, (22) immediately implies

ξ = t+

(
t− 1

2

)
k−1 .
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7 Online Appendix: Properties of Cost Functionals

In this section, we collect together proofs of properties of cost functionals mentioned in main

body of the paper.

7.1 Entropy Reduction Cost Functional

Lemma 18 The entropy reduction information cost satisfies CPD for all ψ ∈ (θmin, θmax).

Proof. For any SCR s, the associated entropy reduction is

c (s) = E [H (s (θ))]−H [E (s (θ))] ,

where H : [0, 1]→ R is given by

H (x) = x lnx+ (1− x) ln (1− x) .

Now let p1 (s) = E (s (θ)) denote the unconditional probability that action 1 is chosen

under SCR s. Note that this cost functional is convex and Fréchet differentiable at s with

derivative

H ′ (s (θ))−H ′ (p1 (s)) .

Now since ψ ∈ (θmin, θmax) and the prior density g is positive over [θmin, θmax], we have

E
(
1{θ≥ψ}

)
∈ (0, 1). Choose ξ > 0 such that E

(
1{θ≥ψ}

)
∈ (ξ, 1− ξ). Then choose ρ > 0

small enough such that for all s ∈ Bρ
(
1{θ≥ψ}

)
, p1 (s) ∈ (ξ, 1− ξ). Note that for small

ε > 0, s ∈ Bρ
(
1{θ≥ψ}

)
implies Lεψs ∈ Bρ

(
1{θ≥ψ}

)
. Let A (s) =

{
θ : Lεψs (θ) 6= s (θ)

}
.

Now Fréchet differentiability implies that we have

c
(
Lεψs

)
− c (s) ≤

∫
A(s)

[
H ′
(
Lεψs (θ)

)
−H ′

(
p1

(
Lεψs

))] (
Lεψs (θ)− s (θ)

)
dG (θ)

and

c
(
Lεψs

)
− c (s) ≥

∫
A(s)

[H ′ (s (θ))−H ′ (p1 (s))]
(
Lεψs (θ)− s (θ)

)
dG (θ) ,

Hence,

∣∣c (Lεψs)− c (s)
∣∣ ≤ max

 ∣∣∣∫A(s)
[H ′ (s (θ))−H ′ (p1 (s))]

(
Lεψs (θ)− s (θ)

)
dG (θ)

∣∣∣ ,∣∣∣∫A(s)

[
H ′
(
Lεψs (θ)

)
−H ′

(
p1

(
Lεψs

))](
Lεψs (θ)− s (θ)

)
dG (θ)

∣∣∣
 .
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SinceH ′ (x) is increasing in x, for all θ ∈ A (s), both |H ′ (s (θ))−H ′ (p1 (s))| and
∣∣∣H ′ (Lεψs (θ)

)
−H ′

(
p1

(
Lεψs

))∣∣∣
are bounded above by

K = max (|H ′ (1− ε)−H ′ (ξ)| , |H ′ (1− ξ)−H ′ (ε)|) .

Therefore,

∣∣c (Lεψs)− c (s)
∣∣ ≤ ∫

A(s)

K ·
∣∣Lεψs (θ)− s (θ)

∣∣ dG (θ)

= K ·
∥∥Lεψs, s∥∥ .

This concludes the proof.

7.2 The Pairwise-Separable Cost Functional

Lemma 19 The PS cost functional satisfies A9 (feasible almost perfect discrimination).

Proof. It suffi ces to show that cPS (ŝk,ψ) <∞, i.e., the integral∫
θ

∫
θ′

∣∣θ′ − θ∣∣−αD (ŝk,ψ (θ) , ŝk,ψ
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

exists.

Let

A =
{(
θ, θ′

)
∈ R2 : −k−1 ≤ θ − θ′ ≤ k−1

}
and

A1 =
{(
θ, θ′

)
∈ R2 : θ ≥ ψ + k−1/2 and θ′ ≥ ψ + k−1/2, or θ ≤ ψ − k−1/2 and θ′ ≤ ψ − k−1/2

}
.

