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The incidence of hematological malignancies continues 
to rise, while the underlying biological mechanisms of 
tumorgenesis often remains unknown. The treatment 
landscape for hematological malignancies is diverse and 

immunotherapy is clearly entering the arena. Immune-based 
therapies for hematological malignancies aim at generating new 
agents such as monoclonal antibodies, immunotoxins, bispe-
cific T-cell engagers, and cell therapies involving the innate and 
adoptive immune system. In addition, adoptive cell therapy with 
T/NK/NKT cells engineered with chimeric antigen receptors or 
T-cell receptors (TCRs) or vaccines and checkpoint inhibitors 
which are less toxic and might be more effective when com-
pared with conventional chemotherapy and radiotherapy. These 

various approaches have shown significant promise, leading to 
improved patient outcomes.

Monoclonal antibodies

Monoclonal antibodies are effective in a number of hemato-
logical malignancies.2–4 Most of the currently identified targets 
for monoclonal antibodies are also expressed on nonmalignant 
cells.5–7 However, in contrast to either gene-modified T-cells (eg, 
CAR T-cells) or bispecific antibodies, the on-target toxicity of 
monoclonal antibodies on nonmalignant cells is mostly tolera-
ble.8,9 The efficacy of the use of monoclonal antibodies (MoAbs) 
is highly dependent on the type of antibody (single/and/or con-
jugated), combinations with conventional (chemo)therapeutic 
strategies and depends on the underlying disease. Several modes 
of action have been explored among which antibody dependent 
cellular cytotoxicity, complement dependent cytotoxicity, and 
induction of apoptosis are the most well described. In addi-
tion, next to the direct effects of MoAbs on the tumor target 
(on-target effect), antibody-based immunotherapy may also 
alter the immune suppressive microenvironment by deletion of, 
that is, myeloid-derived suppressor cells or regulatory T and B 
cells by anti-CD38 as an example and hence may contribute 
to efficacy. The generation of bispecific antibodies, targeting 
the neoplastic cells and engaging CD3+ T-cells further improve 
efficacy in redirecting the immune system toward the tumor 
and tumor microenvironment. To this end, it is noteworthy that 
immune therapy with novel emerging strategies further focus 
not only on tumor target antigens but also on the complex 
immune system to optimize tumor-specific immunity as well 
as to modulate additional cellular and humoral components 
which either potentiate or inhibit effective immunotherapy. 
New strategies to improve therapy with monoclonal antibodies 
includes the genetically engineered structure and function of 
these antibodies, an approach shown to significantly improve 
their effectiveness.2–4
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In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to 
highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other 
stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1–2 
section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology 
have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including 11 sections, each of which will 
be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical 
science, therefore supporting a more informed, focused, and ideally a more funded future for European Hematology Research. the 11 
EHA Research Roadmap sections include normal hematopoiesis; malignant lymphoid diseases; malignant myeloid diseases; anemias 
and related diseases; platelet disorders; blood coagulation and hemostatic disorders; transfusion medicine; infections in hematology; 
hematopoietic stem cell transplantation; CAR-T and Other cell-based immune therapies; and gene therapy.
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Vaccines

