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Composite endpoints are commonly used to define primary outcomes in ran-
domized controlled trials. A participant may be classified as meeting the end-
point if they experience an event in one or several components (eg, a favorable
outcome based on a composite of being alive and attaining negative culture
results in trials assessing tuberculosis treatments). Partially observed compo-
nents that are not missing simultaneously complicate the analysis of the com-
posite endpoint. An intuitive strategy frequently used in practice for handling
missing values in the components is to derive the values of the composite
endpoint from observed components when possible, and exclude from anal-
ysis participants whose composite endpoint cannot be derived. Alternatively,
complete record analysis (CRA) (excluding participants with any missing com-
ponents) or multiple imputation (MI) can be used. We compare a set of methods
for analyzing a composite endpoint with partially observed components math-
ematically and by simulation, and apply these methods in a reanalysis of a
published trial (TOPPS). We show that the derived composite endpoint can be
missing not at random even when the components are missing completely at
random. Consequently, the treatment effect estimated from the derived endpoint
is biased while CRA results without the derived endpoint are valid. Missing at
random mechanisms require MI of the components. We conclude that, although
superficially attractive, deriving the composite endpoint from observed com-
ponents should generally be avoided. Despite the potential risk of imputation
model mis-specification, MI of missing components is the preferred approach in
this study setting.
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1 INTRODUCTION

Composite endpoints are commonly used to define primary outcomes in randomized controlled trials, such as those in
rheumatoid arthritis, tuberculosis, and cardiovascular diseases.1-5 A composite endpoint can be constructed from two or
more components. As a simple example of a composite endpoint, a participant may be classified as meeting the endpoint
if they experience an event in one or several components; for instance, a favorable outcome in trials assessing tuberculosis
treatments may be defined based on a composite endpoint of the participant being alive and attaining negative culture
results during follow-up.

In practice, not all components of a composite endpoint are fully observed, and components that are not always miss-
ing or observed simultaneously complicate the analysis of the composite endpoint. A strategy often used in practice is to
perform a complete record analysis (CRA) in which only participants with observed data in all components are included.
Such a strategy may yield less efficient, and potentially even biased, estimates when the components are not missing
completely at random (MCAR).

To make more use of available data, another strategy is to derive the composite endpoint from observed components
when possible, and exclude from analysis participants whose composite endpoint cannot be derived.6,7 In the aforemen-
tioned example of trials assessing tuberculosis treatments, suppose that a participant is classified as having an unfavorable
outcome if they either die or have positive culture results. For a given participant with missing culture results, their end-
point can be derived to be unfavorable if we know that they die before the end of the trial, whereas their endpoint cannot
be ascertained (and therefore considered missing) if they are alive. Another type of composite endpoint is the time to the
first of two or more events, whichever occurs first, and might be of primary interest in many clinical trials. For example,
in cancer trials, a commonly used primary endpoint is progression-free survival, defined as the time from randomization
to tumor progression or death. Some participants may be lost to follow-up before experiencing an event (ie, the progres-
sion component is missing), while their vital status at the end of the trial might be obtained from linkage to external death
registry data (ie, the mortality component is “observed”). This setting was previously explored by Daniel and Tsiatis,8
who demonstrated how external information on the mortality component of the composite endpoint for participants lost
to follow-up before experiencing an event can be incorporated in augmented inverse probability weighted estimating
equations in order to increase efficiency.

Previously, O’Keeffe et al9 studied a binary composite endpoint with seven components, measured repeatedly for
individuals during follow-up. The authors investigated the scenario in which if one component of the composite endpoint
is missing at a particular time point, then all components are missing. Thus, it would not be possible to derive the value
of the composite endpoint at time points where the components are missing. Rombach et al10 focused on composite
endpoints that are linear functions of the components, which generally cannot be derived if at least one component is
missing. Nevertheless, some scoring manuals allow for a small number of components to be substituted by the mean
score of the available components (ie, single imputation with the average of the observed values).

While an analysis of the derived endpoint (i) is intuitively sensible, since we sometimes can determine a partici-
pant’s endpoint from the value of only one component, and (ii) uses more observed data compared with a CRA, it is not
clear under which missingness mechanisms of the components valid inference is achieved. In addition, the exclusion of
observed components without an event from the analysis (eg, data from participants who are known to be alive, ie, no
event in the mortality component, but whose culture results are missing) means that the derived endpoint may not be
MCAR or missing at random (MAR), even when the components are MCAR.6

Maximum likelihood estimation has previously been considered for the assessment of treatment effect on a composite
endpoint that is constructed from two or more partially observed components.6,7,11 This approach appears to work well
when values of the components are MCAR or MAR. However, implementation in standard statistical software is limited,
and incorporating baseline covariates in the analysis is not straightforward.

