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Abstract: There is no consensus about the geological nature of the westernmost portion 15 

of the Iberian Massif. In the present research, the detrital zircon U-Pb signatures of 16 

Jurassic strata of the Lusitanian Basin, known to be west-sourced, are combined with 17 

published U-Pb data for the Precambrian-Palaeozoic basement and the Lusitanian Basin 18 

units to better understand this poorly exposed portion of the Iberian Massif. Cryogenian to 19 

Ediacaran ages prevail in a northern Upper Jurassic unit, while Lower and Upper Jurassic 20 

rocks in southern locations yield mostly Carboniferous to upper Permian zircons. These 21 

age results, coupled with their respective U/Th ratios, suggest that the basin covers two 22 

distinct terranes of the Iberian Massif. Another noteworthy feature of west-derived 23 

deposits is the abundance of <310 Ma ages. It is proposed that a combination of crustal 24 

thinning in the West Iberian Margin with regional eastward basement tilt, favoured the 25 

enrichment of relatively young zircon in the western shoulder of the basin relative to its 26 

eastern margin. The detrital zircon age signatures also reveal a middle to late Permian 27 

thermal event in restricted areas, which is probably associated with the oldest stages of 28 

Alpine extension in West Iberia. 29 

 30 
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34

1 Introduction 35 

Three major tectono-stratigraphic units with Gondwana affinity (Galicia  Trás-os-Montes 36 

Zone, GTMZ), Central Iberian Zone, CIZ) and Ossa Morena Zone, OMZ) and one unit with 37 

Avalonian affinity (South Portuguese Zone, SPZ) crop out in the western portion of the 38 

Iberian Massif (e.g., Quesada 1991, Simancas et al. 2019). The rocks that are exposed to 39 

the west of the Porto-Tomar Fault Zone (PTFZ), both in the Iberian mainland and in the 40 

Berlengas Archipelago, have been assigned to different geotectonic units. Classic 41 

perspectives consider that they are part of the OMZ (Julivert et al. 1974; Ribeiro et al. 42 

1990; Oliveira et al. 1992). Recently, however, it was proposed that the PTFZ separates 43 

the autochthonous or parautochthonous units of the CIZ and OMZ from a western crustal 44 

block called Finisterra Terrane, which includes the Berlengas Archipelago (Ribeiro et al. 45 

2007; Moreira et al. 2019). Others proposed a simplification by merging the OMZ and 46 

GTMZ in a single unit and assigning the region to the west of the PTFZ to the SPZ (Díez-47 

Fernández and Arenas 2015, Arenas et al. 2016, Díez Fernández et al. 2016). Tectonic 48 

models for the Variscan-Alleghanian orogen necessarily depend on possible stratigraphic 49 

assignments for the westernmost part of the Iberian Massif.  50 

Sediment composition provides a broad picture of basement units that were exposed at 51 

the time of formation of depositional sequences, complementing what can be acquired 52 

from the direct investigation of possible source-rock units. Where basement exposures 53 

are scarce or difficult to access, sedimentary deposits can offer the best way to 54 

investigate the geological nature of regional crustal blocks. In addition, the infill of a 55 

sedimentary basin is likely able to reveal a history of exhumation, including rock units 56 

placed in upper crustal levels that are no longer available for direct investigation 57 

(Dickinson 1985, Garzanti 2016). Detrital zircon-age signatures prove to be an excellent 58 

tool when attempting to reconstruct the exhumation history of orogenic chains (e.g., 59 

Bernet et al. 2006, Gehrels 2014, Wang et al. 2016). Despite the uncertainties regarding 60 

zircon productivities, which necessarily depend on source rock composition (Rino et al. 61 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



3 
 

2004, Moecher and Samson 2006, Hawkesworth et al. 2013), and the climatic and 62

orographic setting that, by influencing clastic supply, also affect age signatures (Malusà 63 

and Garzanti 2019), the detrital zircon record of sedimentary units helps to understand the 64 

geological nature of their source terranes.  65 

It has been considered that the Berlengas Block was the source area for several Lower to 66 

Upper Jurassic formations exposed onshore of the westernmost sector of the Lusitanian 67 