Vaccines activating the autologous immune system for pre-
vention and treatment of infections and other diseases might 
also have a major impact on human healthcare. Compared 
to other immunotherapies such as checkpoint inhibition or 
adoptive T-cell therapy, most cancer vaccines to date have 
failed to demonstrate relevant clinical efficacy.10,11 One of the 
key obstacles for the development of an effective cancer vac-
cine is the difficulty in antigen selection and the requirement 
to overcome tolerance to self. In the past, most of the cancer 
vaccines were targeting tumor-associated antigens (TAAs), 
which are overexpressed in many cancers and were seen as 
universal targets for the treatment of patients with hemato-
logical malignancies. Unfortunately, TAAs are also expressed 
on normal tissues and thus central and peripheral tolerance 
can interfere with the efficacy of vaccination or can induce 
autoimmunity/autoreactivity against normal tissues. In con-
trast to nonmutated self-antigens, neoantigens are derived 
from random somatic mutations. These mutations encode for 
neoantigens which are present in tumor cells but not in nor-
mal cells and thus can be recognized as non-self by the host 
immune system and therefore are attractive targets for immu-
notherapies with potentially increased specificity, efficacy, 
and safety.12,13 Preclinical and clinical studies have demon-
strated neoantigen-specific T-cells to represent the most potent 
tumor-reactive immune cell subpopulation. As compared to 
solid cancers, hematological neoplasms show a low variety 
and burden of somatic mutations which may hamper adequate 
induction of neoantigen-specific T-cells. Nevertheless, several 
strategies are to be explored to improve antitumor immunity. 
In the context of designing vaccine approaches, tumor (leu-
kemia)-derived (autologous) dendritic cells (DC) harboring 
intrinsic TAAs including neoantigens to be processed in the 
context of professional antigen presenting cells are promising. 
Alternatively, fusion of tumor cells with DC or pulsed tumor/
leukemia-derived apoptotic vesicles is a potential strategy to 
optimize tumor-specific antigen presentation. The combined 
use of hypomethylating agents and checkpoint inhibitors may 
further potentiate tumor-specific immunity and may overcome 
tolerance and an immunosuppressive microenvironment. 
Alternatively, mixed immunogenic peptide vaccines, either in 
the context of allogeneic/autologous DC-based approaches or 
as immunogenic peptide vaccines are being explored. In con-
trast to autologous (DC) vaccines, allogeneic (tumor cell or 
cell line derived) DC cell vaccines are off-the-shelf products 
and more immunogenic and not impaired in antigen process-
ing due to intrinsic patient-derived immune suppression.14–22

The posttransplant setting, especially the period following 
allogeneic stem cell transplantation, is a potentially promis-
ing platform for vaccination due to cytoreduction and rela-
tive depletion of inhibitory accessory cells fostering greater 
immune responsiveness. Thus, another source of non-self anti-
gens, particularly in the setting of allogeneic stem cell trans-
plantation, are the minor histocompatibility antigens (MiHAs) 
derived from single nucleotide differences between patient and 
donor.23,24 MiHAs are recognized as non-self by the donor 
immune system and thus can be used as an attractive target 
for immunotherapy after allogeneic stem cell transplantation 
in the form of vaccination.25–28 In addition, currently clinical 
studies are ongoing with the HA-1 TCR in high-risk hemato-
logical malignancies (Leiden, Seattle).

Infusions of donor lymphocyte and antigen-
specific T-cells

Donor lymphocyte infusions have been used for >30 years 
now to treat overt relapse, mixed chimerism or residual tumor 

cells following allogeneic stem cell transplantation.29,30 In 
addition, the adoptive transfer of antigen-specific cytotoxic 
T-lymphocytes and CD4+ T-helper cells has been widely used 
to treat viral infections including cytomegalovirus, Epstein-
Barr virus, adenovirus infections and, more recently, BK and JC 
viruses).31–34 Currently, early phase trials are in progress to study 
the role of donor lymphocyte infusions in the management of 
refractory, invasive fungal infections. One of the greatest chal-
lenges ahead will be that of transitioning the initial promising 
results, mainly obtained in proof-of-concept studies, to a wider 
application of these therapies using standardized methodologi-
cal approaches.

Checkpoint inhibitors

Checkpoint inhibitor blockade releases the brakes on 
tumor-specific T-cells, allowing them to persist and expand to 
attack malignant cells. Cancers can grow, at least in part, as 
a consequence of cancer-induced immunosuppression. In many 
individuals, immunosuppression is mediated by CTLA4 and 
PD-1, 2 immunomodulatory receptors expressed on T-cells. 
Monoclonal antibody–based therapies targeting CTLA4 or 
PD-1 have shown significant clinical effects in patients with 
hematological malignancies, especially patients with Hodgkin’s 
lymphoma and patients with primary mediastinal B-cell lym-
phoma,35–37 and are currently being explored in several other 
hematological malignancies and after allogeneic transplantation 
despite the expected risk of increasing the rate and severity of 
graft versus host disease.38–40 Synergistic efficacy has been shown 
for CTLA4 and PD-1 blocking antibodies especially in the set-
ting of solid tumors (eg, metastatic melanoma). Furthermore, 
antibodies against additional checkpoint molecules like 
TIM3, TIGIT, LAG-3, etc., have been developed and are being 
tested in early clinical trials in patients with hematological 
malignancies.41,42