Multiple imputation (MI) has increasingly been used to handle missing data in trials, and is an alternative approach
for the analysis of a composite endpoint with incomplete data in the components. MI is commonly performed assuming
data are MAR. The application of MI in handling missing values in the components of a composite endpoint poses several
practical questions, requiring further consideration.

• First, should MI be performed at the composite or component level?
• Second, when imputing at the composite level, should MI be performed on participants whose composite endpoint

cannot be derived from their observed components, or on all participants whose data are missing in any components,
regardless of whether their endpoint can be derived?
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• Third, an essential condition for inference after MI to be valid is compatibility between the imputation and analysis
models.12-14 If MI is to be used, how should the imputation model be specified so that the associations between the
components, as well as between the composite endpoint and other variables in the substantive analysis model, are
correctly reflected in the imputed data?

The aim of this paper is to examine a set of methods, readily available in common statistical software packages, for
analyzing a binary composite endpoint with partially observed components. The remainder of this paper is organized as
follows. In Section 2, we introduce and describe our motivating data set from the TOPPS trial.15 In Section 3, we consider
the case of a simple composite endpoint with two components (one fully observed and one with missing values) and show
algebraically that the endpoint derived from the observed component can be missing not at random (MNAR) even when
the missing component is MCAR. Section 4 presents a simulation study which compares methods for handling missing
data in the components for two types of composite endpoint. This shows that MI performed at the component level is
generally preferable. If MI at the composite level is used, it should be performed on all participants whose data are missing
in any components, and this approach only provides valid inference when the components are MCAR. Specifying the
imputation model for MI at the component level requires careful consideration on the potential interactions between the
components as well as with randomized treatment. A reanalysis of the TOPPS trial is presented in Section 5; and Section 6
concludes with a discussion.

2 MOTIVATING EXAMPLE: THE TOPPS TRIAL

The trial of prophylactic platelets (TOPPS) was a randomized, open-label, noninferiority trial assessing whether a policy
of not giving prophylactic platelet transfusions was as effective and safe as a policy of providing prophylaxis to prevent
bleeding in patients with haematologic cancers.15 A total of 600 participants were recruited from 14 haematology centres
in the UK and Australia between 2006 and 2011.

Eligible participants were 16 years or older who were undergoing, or were about to undergo, chemotherapy or
stem-cell transplantation to treat a haematologic cancer, and who had, or were expected to have, thrombocytopenia.
Participants were randomized in a 1:1 ratio to receive, or not to receive, prophylactic platelet transfusions. Bleeding assess-
ment was conducted daily, and the primary outcome was the occurrence of at least one bleeding event in the 30 days after
randomization (ie, a binary composite endpoint constructed from 30 binary indicators of whether the participant had a
bleeding event on each day). The structure of this composite endpoint is the same as any other composite endpoint made
up of “an event in any of the components”, and the missing bleeding assessments on some days means that this composite
endpoint suffers from the same aforementioned issues.

Bleeding was experienced in 151 of 300 (50%) participants in the no-prophylaxis group, and 128 of 298 (43%) partici-
pants in the prophylaxis group. The trial reported an adjusted difference in proportions of 8.4%, 90% confidence interval
(CI) 1.7% to 15.2%. Therefore, noninferiority of a no-prophylaxis strategy compared to a prophylaxis strategy for platelet
transfusions was not declared based on a noninferiority margin of 15%.

For the primary analysis, MI was used to account for days with missing bleeding assessments. Briefly, the 30-day
follow-up period was split into six time blocks of five days (ie, days 1 to 5, days 6 to 10, days 11 to 15, days 16 to
20, days 20 to 25, and days 26 to 30), and the number of bleeds occurring during each time block was counted. The
number of bleeds in a time block was set to missing if three or more bleeding assessments were missing in that time
block. For missing time blocks, the number of bleeds was then imputed from proportional odds models, conditional
on the other time blocks and minimization variables, using the multivariate imputation by chained equations (MICE)
approach.16

3 A SIMPLE COMPOSITE ENDPOINT WITH TWO COMPONENTS

In this section, we explore the mathematical properties of the simplest binary composite endpoint with two
binary components. We determine the missingness mechanism of the derived endpoint when one compo-
nent is fully observed and the other component is MCAR. We also demonstrate the potential bias asso-
ciated with an analysis of the derived endpoint compared with a CRA, and discuss model specification
for MI.
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Let y be a binary composite endpoint with two binary components z1 and z2; y, z1, z2 take values 0 or 1. We define a
simple composite endpoint y as

y =

{
1, if z1 = 1 or z2 = 1;
0, if z1 = 0 and z2 = 0.