First note that
∣∣θ′ − θ∣∣−α is bounded on R2\A, thus the integral over R2\A exists. Second,

since D
(
ŝk,ψ (θ) , ŝk,ψ

(
θ′
))

= 0 on A1, we just need to show that the integral over A\A1

exists. Let

B1 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ′ ≤ k−1/2 and 0 ≤ θ − θ′ ≤ k−1

}
,

B2 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ′ ≤ k−1/2 and 0 ≤ θ′ − θ ≤ k−1

}
,

B3 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ ≤ k−1/2 and 0 ≤ θ′ − θ ≤ k−1

}
,

and

B4 =
{(
θ, θ′

)
∈ A\A1 : −k−1/2 ≤ θ ≤ k−1/2 and 0 ≤ θ − θ′ ≤ k−1

}
.

2



Then A\A1 = B1 ∪B2 ∪B3 ∪B4. We next show that the integral over B1 exists. Similar

calculations can show the existence of the integral over B2, B3 and B4, and are thus omitted.

By definition of a PS cost functional,D (x1, x2) is bounded on [0, 1]×[0, 1] andD (x1, x2) =

O
(
|x1 − x2|β

)
as |x1 − x2| → 0. So there exists a K > 0, such that

D (x1, x2) ≤ K · |x1 − x2|β (23)

on [0, 1]× [0, 1]. Now∫
B1

∣∣θ − θ′∣∣−αD (ŝk,ψ (θ) , ŝk,ψ
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

≤
∫
B1

∣∣θ − θ′∣∣−αK · ∣∣ŝk,ψ (θ)− ŝk,ψ
(
θ′
)∣∣β h (θ, θ′) dθ′dθ

=

∫
B1

(
θ − θ′

)−α
K ·

(
1

2
+ k (θ − ψ)− 1

2
− k

(
θ′ − ψ

))β
h
(
θ, θ′

)
dθ′dθ

≤ Kkβh

∫
B1

(
θ − θ′

)β−α
dθ′dθ ,

for some h > 0, where the first inequality is implied by (23), the equality is implied by

the definition of ŝk,ψ and the last inequality is true because θ ≥ θ′ on B1 and
h(θ,θ′)
g(θ)g(θ′) is

bounded above in the definition of PS cost functionals.

Now changing variables from
(
θ, θ′

)
to (t, t′) such that t = θ and t′ = θ − θ′, we have∫

B1

(
θ − θ′

)β−α
dθ′dθ

=

∫ k−1

0

(t′)
β−α

∫ k−1/2+t′

−k−1/2+t′
dt · dt′

= k−1

∫ k−1

0

(t′)
β−α

dt′ .

This integral exists since β − α+ 1 > 0. Therefore, cPS (ŝk,ψ) <∞.

Proposition 20 The PS cost functional satisfies IPD if and only if α ≥ 2.

Proof. Let s be a non-decreasing discontinuous SCR and s
(
θ̂−

)
< s

(
θ̂+

)
for some θ̂ ∈

[θmin, θmax].29 Let

sθ̂ (θ) =

{s(θ̂+

)
if θ > θ̂

s
(
θ̂−

)
if θ ≤ θ̂

(24)

29We can focus on θ̂ ∈ [θmin, θmax] because the possible θ̂s of equilibrium SCRs are always in [θmin, θmax]
due to Assumption A3.
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and

A = min
[
D
(
s
(
θ̂−

)
, s
(
θ̂+

))
, D
(
s
(
θ̂+

)
, s
(
θ̂−

))]
.

Note that A > 0 since s
(
θ̂−

)
6= s

(
θ̂+

)
. Then we have

cPS (s) =

∫
θ

∫
θ′

∣∣θ′ − θ∣∣−αD (s (θ) , s
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

≥
∫
θ

∫
θ′

∣∣θ′ − θ∣∣−αD (sθ̂ (θ) , sθ̂
(
θ′
))
h
(
θ, θ′

)
dθ′dθ

= D
(
s
(
θ̂−

)
, s
(
θ̂+

))∫ θ̂

−∞

∫ ∞
θ̂

(
θ′ − θ

)−α
h
(
θ, θ′

)
dθ′dθ

+D
(
s
(
θ̂+

)
, s
(
θ̂−

))∫ ∞
θ̂

∫ θ̂

−∞

(
θ − θ′

)−α
h
(
θ, θ′

)
dθ′dθ

≥ 2A ·
∫ θ̂

−∞

∫ ∞
θ̂

(
θ′ − θ

)−α
h
(
θ, θ′

)
dθ′dθ , (25)

where the first inequality follows the monotonicity of s in θ, and the second inequality follows

the definition of A. Since g is continuous and strictly positive on [θmin, θmax], it has a strictly

positive lower bound on [θmin, θmax]. Since
g(θ)g(θ′)
h(θ,θ′) is bounded above, h