Innate immune cells

Next to dendritric cells, other innate immune cells, especially 
natural killer (NK) cells, play a key role in antitumor immunity.43 
NK cell dysfunction has been implicated in the progression of 
many hematological malignancies including acute myeloid leu-
kemia (AML), MDS, and multiple myeloma (MM).

Target recognition by NK cells is dictated by the net sum 
of signals from an array of inhibitory and activating receptors 
expressed on the NK cell surface.44 If a net activation signal is 
generated, NK cells release perforin and granzymes into target 
cells, resulting in cell death. In addition to their role as innate 
cells, activated NK cells also secrete inflammatory cytokines and 
chemokines, which are involved in stimulating and recruiting 
the adaptive immune system.

Activated NK cells can also kill target cells via expression of 
cell surface death receptor ligands (eg, Fas ligand, TRAIL).

Unlike T-cells, NK cells do not require tumor-antigen rec-
ognition or clonal expansion before killing cancer cells. The 
most important inhibitory signals for NK cells are mediated via 
their killer immune-globulin-like receptors (KIRs) and CD94/
NKG2A, which recognize as self-associated molecules the major 
histocompatibility complex (MHC) class I antigens HLA-A, B, 
C, and HLA-E, respectively. The expression of cell surface HLA 
class I molecules mediates inhibition of autologous NK cells, 
preventing the destruction of healthy somatic cells. However, 
following malignant transformation, or viral infection, cells 
may lose their MHC class I expression facilitating avoidance 
of recognition by cytotoxic T lymphocytes (CTLs). Loss of 
MHC class I may render them susceptible to NK cell-mediated 
immunosurveillance. Several non-MHC Class I binding inhibi-
tory receptors such as PD-1, LAG-3, TIGIT, CD96, Siglec-7, and 
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TIM3 may also influence NK activation under different circum-
stances.45,46 Stressed cells, such as malignantly transformed cells 
or virally infected cells, may express and upregulate the MHC 
class I chain-related (MIC) ligands MIC-A and MIC-B for the 
activating natural killer group 2, member D (NKG2D) receptor 
expressed by NK cells. Moreover, other ligands expressed by 
malignant cells which act to stimulate NK cell activity include 
the polio virus receptor (PVR/CD155) which binds to the acti-
vating receptor DNAX Accessory Molecule-1 (DNAM-1), and 
ligands to the natural cytotoxicity receptors, NKp30, NKp44, 
and NKp46. Target recognition via antibody-dependent cellular 
cytotoxicity triggers strong NK cell activation. In this situation, 
CD16 (FcyRIIIa) expressed by NK cells binds to the Fc portions 
of antibodies, triggering NK cell cytotoxicity as well as cytokine 
release to stimulate the adaptive immune response. Treatment 
with cytokines, such as IL-2, IL-12, IL-15, IL-18, and IL-21 has 
been found to enhance cytotoxicity and persistence.

Previous trials using unmodified allogeneic NK cells have 
shown promising clinical activity with good tolerability, primar-
ily in patients with AML and MM. Given the success of CAR-T 
approaches, a logical next step was to develop CAR-NK cells 
to further enhance cytotoxicity and targeting of NK cells.47,48 
CAR-NK cells may have several advantages over current autol-
ogous CAR-T approaches. NK cells do not rely solely on the 
CAR for tumor recognition, retaining the capacity to kill cancer 
cells that lose target antigen via recognition of stress induced 
ligands. Since allogeneic NK cells do not cause graft versus host 
disease, they hold potential for development as standardized 
off-the-shelf therapeutics for adoptive cancer immunotherapy, 
greatly increasing accessibility and reducing cost. They may 
also be safer than CAR T-cells; to date, there are no reported 
cases of CRS or neurotoxicity with CD19 CAR-NK cell therapy. 
Potential sources of allogeneic NK cells include donor NK cells, 
cord-derived NK cells, induced pluripotent stem cell (iPS)-de-
rived NK cells, and NK cell lines.44–48