Let pjk = P (z1 = j and z2 = k) ; j, k take values 0 or 1. Then P (y = 0) = p00 and P (y = 1) = p01 + p10 + p11. Further, sup-
pose that z1 is fully observed for all participants, while z2 is missing for a subset of participants.

3.1 Missingness mechanism of the derived endpoint when one component is MCAR

When z2 is missing and z1 is observed, the composite endpoint y can be derived from the observed component z1 to take
value 1 when z1 = 1, while y cannot be determined when z1 = 0. In other words, y is derivable from z1 = 1 regardless of
the value of z2, whereas when z1 = 0 the value of y depends on what the missing value of z2 is, and in this case z1 alone
does not provide sufficient information for y to be derived. This is because the composite y is defined as either z1 = 1 or
z2 = 1.

We define rz2 as the binary response indicator, taking values 1 when z2 is observed, and 0 otherwise. Let ryderiv denote
the binary response indicator for the derived endpoint yderiv,

ryderiv =

{
1, if rz2 = 1 or

(
rz2 = 0 and z1 = 1

)
;

0, if rz2 = 0 and z1 = 0.

Suppose z2 is MCAR with probability P
(

rz2 = 1
)
= 𝛼, then

P
(

ryderiv = 0
)
= P

(
rz2 = 0 and z1 = 0

)
= (1 − 𝛼) (p00 + p01) ;

P
(

ryderiv = 1
)
= P

[
rz2 = 1 or

(
rz2 = 0 and z1 = 1

)]
= 𝛼 + (1 − 𝛼) (p10 + p11) .

The distribution of y among the subset of participants whose endpoint is considered missing is given by

P
(

y = 1 |ryderiv = 0
)
=

P
(

y = 1 and ryderiv = 0
)

P
(

ryderiv = 0
)

=
P
(

rz2 = 0 and z1 = 0 and z2 = 1
)

P
(

rz2 = 0 and z1 = 0
)

=
(1 − 𝛼) p01

(1 − 𝛼) (p00 + p01)

=
p01

p00 + p01
. (1)

Similarly, the distribution of y among participants with a derivable endpoint can be written as

P
(

y = 1 |ryderiv = 1
)
=

P
(

y = 1 and ryderiv = 1
)

P
(

ryderiv = 1
)

=
P
(

y = 1 and rz2 = 1
)
+ P (rz2 = 0 and z1 = 1)

P
(

rz2 = 1
)
+ P

(
rz2 = 0 and z1 = 1

)
=

𝛼 (p10 + p01 + p11) + (1 − 𝛼) (p10 + p11)
𝛼 + (1 − 𝛼) (p10 + p11)

=
𝛼p01 + p10 + p11

𝛼 + (1 − 𝛼) (p10 + p11)
. (2)

Since (1) ≠ (2) in general, yderiv will likely be MNAR even when z2 is MCAR.
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3.2 Bias in analysis of the derived endpoint versus complete records

3.2.1 Analysis of the derived endpoint

In a randomized controlled trial, suppose we have a treatment variable x taking values 1 for treatment or 0 for control. Let
sjk = P (z1 = j and z2 = k | x = 1) and tjk = P (z1 = j and z2 = k | x = 0) ; j, k take values 0 or 1. When both components
z1 and z2 are fully observed, the probability of y = 1 in the treatment and control arms is given by

P (y = 1 | x = 1) = s01 + s10 + s11 = 1 − s00; (3)

P (y = 1 | x = 0) = t01 + t10 + t11 = 1 − t00. (4)

Suppose our effect measure of interest is an odds ratio (OR). From (3) and (4), the full-data OR for the treatment effect
can be written as

ORfull =
P (y = 1 |x = 1) ∕P (y = 0 |x = 1)
P (y = 1 |x = 0) ∕P (y = 0 |x = 0)

= (s01 + s10 + s11) t00

(t01 + t10 + t11) s00
. (5)

With incomplete data, the distribution of the composite endpoint y among participants randomized to the treatment
arm, whose endpoint can be derived from the values of z1, is

P
(

y = 1 |ryderiv = 1, x = 1
)
= 𝛼s01 + s10 + s11

𝛼 + (1 − 𝛼) (s10 + s11)
; (6)

P
(

y = 0 |ryderiv = 1, x = 1
)
= 𝛼s00

𝛼 + (1 − 𝛼) (s10 + s11)
, (7)

where 𝛼 = P
(

rz2 = 1
)
. Similarly, the distribution of y among participants randomized to the control arm, whose endpoint

is derivable from the values of z1, is

P
(

y = 1 |ryderiv = 1, x = 0
)
= 𝛼t01 + t10 + t11

𝛼 + (1 − 𝛼) (t10 + t11)
; (8)