(
θ, θ′

)
has a strictly

positive lower bound on [θmin, θmax]×[θmin, θmax]. Hence,
∫ θ̂
−∞

∫∞
θ̂

(
θ′ − θ

)−α
h
(
θ, θ′

)
dθ′dθ

is integrable if and only if 2− α > 0. Therefore, α ≥ 2 implies cPS (s) =∞ and thus IPD.

For the converse, consider an SCR sθ̂ (·) defined by (24) such that D
(
s
(
θ̂−

)
, s
(
θ̂+

))
=

D
(
s
(
θ̂+

)
, s
(
θ̂−

))
≡ A > 0. Immediate from the previous derivation of (25) we obtain

that cPS
(
sθ̂
)

=∞ if α ≥ 2 and c
(
sθ̂
)
<∞ if α < 2. Then, IPD implies cPS

(
sθ̂
)

=∞ and

thus α ≥ 2.

The following lemmas show that CPD is satisfied if α = 0 and it is easier to be satisfied

at lower values of α. Since the PS cost functional is continuous in α, there exists some

α̂ ∈ [0,min (2, β + 1)] such that CPD is satisfied for α ∈ [0, α̂]. Due to the technicalities

associated with the PS cost functional and the generality of the definitions of CPD and

EPD, however, we do not obtain an analytical bound α̂ between CPD and EPD.

Lemma 21 The PS cost functional satisfies CPD at α = 0.

Proof. When α = 0, the cost functional becomes

cPS (s) =

∫
θ

∫
θ′
D
(
s (θ) , s

(
θ′
))
h
(
θ, θ′

)
dθ′dθ .
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Hence, by the triangle inequality,

∣∣cPS (Lεψs)− cPS (s)
∣∣ =

∣∣∣∣∫
θ

∫
θ′

[
D
((
Lεψs

)
(θ) ,

(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣
≤

∫
θ

∫
θ′

∣∣D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ

≤
∫
θ

∫
θ′

∣∣D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

((
Lεψs

)
(θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ

+

∫
θ

∫
θ′

∣∣D ((Lεψs) (θ) , s
(
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ . (26)

Since ∂D(x1,x2)
∂x1

and ∂D(x1,x2)
∂x2

exist on [0, 1] × [0, 1],30 there exists a K > 0 such that

|D (x′1, x2)−D (x1, x2)| ≤ K · |x′1 − x1| and |D (x1, x
′
2)−D (x1, x2)| ≤ K · |x′2 − x2| for

all x1, x2 ∈ [0, 1]. Hence,

∣∣D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

((
Lεψs

)
(θ) , s

(
θ′
))∣∣ ≤ K · ∣∣(Lεψs) (θ′)− s (θ′)∣∣

and ∣∣D ((Lεψs) (θ) , s
(
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣ ≤ K · ∣∣(Lεψs) (θ)− s (θ)

∣∣ .
Plugging the above two inequalities into (26), we obtain

∣∣cPS (Lεψs)− cPS (s)
∣∣

≤
∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ′)− s (θ′)∣∣h (θ, θ′) dθ′dθ +

∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ)− s (θ)
∣∣h (θ, θ′) dθ′dθ

≤
∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ′)− s (θ′)∣∣K ′g (θ′) g (θ) dθ′dθ +

∫
θ

∫
θ′
K ·

∣∣(Lεψs) (θ)− s (θ)
∣∣K ′g (θ′) g (θ) dθ′dθ

= KK ′ ·
∫
θ

∥∥Lεψs, s∥∥ g (θ) dθ +KK ′ ·
∫
θ′

∥∥Lεψs, s∥∥ g (θ′) dθ′
= 2KK ′ ·

∥∥Lεψs, s∥∥ ,
where the second inequality follows because

h(θ,θ′)
g(θ)g(θ′) is bounded above by some K

′ > 0.

Therefore, cPS satisfies CPD when α = 0.

Lemma 22 If the PS cost functional satisfies CPD at some α ≥ 0, then it satisfies CPD

at all α′ ∈ [0, α].