Recently, γδ T-cells, a subset of T-cells expressing γδTCRs 
rather than the conventional αβTCR, have been used for immu-
notherapy of hematological malignancies.49 Donor-derived γδ 
T-cells49–51 selected after depletion of αβTCR T-cells and infused 
following lymphodepletion were found to induce partial or even 
complete responses in patients with acute myeloid leukemia and 
MM. In addition, infusions of NKT cells have been used in the 
treatment of hematological malignancies.52

Bispecific antibodies: T-cell redirecting 
antibodies

Bispecific antibodies that recruit and redirect T-cells to attack 
tumor cells have tremendous potential for the treatment of 
hematological malignancies. These antibody constructs promote 
tumor cell killing by crosslinking a CD3 component of the T-cell 
receptor complex with the tumor-associated antigen on the sur-
face of the tumor cell. Importantly, this mode of action does not 
rely on a cognate interaction between the T-cell receptor and a 
peptide/HLA complex. Thus, this strategy is not dependent on 
HLA restriction or on HLA expression representing a significant 
advantage since HLA class I and II molecules may be down-
regulated in malignancies. Therefore, bispecific antibodies may 
find a key role in hematological malignancies with low neoan-
tigen burden and a low inflammation.53–55 These novel immu-
notherapeutics may productively be combined with checkpoint 
inhibitors.

Extensive optimization and process development have pro-
gressed a large number of bispecific/trispecific antibodies into 
clinical trials for a wide range of indications, with promising 
signs of therapeutic activity. As an example, Blinatumomab has 
already been approved for the treatment of refractory, relapsed, 
BCP-ALL and also for patients with molecularly resistant 

disease following intensive chemotherapy.53–55 However, T-cell 
activation and consecutive cytokine release as well as inflam-
mation-induced alterations of the blood–brain barrier are 
associated with T-cell engaging antibodies, especially targeting 
CD19, inducing cytokine-release syndrome and neurotoxicities 
(ICANS) which can rarely be life-threatening. Very promising 
efficacy data for bispecific antibodies were also demonstrated53–55 
in the treatment of AML and, especially advanced MM.54 Novel 
formats allow to target antigen signatures on the tumor cell thus 
to increase specificity of the approach and by reducing nonspe-
cific T-cell activation also to reduce CRS and neurotoxcity.56–58

Gene-modified T-cells

The last decade has witnessed technological advances, which 
have allowed genetic modifications of T-cells providing person-
alized cellular therapies, that target specific tumor-associated 
antigens. A major advantage of gene-modified T-cells is that 
they are a living drug which can expand and proliferate in the 
patient. Persistence over time of these gene-modified T-cells has 
been demonstrated in responding patients.

Gene transfer into human T-cells can be accomplished by sev-
eral means. Long-term culture of the genetically modified T-cells 
is often required to reach meaningful clinical doses, with the 
functional impact of prolonged ex vivo expansion potentially 
adversely affecting subsequent long-term persistence in vivo. 
Gene delivery (or transfer) is mainly achieved through the use 
of viral (retroviral or lentiviral) vectors. These vectors can be 
manufactured to clinical grade on a large-scale producing sta-
ble integration into the genome of the T-cell and its progeny. 
Adverse consequences due to insertional mutagenesis in T-cells 
have not yet been reported and are unexpected given the mature 
differentiation status of the T-cells at the time of exogenous gene 
integration.