P
(

y = 0 |ryderiv = 1, x = 0
)
= 𝛼t00

𝛼 + (1 − 𝛼) (t10 + t11)
. (9)

From (6), (7), (8), (9), the OR for the treatment effect based on the derived endpoint is given by

ORderiv =
[𝛼s01 + s10 + s11] t00

[𝛼t01 + t10 + t11] s00
, (10)

which, in general, is not equal to the OR given in (5) when the components are fully observed.
From (5) and (10), the ratio of ORderiv to ORfull is given by

ORderiv

ORfull
= 𝛼s01 + s10 + s11

𝛼t01 + t10 + t11

/ s01 + s10 + s11

t01 + t10 + t11
=

1 − (1 − 𝛼) s01
s01+s10+s11

1 − (1 − 𝛼) t01
t01+t10+t11

= 1 − (1 − 𝛼) 𝜎
1 − (1 − 𝛼) 𝜏

. (11)

From (11), the direction of bias in the OR due to missing data is determined by the relative sizes of 𝜎 and 𝜏. ORderiv
will be inflated in analysis of the derived endpoint if 𝜎 < 𝜏 , and biased downwardly if 𝜎 > 𝜏. An unbiased estimate of the
OR is achieved when 𝜎 = 𝜏, for example, when there is no effect of treatment on any of the components (ie, sjk = tjk for
all j, k). The maximum magnitude of bias due to one component being MCAR will be to increase or decrease the OR by
a factor of 𝛼.

To illustrate this, suppose P (z1 = 1 |x = 0) = P (z2 = 1 |x = 0) = 0.7, P (z1 = 1 |x = 1) = P (z2 = 1 |x = 1) = 0.2, and
z1 ⫫ z2 |x. Then 𝜎 = 0.23 , and 𝜏 = 0.44 . If 70% of data in z2 are MCAR (ie, 𝛼 = 0.3) then ORderiv will be overestimated by
22%.
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3.2.2 Analysis of complete records

Suppose the analysis is performed on participants with observed data in both components, that is, rz2 = 1. Then the
distribution of the composite endpoint y among the complete records is the same as that when there are no missing data,
as shown below.

P
(

y = 1 |rz2 = 1, x = 1
)
=

P
(

y = 1 and rz2 = 1 |x = 1
)

P
(

rz2 = 1 |x = 1
)

= 𝛼 (s01 + s10 + s11)
𝛼

= s01 + s10 + s11

= P (y = 1 |x = 1) . (12)

It follows from (12) that, if the analysis discards participants with missing data in the incomplete component, the
resulting estimated treatment effect will be unbiased.

3.3 MI of the incomplete component

When data in z2 are missing (with z1 fully observed), MI can be performed either at the composite level, that is, y is
imputed directly, or at the component level, that is, z2 is imputed first and then y is passively imputed from z1 and z2.

For MI at the composite level, y can be imputed whenever z2 is missing, regardless of the values of z1 (MI-CRA).
Alternatively, y can be derived from the values of z1 first before the remaining missing (nonderivable) values in y are
imputed (MI-Deriv).

Suppose the substantive analysis model is a logistic regression model for the composite endpoint y, conditional on
randomized treatment x. Then x needs to be included in the imputation model for y to ensure compatibility between the
imputation and analysis models.14

Specification of the imputation model at the component level, that is, when z2 is imputed, is more complex. Both the
fully observed component z1 and randomized treatment x should be included in the imputation model for z2. However,
the imputation model for z2 can be specified in several ways, by:

• including x and z1 as main effects (MIC-main);
• including z1 as main effect and stratifying the imputation by x, so that the association between z2 and z1 varies by x

(MIC-x); or
• stratifying the imputation by both x and z1, so that the distribution of z2 differs across strata defined by values of x and

z1 (MIC-x-z1).

The correct specification of the imputation model depends on the true associations between z1, z2, and x. Note that in
this example the last imputation model will never be mis-specified but, as usual, there is a balance between the ability to be
unbiased for any given data generating mechanism, and the practical chance that the imputation model will not converge
for a given sample size and data set. The simulation study presented in the next section explores these MI approaches in
more detail.