Basin (e.g., Wright and Wilson 1984, Guéry et al. 1986, Wilson 1989, Duarte 1997, Pena 68 

dos Reis et al. 1996, 2000, Ravnås et al. 1997, Barata et al. 2021). The present 69 

investigation is focused on the detrital-zircon age signature of a selection of Jurassic units 70 

enriched in siliciclastic components with that provenance. These geochronological data 71 

provide precious information about the basement rocks exposed at the time of the 72 

Lusitanian Basin infill. The geology of the western part of the Iberian Massif is crucial for 73 

the understanding of the evolution of West Europe and its conjugate margin in North 74 

America since the time of Pangea amalgamation.  75 

 76 

2 The Lusitanian Basin 77 

2.1 Tectonic framework 78 

During the Triassic to Jurassic, the Lusitanian Basin (LB) overlies the Iberian Massif 79 

between the PTFZ, to the east, and the Berlengas Block, to the west (Fig. 1). The western 80 

part of the Iberian Massif comprises a series of upper Neoproterozoic to Paleozoic 81 

metasedimentary successions along with magmatic rocks and metamorphic units with 82 

igneous prototith, including pre-Variscan (mainly upper Ediacaran and Cambrian-lower 83 

Ordovician) and Variscan to post-Variscan (i.e., Upper Devonian Permian) (e.g., Oliveira 84 

et al. 1992, Simancas 2019). Depending on regional models for the tectono-stratigraphy of 85 

the Iberian Massif, the Triassic and Jurassic infill of the LB stands either on the OMZ 86 

(Oliveira et al. 1992), the Finisterra Terrane (Ribeiro et al. 2007, Moreira et al. 2019), or 87 
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units akin to the Avalonia terrane, including the SPZ (Simancas et al. 2005, Díez88

Fernández and Arenas 2015, Arenas et al. 2016, Díez Fernández et al. 2016).  89 

The Berlengas Archipelago (Fig. 1), with the Berlengas and Farilhões groups and the 90 

Estelas islets, is the westernmost outlier of the Iberian Massif (Freire de Andrade 1937, 91 

Vanney and Mougenot 1981). It is a horst block (hereafter referred to as the Berlengas 92 

Block) separating the LB from an external domain of the West Iberian Margin that includes 93 

the Peniche Basin (e.g., Alves et al. 2006, Terrinha et al. 2019). 94 

include granites in Berlenga and Estelas, and migmatites, gneisses and micaschists in 95 

Farilhões. A few geochronological studies have been presented for the archipelago. The 96 

Berlengas granite yields zircon and monazite dated by ID-TIMS at 305.2 Ma (Valverde 97 

Vaquero et al. 2011). However, previous studies, based on 87Rb/86Sr data for whole rock, 98 

pointed to a younger Permian age (280 ± 15 Ma; Priem et al. 1965). Monazite retrieved 99 

from a two-mica granite of Farilhões provided a concordia age of 376 ± 3 Ma (Valverde 100 

Vaquero et al. 2011).  101 

After the Variscan cycle, which completed the assemblage of the Iberian Massif, an 102 

extensional phase, related to final Variscan orogenic collapse, started during the early 103 

Permian in eastern and central Iberia (e.g., Arche and López-Gómez 1996, Arche et al, 104 

2004, López-Gómez et al. 2019, 2021). In western Iberia, the oldest units related to 105 

Pangea break-up are dated as Triassic (Palain 1976, Pinheiro et al. 1996, Soares et al. 106 

2012). Mesozoic rifting climaxed during the Oxfordian (Late Jurassic) (Wilson et al. 1989, 107 

Pena dos Reis et al. 1996, 2000, Leinfelder and Wilson 1998, Alves et al. 2002, 2006, 108 

Pereira et al. 2017) and was associated with the formation of N-S trending extensional 109 

basins, namely the Lusitanian and Peniche basins at mid latitudes of west Iberia (Alves et 110 

al. 2006, Terrinha et al. 2019). It is usually considered that the Mesozoic evolution of the 111 

west Iberia margin was controlled by four main tectono-stratigraphic phases (Wilson et al. 112 

1989): (1) Middle(?)/Late Triassic to Callovian; (2) middle Oxfordian to Berriasian; (3) late 113 

Berriasian to late Aptian; (4) late Aptian to early Campanian. During the Triassic, the 114 

eastern border of the LB was controlled by the reactivation of the PTFZ (Pinheiro et al. 115 
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1996, Soares et al. 2012). The uplift of the Berlengas Block, limiting the basin to the west, 116

is indicated by west-derived clastic deposits in the uppermost Lower Jurassic succession 117 