However, lentiviral vectors are particularly attractive when 
less differentiated T-cell subsets are targeted for modification, as 
they have the unique ability to infect T-cells even upon minimal 
activation, a property lacking in retroviral vectors. Novel non-
viral systems (eg, Sleeping Beauty and PiggyBac) allow larger 
fragments of DNA to be inserted when compared to viral vec-
tors. These novel strategies of nonviral gene transduction are 
likely to reduce the cost of genetic modification of immune cells 
in the future by avoiding the need for a large-scale manufacture 
of clinical grade viral vectors. When combined with CRISPR/
Cas or other gene-editing technologies, site directed insertion of 
the gene encoding the TCR or the CAR is achievable. Genetic 
modification of T-cells for targeting tumor cells can either be 
performed in the form of CAR T-cells or TCR gene-modified 
T-cells.

CAR T-cells

T-cells redirected to specific surface antigens on malignant 
cells by engineered CARs are emerging as powerful therapies for 
hematological malignancies. In contrast to bispecific antibodies, 
which link the activated T-cells to the tumor cells by a small 
molecule with binding domains for both CD3 and a surface 
antigen expressed on the tumor cell, here T-cells are engineered 
to express a new antigen recognition receptor, which targets the 
antigen on the tumor cell surface.

An increasing number of clinical trials using CAR T-cells 
for the treatment of hematological malignancies have been 
reported, especially targeting B-cell lymphoma, BCP-ALL and 
MM. Two cell products have been approved in 2017/2018 
for clinical use Kymriah (Tisagenlecleucel) and Yescarta 
(axicabtagene ciloleucel) which received FDA and European 
marketing authorization for the treatment of relapsed or 
refractory CD19+ BCP-ALL and for the treatment of diffuse 
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large B-cell lymphoma. These approvals were based on impres-
sive responses observed in patients with BCP-ALL, including 
high-risk patients.59 The overall response rate and the role of 
complete remission in B-cell lymphoma is lower than in ALL, 
but long-term remissions without further therapy have been 
reported for up to 40% of patients, enough to encourage the 
approval and speed up the ongoing research.59–61 In addition 
in 2020 FDA has approved liso-cel (Breyanzi) another CD19-
CAR T-cell product for the treatment of adult patients with 
relapsed or refractory large B-cell lymphoma after ≥2 lines of 
systemic. In 2020, a first CAR T-cell product brexucabtagene 
autoleucel (Tecartus) was approved for patients with mantle 
cell lymphoma, who do not respond to other treatment or have 
recurred therapy.62 Promising initial results have been also 
reported in the treatment of patients with MM, where CAR 
T-cells target the B-cell membrane antigen.63,64 These results64 
have also led to the approval of ABECMA (Iso-Cel), a B-cell 
membrane antigen targeting CAR T-cell product for patients 
with relapsed refractory MM by the FDA and EMA in 2021.

TCR gene-modified T-cells

TCR-modified T-cells are a novel alternative of adoptive cell 
therapy designed to treat hematological malignancies and solid 
tumors.

T-cells recognize antigens through a unique antigen-specific 
TCR promoting the elimination of a given target and amplify-
ing the attack through the recruitment of other components of 
the immune response. T-cells can target peptides derived from 
both intracellular and extracellular proteins, including those 
encoded by genes mutated in cancer cells. T-cells can actively 
distribute within tissues and in the tumor environment having 
the potential for in vivo expansion and self-maintenance, as they 
can establish a memory compartment.

Typically, the genes encoding the alpha and beta chains of 
the TCR are cloned into retroviral or lentiviral vectors for gene 
transfer into autologous T-cells. Novel nonviral transduction 
technologies, which are increasingly developed and established, 
are also being optimized for clinical grade TCR transfer. TCR-
modified T-cells can mediate antitumor efficacy and have been 
used to target several antigens like NYESO-1, MAGE-A3 and 
PRAME, MAGE-A10, and WT1. Clinical trials have been per-
formed to treat patients with MM and AML65

European research contributions

The whole development program of Blinatumomab from 
the pilot trial until the final approval by the FDA and the EMA 
for relapsed refractory B-cell precursor ALL was performed 
under the leadership of European scientists. In 2018, the FDA 
granted accelerated approval for the treatment of adult and 
pediatric patients with B-cell precursor ALL in the first or sec-
ond complete remission with minimal residual disease ≥0.1% 
based on a Eruopean trial. Also in Europe, most new indica-
tions for treatment with bispecific antibodies are now being 
tested in the clinic. Promising data on the use of bispecific anti-
bodies also in MM and partially in AML have been generated 
in European centers.54 New formats of bispecific antibodies are 
being developed by European scientists and European biotech 
companies.