4 SIMULATION STUDY

4.1 Design

4.1.1 Aims

We conducted a simulation study to explore the statistical properties of a set of methods for handling missing values in
the components of a composite endpoint (described in Section 3.3), as well as to support our analytic results in Section 3.
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4.1.2 Data generating mechanism

We considered the case of a randomized controlled trial in which participants are randomized by simple randomization
with equal probability to either the treatment or control arm (denoted by x, taking values 1 or 0, respectively). For each
participant, a binary composite endpoint y is constructed from three binary components z1, z2, z3; y and the zs take values
0 or 1. Two examples of how a composite endpoint may be constructed from three components, which we refer to as
simple and complex composite endpoints, were considered, where

ysimple =

{
1, if z1 = 1 or z2 = 1 or z3 = 1;
0, if z1 = 0 and z2 = 0 and z3 = 0;

and

ycomplex =

{
1, if z1 = 1 and (z2 = 1 or z3 = 1) ;
0, otherwise.

When data in the components are completely observed, there are eight combinations of these components from which
the values of y are determined (Table 1). In this simulation study, we first generated data in the components and then used
them to construct the composite endpoint. To control the associations between the components, we defined a saturated
log-linear model for the count of each combination c,

log (𝜇c) = 𝜇0 + LPc, c = 1, … , 8, (13)

where LPc is the linear predictor and 𝜇0 is the intercept term included in the model for the counts to sum to the total
number of participants. LPc can be written in terms of the components as

LPc = 𝜆1z1 + 𝜆2z2 + 𝜆3z3 + 𝜆12z1z2 + 𝜆23z2z3 + 𝜆13z1z3 + 𝜆123z1z2z3, (14)

where 𝜆12, 𝜆23, 𝜆13 correspond to the pairwise log ORs between any two components when the remaining component
takes value 0, and 𝜆123 represents the interaction between any two components in a logistic regression model with the
remaining component as the dependent variable.

Then the probability of each combination is given by

pc =
exp (LPc)∑8

c=1 exp (LPc)
. (15)

T A B L E 1 Simulation study: all possible combinations of the components for constructing the simple and
complex composite endpoints, and associated linear predictors in the log-linear model for the combinations of
components

Combination c z1 z2 z3 ysimple ycomplex Linear predictor LPc for log (𝝁c)

1 0 0 0 0 0 0

2 0 0 1 1 0 𝜆3

3 0 1 0 1 0 𝜆2

4 0 1 1 1 0 𝜆2 + 𝜆3 + 𝜆23

5 1 0 0 1 0 𝜆1

6 1 0 1 1 1 𝜆1 + 𝜆3 + 𝜆13

7 1 1 0 1 1 𝜆1 + 𝜆2 + 𝜆12

8 1 1 1 1 1 𝜆1 + 𝜆2 + 𝜆3 + 𝜆12 + 𝜆23 + 𝜆13 + 𝜆123



8 MY PHAM et al.

The expressions for the linear predictor corresponding to the eight combinations are presented in Table 1. It follows
that the probability of meeting the composite endpoint is

P
(

ysimple = 1
)
=

8∑
c=2

pc; (16)

P
(

ycomplex = 1
)
=

8∑
c=6

pc. (17)

We considered three cases for the associations between the components and randomized treatment, where

I. 𝜆123 = 0 in both treatment and control arms;
II. 𝜆123 = 0 in the treatment arm but ≠ 0 in the control arm;

III. 𝜆123 ≠ 0 in both arms, with a different value in each arm.

These cases were considered in order to assess the validity of MI at the component level under potential
mis-specification of the imputation model.

In addition, we assumed that data in z1 are fully observed, while z2 and z3 contain missing values generated under
three missingness mechanisms (described later in this section).

The procedure for generating complete data was as follows.

• Generate Nsample = 2 000 complete values of a binary treatment variable x taking values 0 or 1 from the model

x ∼ Bernoulli (px = 0.5) ,

reflecting simple randomization, with the sample size chosen to reduce small-sample bias associated with
logistic regression;

• Separately for each treatment arm, generate a categorical variable c which takes values 1 to 8 from (15), with
values of 𝜆s selected to give a control arm event rate of 0.57 and event rate in the intervention arm of 0.84
(Supplementary Table S1);

• Generate three components from c with values corresponding to those in Table 1, that is,

– z1 = 1 if c > 4; and 0 otherwise;
– z2 = 1 if c = 3, 4, 7, 8; and 0 otherwise;
– and z3 = 1 if c = 2, 4, 6, 8; and 0 otherwise;

Finally, generate a binary composite endpoint y taking values 0 or 1 from the three components zs (Table 1). With the
values of 𝜆s given in Supplementary Table S1, the effect of treatment x on the composite endpoint y is given by

logit [P (y = 1 |x)] = 𝛽0 + 𝛽xx, (18)

where, for both simple and composite endpoints, 𝛽0 and 𝛽x are equal to 0.3 and 1.35, respectively.
Missing data were then introduced as follows.