Proof. To avoid confusion, let cαPS (·) denote the PS cost functional with parameter α.
Since cαPS (·) satisfies CPD, for any ψ ∈ R and ε ∈ (0, 1/2), there exists a ρ > 0 and K > 0

such that ∣∣cαPS (Lεψs)− cαPS (s)
∣∣ ≤ K · ∥∥Lεψs, s∥∥

30The proof goes through under a weaker condition that ∂
∂xi

D (x1, x2) exists for all xi ∈ (0, 1) and
xj ∈ [0, 1], i, j ∈ {1, 2}, i 6= j.
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for all monotonic s ∈ Bρ
(
1{θ≥ψ}

)
. Without loss of generality, we can choose a suffi ciently

small ρ > 0. Then by the construction of operator Lεψ, there exists an interval [θ1, θ2] such

that for any monotonic s ∈ Bρ
(
1{θ≥ψ}

)
, Lεψs and s differ only in [θ1, θ2]. Fix a z > 0.

Then ∣∣∣cα′PS (Lεψs)− cα′PS (s)
∣∣∣

=

∣∣∣∣∫
θ

∫
θ′

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣
≤

∣∣∣∣∣
∫
R2\[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
+

∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
=

∣∣∣∣∣
∫

(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
+

∣∣∣∣∣
∫

[θ1,θ2]

∫
(−∞,θ1−z)∪(θ2+z,∞)

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
+

∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣ ,(27)
where the second equality follows the fact Lεψs and s differ only in [θ1, θ2]. Since ∂D(x1,x2)

∂x1

and ∂D(x1,x2)
∂x2

exist on [0, 1]×[0, 1],31 there exists aK1 > 0 such that |D (x′1, x2)−D (x1, x2)| ≤
K1 · |x′1 − x1| and |D (x1, x

′
2)−D (x1, x2)| ≤ K1 · |x′2 − x2| for all x1, x2 ∈ [0, 1]. Then, the

first term in the right hand side of (27) is∣∣∣∣∣
∫

(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

∣∣θ′ − θ∣∣−α′ [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
≤

∫
(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

∣∣θ′ − θ∣∣−α′ ∣∣D (s (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))∣∣h (θ, θ′) dθ′dθ

≤ K ′
∫

(−∞,θ1−z)∪(θ2+z,∞)

∫
[θ1,θ2]

z−α
′
K1 ·

∣∣(Lεψs) (θ′)− s (θ′)∣∣ g (θ′) dθ′g (θ) dθ

≤ z−α
′
K ′K1 ·

∫
(−∞,θ1−z)∪(θ2+z,∞)

∥∥Lεψs, s∥∥ g (θ) dθ

≤ z−α
′
K ′K1 ·

∥∥Lεψs, s∥∥ ,
where the first inequality holds because

(
Lεψs

)
(θ) = s (θ) for θ ∈ (−∞, θ1 − z)∪(θ2 + z,∞),

and the second inequality follows that
∣∣θ′ − θ∣∣−α′ ≤ z−α′ for θ ∈ (−∞, θ1 − z)∪ (θ2 + z,∞)

31The proof goes through under a weaker condition that ∂
∂xi

D (x1, x2) exists for all xi ∈ (0, 1) and
xj ∈ [0, 1], i, j ∈ {1, 2}, i 6= j.
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and θ′ ∈ [θ1, θ2], and that
h(θ,θ′)
g(θ)g(θ′) is bounded above by some K

′ > 0. By a symmetric argu-

ment, the second term in the right hand side of (27) is also bounded by z−α
′
K ′K1 ·

∥∥∥Lεψs, s∥∥∥.
Since α−α′ ≥ 0,

∣∣θ′ − θ∣∣α−α′ is bounded for (θ, θ′) ∈ [θ1 − z, θ2 + z]× [θ1 − z, θ2 + z], then

there is a K2 > 0 such that the third term in the right hand side of (27) is∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣α−α′ ∣∣θ′ − θ∣∣−α [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

h
(
θ, θ′

)
dθ′dθ

∣∣∣∣∣
≤ K ′K2 ·

∣∣∣∣∣
∫

[θ1−z,θ2+z]×[θ1−z,θ2+z]

∣∣θ′ − θ∣∣−α [D ((Lεψs) (θ) ,
(
Lεψs

) (
θ′
))
−D

(
s (θ) , s

(
θ′
))]

g
(
θ′
)
g (θ) dθ′dθ

∣∣∣∣∣
≤ K ′K2 ·

∣∣cαPS (Lεψs)− cαPS (s)
∣∣

≤ K ′K2K ·
∥∥Lεψs, s∥∥ .