(Toarcian; e.g., Wright and Wilson 1984, Duarte 1997, Barata et al. 2021), but was 118 

probably also active during the Triassic. Later, the Late Jurassic rifting created several 119 

sub-basins separated by crustal faults within the LB (e.g., Wilson 1979, Alves et al 2003b, 120 

Taylor et al. 2014), with the continental breakup between Iberia and Newfoundland being 121 

achieved during the middle Aptian (Dinis et al. 2008, Stapel et al. 1996, Rasmussen et al. 122 

1998, Alves et al. 2002, 2003a). 123 

 124 

2.2 Stratigraphy 125 

The LB shows a locally > 5-km-thick sedimentary infill, comprising siliciclastic and carbonate 126 

units deposited in alluvial fan to hemipelagic environments and dated between the 127 

Middle(?)/Upper Triassic and the Early Cretaceous, which includes at least three first-order 128 

sequences bounded by regional unconformities (UBS; unconformity-bounded sequences): 129 

Middle(?)/Upper Triassic-Callovian, middle Oxfordian-lower Berriasian, and Berriasian-130 

lower Aptian (e.g., Wilson et al. 1989, Alves et al. 2002, Azerêdo et al. 2003). The first two 131 

UBS encompass the stratigraphic intervals studied here. 132 

The UBS1 starts with mainly Upper Triassic to lowermost Jurassic clastic deposits of 133 

variable grain-size deposited in alluvial fan, fluvial, and lacustrine environments (Palain 134 

1976, Soares et al. 2012). This succession is followed by Lower and Middle Jurassic 135 

dolomites, carbonate-ramp marls, marly limestones and limestones, locally with significant 136 

siliciclastic component (e.g., Wright and Wilson 1984, Duarte 1997, Azerêdo 1998, Azerêdo 137 

et al. 2003, Duarte et al. 2012, Soares et al., 2012). The UBS2 (middle Oxfordian to 138 

lowermost Berriasian) reflects the independent evolution of sub-basins created during the 139 

Late Jurassic rifting. It comprises fresh-water to brackish carbonate units at the base, 140 

followed by marine carbonates and deltaic to alluvial-fan siliciclastic deposits (e.g., 141 

Leinfelder and Wilson 1998, Pena dos Reis et al. 1996, 2000, Rasmunssen et al. 1998). 142 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



6 
 

Most of the LB infill documents a dominant siliciclastic source from the eastern margin of 143

the LB. However, in the westernmost part of central mainland Portugal, several Jurassic 144 

and Cretaceous lithostratigraphic units record a western siliciclastic supply derived from the 145 

Berlengas Block. This provenance is supported by paleocurrent indicators, clast 146 

composition, and interpreted paleogeography (e.g., Hill 1989, Ravnås et al. 1997, Pena dos 147 

Reis et al. 2000). 148 

 149 

3 Materials and methods 150 

3.1 Studied successions 151 

Three Jurassic units exposed along the western limit of the onshore LB and displaying clear 152 

evidence of supply from its western shoulders were selected for the present study (Figs. 1-153 

3). This set of units provides unique conditions to indirectly asses the geological nature of 154 

the Berlengas Block. Cretaceous successions with paleocurrents indicating feeding 155 

systems from the west were not considered because the probability of including sediment 156 

recycled from the eastern flank of the basin is expected to increase in younger deposits. On 157 

the other hand, Triassic siliciclastic deposits are exposed only in the eastern basin margin, 158 

where they are associated with short-distance supply from the east (Palain 1976, Soares et 159 

al. 2012, Dinis et al. 2018). Samples for zircon geochronology were retrieved from the Lower 160 

Jurassic Cabo Carvoeiro Formation and the Upper Jurassic Abadia and Alcobaça 161 

formations.  162 

The sampled Cabo Carvoeiro 2 member of Cabo Carvoeiro Fm. crops out in Praia do Abalo 163 

(LJ-Ab; Figs. 1-3), where it is part of a thick carbonate succession exclusively observed in 164 

the Peniche peninsula (e.g., Wright and Wilson 1984, Duarte 1997, Duarte et al. 2017, 165 