• Generate binary indicators of response rl of zl from the following model

logit
[
P
(

rzl = 1 |z1, x
)]

= 𝛼0 + 𝛼xx + 𝛼z1 z1 + 𝛼xz1 xz1, l = 2, 3, (19)

where

(i) 𝛼0 = 0.7, 𝛼x = 𝛼z1 = 𝛼xz1 = 0, corresponding to a MCAR mechanism;
(ii) 𝛼0 = 1.05, 𝛼x = −0.75, 𝛼z1 = 0.25, 𝛼xz1 = 0, corresponding to the first MAR mechanism (MAR1); and

(iii) 𝛼0 = 1.05, 𝛼x = −0.75, 𝛼z1 = 0.25, 𝛼xz1 = 0.25, corresponding to the second MAR mechanism (MAR2).



MY PHAM et al. 9

F I G U R E 1 Simulation study: simulation scenarios for simple and complex composite endpoints; each combination in the dashed
boxes was repeated independently Nrep = 2 000 times. x, randomized treatment; 𝜆123, three-way interaction between the components in the
log-linear model

Under each of these three missingness mechanisms, the probability of observing each component is around 0.7,
and the probability of observing all components is around 0.49;

• For l = 2, 3, set zl to missing if rzl = 0.

These steps were repeated Nrep = 2 000 times under each of the nine scenarios of cases I to III and missingness
mechanisms MCAR, MAR1, MAR2, for simple and complex composite endpoints separately (Figure 1). The number of
simulation repetitions was chosen to produce a Monte Carlo error of 0.5% on a coverage of 95%.

4.1.3 Estimands

The estimand is the log odds ratio 𝛽x for the treatment effect, whose true value is 1.35.

4.1.4 Methods of analysis

We compared the following methods for handling missing values in z2 and z3 (Table 2).

i. CRA: perform a complete record analysis, excluding from analysis participants with missing values in either
component;

ii. Deriv: derive y from the observed components when possible, exclude from analysis participants whose y cannot be
derived and is considered missing;

iii. MI-CRA (MI of the composite endpoint): perform MI of y whenever a component is missing, regardless of whether y
is derivable from the observed components. The imputation model for the composite endpoint is conditional on the
randomized treatment x;

T A B L E 2 Simulation study: methods for handling missing values in partially
observed components z2 and z3. y, composite endpoint; x, randomized treatment; z1,
fully observed component

Method Variable(s) imputed Imputation model predictors

CRA

Deriv
aMI–CRA yCRA x
aMI–Deriv yderiv x
bMIC–main z2, z3 z1, z2 or z3, x
bMIC–x z2, z3 z1, z2 or z3; stratified by x
bMIC–x–z1 z2, z3 z2 or z3; stratified by z1 and x

a Univariate MI using logistic regression.
b MICE using logistic regression for conditional models.
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iv. MI-Deriv (MI of the composite endpoint): derive y from the observed components when possible, perform MI of y for
the remaining missing values. The imputation model for the composite endpoint is conditional on the randomized
treatment x;

v. MIC-main (MI of the components): perform MI of z2 and z3 using MICE; the conditional model for each component
includes the randomized treatment x, the fully observed component z1, and the other incomplete component as main
effects; y is passively imputed from the observed and imputed components.

vi. MIC-x (MI of the components): perform MI of z2 and z3 using MICE; the conditional model for each component
includes the fully observed component z1 and the other incomplete component as main effects, and imputation is
stratified by randomized treatment x; y is passively imputed from the observed and imputed components.

vii. MIC-x-z1 (MI of the components): perform MI of z2 and z3 using MICE; the conditional model for each component
includes the other incomplete component as main effect, and imputation is stratified by the fully observed component
z1 and randomized treatment x; y is passively imputed from the observed and imputed components.

For all MI methods, results from the imputed data sets were pooled using Rubin’s rules.17 From the chosen values of 𝜆s
(Supplementary Table S1) the imputation model at the component level that is compatible with the substantive analysis
model for case I is MIC-x; z2 was imputed from the following conditional model

logit [P (z2 = 1 |z1, z3, x)] = 𝛾0 + 𝛾1z1 + 𝛾3z3 + 𝛾xx + 𝛾1xz1x + 𝛾3xz3x,

and similarly for z3, with z2 as predictor.
For cases II and III, the compatible MI strategy at the component level is MIC-x-z1. The following conditional model

was used to impute z2 (and similarly for z3, with z2 as predictor)

logit [P (z2 = 1 |z1, z3, x)] = 𝛾0 + 𝛾1z1 + 𝛾3z3 + 𝛾xx + 𝛾13z1z3 + 𝛾1xz1x + 𝛾3xz3x + 𝛾13xz1z3x.