Technologies of gene modification of T-cells including CAR 
and TCR gene-transfer have been intensively developed in 
Europe. Patients in the United Kingdom and other European 
countries have been among the first in the world to receive 
these therapies outside the United States. European scientists 
and clinicians are leading the development of gene-modified 
neoantigen-specific T-cells, which are predicted to have a 

major impact in the management of hematological and non-
hematological tumors. Other major contributions are the 
development and validation of novel strategies for immune 
cell selection.

Despite our major contributions, Europe is currently lagging 
behind the large number of clinical trials initiated in the United 
States and China, especially in the CAR T-cell field. Currently, 
European patients are queuing up to receive treatment with 
CAR T-cells for hematological malignancies in the US and 
Chinese centers due to the lack of open clinical trials in Europe. 
Presently, >400 clinical trials are listed as investigating CAR 
T-cell therapy in the treatment of hematological or solid cancer. 
About 87% of new reagents are produced in the United States 
and China, with only a minor activity in Europe. European bio-
tech companies are also moving to the United States for a much 
more rapid transfer of CAR-T approaches into the clinic and 
access to larger numbers of patients and a more lucrative mar-
ket. In addition, a lack of early clinical trials and the time-con-
suming regulatory processes for trials using ATMP are clear 
hurdles for clinical trial activities with novel immunotherapeu-
tic agents in Europe.

Summary box: Main research & policy priorities

1. The treatment landscape for hematological malignan-
cies is diverse and immunotherapy is clearly entering the 
arena. Immune-based therapies for hematological malig-
nancies aim at generating new agents such as monoclo-
nal antibodies, vaccines, immunotoxins, bispecific T-cell 
engagers, and cell therapies involving the innate and adap-
tive immune system using unmodified and gene-modified 
immune cells.

2. Compared to other immunotherapies such as checkpoint 
inhibition or adoptive T-cell therapy, most cancer vac-
cines to date have failed to demonstrate relevant clinical 
efficacy. Thus, another source of non-self antigens, par-
ticularly in the setting of allogeneic stem cell transplan-
tation, the minor histocompatibility antigens (MiHA) 
derived from single nucleotide differences between the 
patient and donor is currently explored.

3. Monoclonal antibody–based therapies targeting CTLA4 
or PD-1 have shown significant clinical effects in patients 
with hematological malignancies, especially patients with 
Hodgkin’s lymphoma, patients with primary mediastinal 
B-cell lymphoma and are being tested in early clinical 
trials in patients with other hematological malignancies 
(B-NHL, MM, etc.)

4. Extensive optimization and process development have 
progressed a large number of bispecific/trispecific antibod-
ies into clinical trials for a wide range of indications, with 
promising signs of therapeutic activity—been approved 
for treatment of refractory, relapsed, BCP-ALL—and are 
currently evaluated in other hematological malignancies 
(B-NHL, MM, and AML).

5. T-cells redirected to specific surface antigens on malig-
nant cells by engineered CARs are emerging as power-
ful therapies for hematological malignancies. Following 
the approval for BCP-ALL, diffuse large B-cell lym-
phoma, mantle cell lymphoma, and MM, a wide range of 
other tumor entities are currently targeted with CAR-T/
CAR-NK cells in ongoing clinical trials.

6. TCR gene-modified T-cells are increasingly explored in 
hematological malignancies and currently clinical studies 
are ongoing with the HA-1 TCR in high-risk hematolog-
ical malignancies but also TCRs targeting various cancer 
tests and differentiation antigens.
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Conclusion

Thus, immune therapies are increasingly being explored in 
hematological malignancies. The most promising ones are currently 
clearly T cell–based therapies with CAR T-cells and T-cell engaging 
antibodies, which have induced deep and long-lasting remissions in 
some hematological malignancies and are increasingly explored for 
all other hematological malignancies but also solid tumors.
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