Barata et al. 2021). This member is a marly-dominated unit (~ 25 m thick), well dated as 166 

early Toarcian by ammonites (Duarte and Soares 2002), that includes sandy limestones, 167 

feldspatho-quartzose calcareous sandstones and microconglomerates, all of them showing 168 

typical turbidite features (e.g., Wright and Wilson 1984, Duarte 1997). Laterally, towards the 169 
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east of the basin, the Cabo Carvoeiro Formation passes to hemipelagic marl-limestone 170

alternations deposited in a carbonate ramp setting (S. Gião Fm.; Duarte 1997, Duarte and 171 

Soares 2002).  172 

The Alcobaça Fm. comprises marginal-marine, brackish and continental carbonates and 173 

siliciclastic rocks. This unit is classically considered to span most or even all the 174 

Kimmeridgian (e.g., Rasmussen et al 1998). Based on ammonite stratigraphy, Marques et 175 

al. (1992) considered that it can reach the lower Tithonian, whereas Schneider et al. (2009), 176 

based on Sr isotopes, proposed a latest Oxfordian to late Kimmeridgian age. A meter-thick 177 

sandstone bed within a mud-dominated succession deposited in fluvio-deltaic environment 178 

that is exposed in Praia da Gralha (São Martinho do Porto) was selected for detrital zircon 179 

geochronology (Figs. 1-3). 180 

The Abadia Fm. is considered to be a basinal lateral equivalent, to the south, of the 181 

Alcobaça Fm. (Rasmussen et al 1998, Pena dos Reis et al 2000, Schneider et al 2009, 182 

Kullberg and Rocha 2014). This unit comprises deep-water marls and turbiditic sandstones, 183 

along with coarse-grained submarine deposits. Paleocurrent data and depositional 184 

architecture of marine sandstone-conglomerates of the Abadia Fm. and transition to 185 

overlying fluvial deposits of the Lourinhã Fm. are robust evidence of provenance from the 186 

west (Ellwood 1987, Hill 1989, Ravnås et al. 1997). A 3 m thick sandstone bed from the 187 

upper part of Abadia Fm. exposed in Praia da Amoreira beach was selected for this study 188 

(Figs. 1-3). These deposits belong to a succession of steeply inclined sandstone 189 

intercalated with heterolithic beds interpreted as either foreset-bottomset units of a 190 

prograding fan delta (Ravnås et al. 1997) or as the infill of a submarine channel (Ellwood 191 

1987).  192 

 193 

3. Analytical and statistical procedures 194 

Separation of zircon grains was carried out at the Earth Sciences Department of University 195 

of Coimbra. Samples were manually disintegrated, and the fractions finer than 0.038 mm 196 
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and coarser than 0.5 mm were removed through wet sieving. Heavy liquids (sodium 197

polytungstate and methylene iodide) and a Frantz isodynamic magnetic separator were 198 

used to obtain the zircon concentrates. An aliquot of heavy-mineral concentrates before the 199 

magnetic separation was mounted on glass slides and analyzed under the petrographic 200 

microscope. U-Pb ages were determined at the London Geochronology Centre using an 201 

Agilent 7700× LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry) 202 

system, employing a  spot size and 203 

2.5 3.0 J/cm2 fluence. 204 

Data reduction was performed using GLITTER 4.4.2 software (Griffin et al. 2008). We used 205 

206Pb/238U and 207Pb/206Pb ages for zircons younger and older than 1100 Ma, respectively. 206 

No common Pb correction was applied. The original data was screened through these 207 

discordance filters and g s were discarded. Data was 208 

plotted as Kernel density estimations with different bandwidths using DensityPlotter 209 

software (Vermeesch 2012). Multidimensional Scaling (MDS) was adopted to compare the 210 

obtained age results with possible source terranes. MDS is a multivariate technique that 211 

takes a dissimilarity matrix as input to obtain a map where similar samples plot close 212 

together and dissimilar samples plot far apart. To perform the MDS with detrital zircon age 213 

distribution, a dissimilarity matrix was constructed using the Kolmogorov-Smirnov statistic 214 

(Vermeesch 2013). 215 

 216 

4 Results 217 

4.1 Heavy minerals  218 

Heavy-mineral concentrates obtained from the lower Toarcian turbidite of the Cabo 219 