4.1.5 Performance measures

Bias, efficiency of 𝛽x (in terms of the empirical and average model standard errors), and coverage of 95% CIs were calcu-
lated for each of the nine simulation scenarios,18,19 with analyses of full data (ie, before any values in z2 and z3 are set to
missing) provided for comparison. These performance measures are defined as follows.

• Bias: E
[
𝛽
]
− 𝛽;

• Empirical standard error:
√

Var
(
𝛽
)
;

• Average model standard error:
√

E
[
V̂ar

(
𝛽
)]

;

• Coverage: P
(
𝛽 low ≤ 𝛽 ≤ 𝛽upp

)
.

All simulations were performed in Stata/MP 15.120 (the code is available at https://github.com/mytrapham/
misscomposite); mi impute logit and mi impute chained were used for creating the imputations at the com-
posite level and component level, respectively, and mi estimate for fitting the analysis model to the imputed
data sets and pooling the results. Simulation results were analyzed using the community-contributed command
simsum.19

4.2 Results

4.2.1 Simple composite endpoint

Simulation results for a simple composite endpoint are summarized graphically in Figures 2,3, and 4 for 𝛽x (ie, our main
estimand); results for 𝛽0 are presented in Supplementary Figures S1 to S3 for reference.

https://github.com/mytrapham/misscomposite
https://github.com/mytrapham/misscomposite
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F I G U R E 2 Simple composite endpoint, case I: performance measures for 𝛽x under different missingness mechanisms of the
components; 𝛽x = 1.35. Error bars, ±1.96× Monte Carlo errors; filled and hollow points, empirical and average model standard errors,
respectively; vertical lines at 0 and 95 for bias and coverage, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 3 Simple composite endpoint, case II: performance measures for 𝛽x under different missingness mechanisms of the
components; 𝛽x = 1.35. Error bars, ±1.96× Monte Carlo errors; filled and hollow points, empirical and average model standard errors,
respectively; vertical lines at 0 and 95 for bias and coverage, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 4 Simple composite endpoint, case III: performance measures for 𝛽x under different missingness mechanisms of the
components; 𝛽x = 1.35. Error bars, ±1.96× Monte Carlo errors; filled and hollow points, empirical and average model standard errors,
respectively; vertical lines at 0 and 95 for bias and coverage, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

Analysis of full data is unbiased with the smallest standard errors and coverage at the nominal 95% level. MI-CRA
and MI-Deriv produce very similar results to CRA and analysis of the derived endpoint, respectively; hence, their results
are not presented. This is because for MI at the composite level the imputation and analysis models are identical, and MI
results only reflect additional Monte Carlo errors.

Case I: 𝜆(x=1)
123 = 𝜆

(x=0)
123 = 0

CRA is unbiased when the components z2 and z3 are MCAR. Under the posited MAR mechanisms where the compo-
nents are missing conditional on both z1 (fully observed) and randomized treatment x, the composite endpoint y is thus
MNAR conditional on its values, in which case CRA provides biased estimates of 𝛽s as the theory suggests. If we instead
consider a MAR mechanism where z2 and z3 are missing conditional only on randomized treatment x, then CRA will be
unbiased.

Analysis of the derived endpoint is biased across all missingness mechanisms considered, consistent with the analytic
results (Section 3). Bias is severe in both parameter estimates, apart from the log odds ratio 𝛽x under MCAR, where bias
is minimal. This might be due to bias in the treatment and control log odds being cancelled out when used to calculate
the log OR.

MI at the component level with randomized treatment x and fully observed component z1 as main effects in the con-
ditional imputation models (MIC–main) is biased, as the two-way interactions between the components and randomized
treatment are omitted in the imputation model. By contrast, MI at the component level with z1 as main effect and strati-
fied by x (MIC-x) is unbiased, as it is the correct model in this scenario. Since MI at the component level stratified by both
x and z1 (MIC-x-z1) is a more general model of MIC-x, it is also correct and unbiased. For scenarios where both MI at the
component level and CRA are valid methods, MI is more efficient than CRA.

Case II: 𝜆(x=1)
123 = 0 ≠ 𝜆

(x=0)
123 ; case III: 𝜆(x=1)

123 ≠ 𝜆
(x=0)
123 ≠ 0

Results under cases II and III are similar to those seen under case I. While MIC-x-z1, which accounts for the three-way
interaction between the components and randomized treatment in the conditional imputation models, is the only cor-
rect approach in these cases, bias in MIC-x appears to be minimal for both parameter estimates across the missingness

http://wileyonlinelibrary.com
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mechanisms. Bias in MIC-x may be more apparent with other choices of parameter values in the data generating
mechanism.