Hence, (27) becomes ∣∣∣cα′PS (Lεψs)− cα′PS (s)
∣∣∣

≤ 2z−α
′
K ′K1 ·

∥∥Lεψs, s∥∥+K ′K2K ·
∥∥Lεψs, s∥∥

=
(

2z−α
′
K1 +K2K

)
K ′ ·

∥∥Lεψs, s∥∥ .
Therefore, cα

′

PS satisfies CPD.
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7.3 The Fisher Cost Functional

Lemma 23 The Fisher cost functional satisfies sub-modularity.

Proof. Let s1 and s2 be two SCRs. It is straightforward to see that cFisher (s2 ∨ s1) +

cFisher (s2 ∧ s1) = cFisher (s1) + cFisher (s2). Let A = {θ ∈ R : s2 (θ) ≥ s1 (θ)} and B =

{θ ∈ R : s2 (θ) < s1 (θ)}. Then,

cFisher (s2 ∨ s1) + cFisher (s2 ∧ s1)

=

∫
A

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθ +

∫
B

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

dθ

+

∫
A

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

dθ +

∫
B

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθ

=

∫
A

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

dθ +

∫
B

(
[g (θ) s1 (θ)]

′)2
g (θ) s1 (θ)

+

(
[g (θ) (1− s1 (θ))]

′)2
g (θ) (1− s1 (θ))

+

∫
A

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθ +

∫
B

(
[g (θ) s2 (θ)]

′)2
g (θ) s2 (θ)

+

(
[g (θ) (1− s2 (θ))]

′)2
g (θ) (1− s2 (θ))

dθdθ

= cFisher (s1) + cFisher (s2) .

7.4 The Additive Noise Cost Functional

Here we show that the additive noise cost functional cAN is not submodular, by constructing

a counterexample. Suppose ε is uniform on
[
− 1

2 ,
1
2

]
. Let bψ = 1{x≥ψ} be the step function

behavioral strategy where a player invests if and only if his signal is above ψ. Then the

induced stochastic choice rule s̃k,bψ is equal to the slope k threshold approximation of 1{θ≥ψ},

i.e.,

s̃k,bψ (θ) =

∫ 1/2

−1/2

bψ

(
θ +

1

k
ε

)
dε =

∫ 1/2

−1/2

1ε≤k(θ−ψ) = ŝk,ψ (θ)

Since k is the maximum slope of ŝk,ψ, we have

ds̃k,b (θ)

dθ
≤ k , (28)

where the inequality is an equality if and only if the behavioral strategy is the switching

strategy bψ for some switching cutoffψ. Now consider s̃k1,bψ and s̃k2,bψ , where k2 > k1 > 0.

Note that s̃k1,bψ and s̃k2,bψ intersect at (ψ, 1/2), so that

(
s̃k1,bψ ∨ s̃k2,bψ

)
(θ) =

{
s̃k1,bψ (θ) if θ < ψ

s̃k2,bψ (θ) if θ ≥ ψ

8



and (
s̃k1,bψ ∧ s̃k2,bψ

)
(θ) =

{
s̃k2,bψ (θ) if θ < ψ

s̃k1,bψ (θ) if θ ≥ ψ .

So k2 is the maximal slope of both s̃k1,bψ ∨ s̃k2,bψ and s̃k1,bψ ∧ s̃k2,bψ . Inequality (28) thus

implies cAN
(
s̃k1,bψ ∨ s̃k2,bψ

)
= c (k2) and cAN

(
s̃k1,bψ ∧ s̃k2,bψ

)
= c (k2). Therefore,

cAN
(
s̃k1,bψ

)
+ cAN

(
s̃k2,bψ

)
= ĉ (k1) + ĉ (k2)

< 2ĉ (k2)

= cAN
(
s̃k1,bψ ∨ s̃k2,bψ

)
+ cAN

(
s̃k1,bψ ∧ s̃k2,bψ

)
,

a violation of submodularity.
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