Carvoeiro Fm. (LJ-Ab) include abundant chlorite and significant amounts of rock fragments 220 

and light minerals. The translucent heavy mineral assemblage yields mainly the durable 221 

minerals zircon and tourmaline. The Kimmeridgian beds provided substantially different 222 
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heavy-mineral assemblages. In the northern sample from the Alcobaça Fm., staurolite, 223

garnet and dravitic tourmaline dominate the assemblage. The southern sample (from the 224 

Abadia Fm.) yielded zircon and subordinate tourmaline, garnet, and monazite. 225 

 226 

4.2 Detrital zircon U-Pb data 227 

Samples LJ-Ab (lower Toarcian, Cabo Carvoeiro Fm.) and UJ-Am (Kimmeridgian, Abadia 228 

Fm.) yielded similar zircon-age signatures (Fig. 4). The zircon grains are mainly 229 

Carboniferous-Permian (85%, ranging 349-254 Ma, in LJ-Ab; 80%, ranging 339-276 Ma, in 230 

UJ-Am). The KDE spectrum for the Toarcian sample (LJ-Ab) reveals two peak maxima at 231 

approximately 305 Ma and 292 Ma and a secondary peak at 264 Ma; the Kimmeridgian-232 

Tithonian sample (UJ-Am) yields a sharp peak at 295 Ma. Cryogenian to Ediacaran zircons, 233 

ranging in age 692-556 Ma, occur in secondary amounts (17% in LJ-Ab; 13 % in UJ-Am) 234 

and both samples gave one Middle Triassic grain (243 Ma in LJ-Ab; 230 Ma in UJ-Am).  235 

The Kimmeridgian bed from Alcobaça Fm. (UJ-Gr) is dominated by Cryogenian to 236 

Ediacaran grains (83 % ranging 673-543 Ma), with frequency peaks at 608, 595, 580, and 237 

554 Ma (Fig. 4). Cambrian-Silurian (7%, ranging 541-456 Ma), Paleoproterozoic (3%, 238 

ranging 541-456 Ma Ma) and Carboniferous-Permian (342 Ma and 273 Ma) grains are 239 

subordinate to minor. 240 

Th/U ratios obtained during laser ablation range 0.05 - 1.15 (Fig. 5). Cryogenian-Ediacaran 241 

zircons tend to yield higher Th/U than Carboniferous-Permian grains. Th/U ratios for the 242 

majority of grains of this age retrieved from UJ-Am (Kimmeridgian, Abadia Fm.) are 243 

relatively low, whereas those from LJ-Ab (Toarcian, Carbo Carvoeiro Fm.) are more 244 

variable.  245 

 246 

 247 
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248

5 Discussion 249 

5.1. Zircon sources and corresponding terranes 250 

The late Cryogenian-Ediacaran population, well represented in UJ-Gr and prevalent in 251 

many Mesozoic units of West Iberia (Dinis et al. 2016, 2018, Pereira et al. 2016, 2017), is 252 

also dominant in most basement units of West Iberia (Linnemann et al. 2008, Talavera et 253 

al. 2012, Pereira et al. 2012a, 2012b, 2014, Rodrigues et al. 2015). These ages correspond 254 

with the Pan-African to Cadomian orogenies, two periods of crustal growth that overlap in 255 

northern Gondwana realms (Murphy and Nance 1991, Nance and Murphy 1994, Linnemann 256 

et al. 2008).  257 

The oldest peak within the Carboniferous-Permian age population (~315 Ma in UJ-Am; 258 

~305 Ma in LJ-Ab) corresponds to the paroxysmal stages of Variscan collisional magmatism 259 

in Iberia, which started at ~350 Ma and persisted for almost the entire Carboniferous (Dias 260 

et al. 1998, Fernández-Suárez et al. 2000, Jesus et al. 2007, Hildenbrand et al, 2021). 261 

Magmatic rocks of this age are also well represented in the conjugate West Atlantic margin 262 

in the easternmost terranes of the Appalachian Orogen (MacLean et al. 2003, Pe-Piper et 263 

al. 2010). Zircon grains potentially derived from those primary sources are common in 264 

Mesozoic units of the West Iberian Margin (Dinis et al. 2016, 2018, Pereira et al. 2016, 265 

2017) and of its Canadian conjugate margin (Lowe et al. 2011, Hutter and Beranek 2020). 266 

The ~290-295 Ma peaks identified in southern samples (LJ-Ab and UJ-Am) are genetically 267 

linked to post-Variscan magmatism coeval to the post-orogenic collapse of the Variscan 268 

chain (Marques et al. 2002, López-Gómez et al. 2019, 2021, Hildenbrand et al 2021) or the 269 

buckling of the Cantabrian orocline (Gutiérrez-Alonso et al. 2004, 2011, Merino-Tomé et al. 270 

2009, Pastor-Galán et al. 2013). Similar zircons ages are common in some Cretaceous 271 

strata of the West Iberian Margin (Dinis et al. 2016) and occur in the Permian Viar Basin 272 

formed ~350 km SE-ward, where they were either exhumed from high crustal levels or 273 

extruded during volcanic events (Dinis et al. 2018).  274 
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The secondary middle Permian peak at ~264 Ma (exclusive of LJ-Ab) is notably younger 275

than the main phases of Pangea amalgamation. These zircons, along with the rare Middle 276 

Triassic grains, are probably associated with subsequent Pangea break-up in West Iberia. 277 

Grains of comparable age were identified in Triassic (Dinis et al. 2018) and Cretaceous 278 

(Dinis et al. 2016) lithostratigraphic units of the LB, being ascribed to mafic magmatism 279 

during early stages of extension (Gardien and Paquette 2004, Orejana et al. 2008).  280 

To better link the obtained age distributions with possible source terranes, an MDS was 281 

performed. Taking as input the entire dataset obtained for the three Jurassic units and age 282 

results published elsewhere for west Iberia basement units, the MDS map separates LJ-Ab 283 

(lower Toarcian, Cabo Carvoeiro Fm.) and UJ-Am (Kimmeridgian, Abadia Fm.) from all 284 

basement units, and plots UJ-Gr (Kimmeridgian, Alcobaça Fm.) close to OMZ and CIZ (Fig. 285 

6). The field for SPZ is wider, reflecting high compositional variability mainly determined by 286 

the proportion of Variscan grains, which are abundant in some units but rare or absent in 287 

others (Pereira et al. 2012b, 2014, Rodrigues et al. 2015). The isolated location of LJ-Ab 288 

and UJ-Am in the MDS map is explained by their enrichment in relatively young grains.  289 

The variability in zircon age distributions for each major tectono-stratigraphic unit of the 290 

Iberian basement and the similarities among them do not allow conclusive interpretations 291 

regarding the basement of the LB. The zircon age signatures, however, do not indicate that 292 

they belong to a Finisterra Terrane (Ribeiro et al. 2007, Moreira et al. 2019). The west-293 

derived deposits of the LB lack zircon ages that occur in metamorphic units ascribed to the 294 

Finisterra terrane, such as Ordovician (Sousa et al. 2014, Moreira et al. 2019) and Upper 295 

Silurian-Early Devonian and Early Devonian-Mississippian (Almeida et al. 2014). These 296 

ages are represented in sedimentary successions formed close to the PTFZ (Dinis et al. 297 

2012, 2018), along which most rock units assigned to the Finisterra Terrane are presently 298 

exposed. Mesoproterozoic zircons in the Pennsylvanian Buçaco Basin were also 299 

considered to be derived from the Finisterra Terrane (Moreira et al. 2019), but these ages 300 

are also missing in west-derived deposits of the LB. It can be alleged that, as the above-301 
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mentioned age populations are not abundant in sedimentary deposits formed close to the 302

PTFZ, the presence of a clearly dominant younger population in LJ-Ab and UJ-Am probably 303 

diluted the detrital fingerprint, making those ages common in Finisterra Terran harder to 304 

identify. However, they are also missing in UJ-Gr, which lacks the young age population. 305 

 306 

5.2. Tectono-stratigraphic implications 307 

At the latitude of Peniche and to the south, Variscan igneous rocks must have been 308 

extensively exposed in the western flank of the LB during the Jurassic stages of Pangea 309 

break-up. To the north, instead, they appear to be minor zircon suppliers. The different age 310 

signature in northern locations is ascribed to a scarcity of Variscan magmatic outliers or to 311 

dilution by other zircon sources. The heavy-mineral assemblage characterized by dominant 312 

garnet and staurolite supports a high-grade metamorphic provenance. Part of the Pan-313 

African to Cadomian-aged zircons may be recycled from Triassic units deposited during the 314 

early stage of Pangea break-up, where this age population is frequently the most abundant 315 

(Pereira et al. 2016, 2017, Dinis et al. 2018). 316 

A dyke-breccia in Peniche, close to the studied Cabo Carvoeiro Fm. at Praia do Abalo, 317 

includes granitic xenoliths that yield late Pennsylvanian-early Permian zircons (Pereira et 318 

al. 2020), suggesting that the LB developed on a crustal block with late and post-Variscan 319 

magmatic rocks. In the LB, the frequency of <310 Ma-aged zircons is a noteworthy feature 320 

of the signature of the studied west-derived strata. The late Paleozoic population identified 321 

in Triassic units of the Algarve and Alentejo basins, which were mainly sourced from the 322 

SPZ, is notably older (~330 Ma; Pereira et al. 2016; Dinis et al. 2018). Some Triassic rocks 323 

overlying the OMZ yield an only minor frequency peak <300 Ma (Dinis et al. 2018). For 324 

Cretaceous successions of the LB, late Paleozoic peaks tend to become younger upward, 325 

possibly due to the exhumation of progressively younger igneous rocks emplaced in the 326 

uplifted CIZ, but the maxima for Lower Cretaceous units are in general >300 Ma (Dinis et 327 

al. 2016). Only in stratigraphic units approximately 40 Ma younger than the youngest west-328 
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derived units presented here the late Paleozoic populations display major peaks at ~295-329

290 Ma. 330 

In summary, in the LB, the late Paleozoic zircon-age population appears to be younger in 331 

successions mainly sourced from the west than in those sourced from the east. Such an 332 

age difference probably results from more extensive crustal thinning in the western margin 333 

than for inland Iberian regions, allowing for the emplacement of igneous rocks into upper-334 

crustal levels. The Berlengas Block is presently placed in a necking sector between hyper-335 

thinned and proximal realms of crustal margin (Stanton et al. 2016, Granado et al. 2021), 336 

but significant thinning would be necessary by early Permian. The 295-285 Ma interval was 337 

already proposed to be characterized by post-orogenic extension (Variscan orogenic 338 

collapse) in West Iberia and associated with the uplift of the CIZ relative to OMZ 339 

(Hildenbrand et al 2021). Additionally, a rapid exhumation of recently formed primary zircon 340 

sources in the western shoulder of the basin may have been triggered by the eastward 341 

tilting of the basin basement (Fig. 7). The geometry of the basement top, as recognized in 342 

several seismic lines (e.g., Alves et al 2006, Pereira et al 2017), is compatible with this 343 

possibility. 344 

Further inferences can be drawn from Th/U ratios. Although this parameter even for single 345 

magmatic bodies can be widely variable, it has been used to assess temperatures of zircon 346 

crystallization and the felsic vs. intermediate character of the host rocks. Under equilibrium 347 

conditions, Th/U ratios tend to be higher in zircons formed at higher temperatures and in 348 

intermediate/mafic rocks than at lower temperatures and in granitic rocks (Xiang et al. 2011, 349 

Kirkland et al 2015). The discernible differences in Th/U suggest hotter conditions for the 350 

Permian zircons formed near Berlengas Archipelago than to the south (Fig. 5), which can 351 

be ascribed, for example, to crystallization in a crustal block with previously emplaced mafic 352 

rocks or in a specially thinned lithosphere. Regardless the actual explanation for the 353 

differences in Th/U ratios, these results, coupled with zircon ages, indicate that major 354 
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basement boundaries were cut by the broadly N-S rift structures that control the western 355

border of the LB (Fig. 7). 356 

 357 

Conclusions 358 

Detrital zircons contained in sedimentary rocks of the Lusitanian Basin with a western 359 

provenance yielded either dominant late Cryogenian to Ediacaran ages (Pan-African and/or 360 

Cadomian with peaks at 608-554 Ma) or Carboniferous to Permian ages (Variscan and 361 

post-Variscan, with peaks at 315-292 Ma). Differences in age signatures and zircon 362 

chemistry (Th/U ratios) indicate significant variability along basin-strike in exhumed 363 

basement rocks. A discernible peak at ~264 Ma reveals a middle to late Permian thermal 364 

event in restricted areas of West Iberia. Although rare, Middle Triassic zircon grains were 365 

identified in different regions of the Lusitanian Basin, suggesting that the Triassic rifting was 366 

then affecting wide western areas. 367 

The detrital-zircon signatures of these west-derived strata do not allow a clear diagnosis 368 

about the geotectonic nature of the Lusitanian Basin basement. But suggest that: (1) the 369 

basin stands on different terranes of the Iberian Massif in its western edge; (2) the 370 

Lusitanian Basin developed after the collapse of the Variscan Orogen in an area 371 

characterized by recently emplaced igneous rocks (i.e., during the latest Pennsylvanian-372 

Permian); (3) primary zircon sources were more extensively eroded from the western 373 

shoulders of the basin, probably due to a combination of crustal thinning and regional 374 

eastward basement tilt. 375 
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FIGURES CAPTIONS716

 717 

Fig. 1: Geological framework of the studied deposits. (A) Major tectono-stratigraphic units of the 718 

Iberia Massif. CZ: Cantabrian Zone; WALZ: West Asturian-Leonese Zone; GTMZ: Galicia - Trás-719 

os-Montes Zone; CIZ: Central Iberian Zone; OMZ: Ossa Morena Zone; SPZ: South Portuguese 720 

Zone. (B) The Lusitanian Basin covering different tectono-stratigraphic units and bounded to the 721 

west by the Berlengas Block (BB). (C) Jurassic and basement outliers in central west Iberian 722 

margin and location of the sampled sections (black diamonds). PTFZ: Porto-Tomar Fault Zone. 723 

Key sites for the Jurassic stratigraphy in the Lusitanian Basin are also indicated. Small grey 724 

diamonds indicate the location of other published detrital zircon data for basement (A and B) and 725 

Mesozoic (C) units used in this investigation. 726 

 727 

Fig. 2: Stratigraphic framework for the beds sampled in the Lusitania Basin. Based on Rasmussen 728 

et al (1998), Pena dos Reis et al. (2000), Duarte and Soares (2002), Azerêdo et al. (2003), 729 

Schneider et al. (2009), Kullberg and Rocha (2014). 730 

 731 

Fig. 3: Stratigraphic sections sampled for U-Pb zircon geochronology. Geographic location in Fig. 1 732 

and stratigraphic setting in Fig. 2. 733 

 734 

Fig. 4: Pie diagrams and Kernel density plots of detrital zircon ages for Lower and Upper Jurassic 735 

units sourced by the Berlengas Block. Shadow areas in the insets for 750-200 Ma represent 736 

characteristic zircon forming events already recognized for Cretaceous deposits from the Iberian 737 

Atlantic margin (Dinis et al. 2016). 738 

 739 

Fig. 5: Plot of zircon ages and respective Th/U ratios. Note the different Th/U ratios in younger 740 

zircons collected in the Toarcian of Peniche (LJ-Ab) and the Kimmeridgian-Tithonian of Praia da 741 

Amoreira (UJ-Am). 742 

 743 

Fig. 6: MDS map obtained with the detrital zircon age data for the studied deposits and published 744 

ages for different terranes that outcrop in West Iberia. The map pulls apart samples with different 745 

spectra, using the Kolmogorov Smirnov effect size as a dissimilarity measure (Vermeesch 2013). 746 

Basement data for the Central Iberian Zone (CIZ) from Talavera et al. (2012), Pereira et al. (2012a) 747 

and Shaw et al (2014); for the Ossa Morena Zone (OMZ) from Linnemann et al. (2008) and Pereira 748 

et al. (2012b); for the South Portuguese Zone (SPZ) from Pereira et al. (2012b, 2014) and 749 

Rodrigues et al. (2015); for sedimentary successions deposited at the contact OMZ-CIZ in 750 
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association with the Porto-Tomar Fault Zone (PTF-SS) from Dinis et al. (2012, 2018). One sample 751 

of OMZ is plotted differently from the main cluster for this zone. 752 

 753 

Fig. 7: Proposed Variscan basement units in the western edge of the Lusitanian Basin based on 754 

detrital zircon results. Arrows indicate detrital zircon signatures for different stratigraphic intervals; 755 

main frequency peaks in bold and secondary peaks between brackets. Detrital zircon age results 756 

for Triassic strata form Pereira et al. (2016) and Dinis et al (2018), and for Cretaceous strata from 757 

Dinis et al (2016). The inset is a schematic profile depicting an overall basement tilt partially 758 

responsible for the differences in age signatures between east- and west-derived deposits.  759 
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