4.2.2 Complex composite endpoint

Simulation results for the complex composite endpoint are summarized graphically in Supplementary Figures S4 to S9
(for both 𝛽x and 𝛽0); they are similar to results for the simple composite endpoint. MI at the component level occasion-
ally suffered from perfect prediction (often termed separation) when imputation was stratified by randomized treatment
x and fully observed component z1 (MIC-x-z1); however, all occurrences of perfect prediction were overcome when aug-
mentation was used in MI (via the specification of option augment in mi impute, Supplementary Table S2).21 This
approach involves “augmenting” the data set by adding a few extra observations with small weights to the data during
estimation of model parameters in a way that overcomes perfect prediction.21

5 REANALYSIS OF THE TOPPS TRIAL

5.1 Methods of analysis

The composite endpoint in TOPPS was a simple composite endpoint constructed from 30 daily bleeding assessments, with
an outcome event occurring if the participant experienced at least one bleeding event. We anticipated perfect prediction
to be an issue when performing MI at the component level with 30 components. Thus, following what had been done in
the original TOPPS analysis, we split the 30-day follow-up period into six time blocks, each of five days.

We considered two approaches for defining the completeness of these six blocks; the latter was how block-level
completeness had been defined in the original TOPPS analysis.

• Approach 1: each block was set to missing if bleeding status was missing for any of the five days;
• Approach 2: each block was set to missing if bleeding status was missing for at least three of the five days.

Our main focus was missing data at block level. Since most of the missing data were at block level, we used relatively ad
hoc methods to handle missing data within blocks. We handled missing data within blocks by a CRA approach (approach
1); as a sensitivity analysis we also derived the bleeding status for the blocks (approach 2). For blocks that were not set to
missing (according to approaches 1 and 2), each block took value 1 if there was at least one bleeding event during the five
days (ie, an initial block-wise derivation step in approach 2). These six blocks were then used to construct the composite
endpoint, which took value 1 if any block took value 1, and 0 if all blocks took values 0.

In this reanalysis, we compared the following methods for handling missing values in the six time blocks: (i) CRA; (ii)
Deriv; (iii) MI-CRA; (iv) MI–Deriv; (v) MIC-main; and (vi) MIC-trt. For MIC-main, we performed MI of the blocks using
MICE, where the conditional imputation model for each block included the randomized treatment and other incomplete
blocks as main effects. For MIC-trt, blocks were imputed using MICE; the conditional model for each block included other
incomplete blocks as main effects, and imputation was stratified by the randomized treatment. Since none of the blocks
were fully observed, MI at the component level stratified by the randomized treatment and fully observed component(s)
(ie, a version of MIC-x-z1 in Section 4) was not relevant here. All MI methods were performed using 50 imputations and
20 burn-in cycles.

Initially, MIC-trt was performed using Stata’s mi impute chained (MIC-trt 1). However, perfect prediction led
to nonconvergence in one of the imputations which caused MI to break down, and specifying the augment option did
not help overcome this. We therefore considered two alternatives: (i) use the community-contributed command ice22

(MIC-trt 2); and (ii) use mi impute chained, but imputing each block conditional on two adjacent blocks instead of
all other blocks (MIC-trt 3). These two alternatives successfully imputed missing values in the incomplete time blocks.

As in the original TOPPS analysis, our substantive analysis model was a generalized linear model for the composite
endpoint (constructed from six time blocks) on randomized treatment, with an identity link and binomial family. For
simplicity, minimization variables used in the original TOPPS analysis were not included in our substantive analysis and
imputation models. Our estimand was the difference in proportions of participants who had bleeding events between the
two treatment arms (no-prophylaxis versus prophylaxis platelet transfusion).
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MIC–trt 3
MIC–trt 2
MIC–trt 1
MIC–main
MI–Deriv
MI–CRA
Deriv
CRA

Method

0.076 (−0.006, 0.159)
0.063 (−0.019, 0.144)
[Convergence not achieved]
0.069 (−0.013, 0.152)
0.088 (0.002, 0.173)
0.066 (−0.024, 0.156)
0.086 (0.000, 0.172)
0.065 (−0.026, 0.156)

(95% CI)
Risk difference

0 .05 .1 .15 .2−.1 −.05

Approach 1

MIC–trt 3
MIC–trt 2
MIC–trt 1
MIC–main
MI–Deriv
MI–CRA
Deriv
CRA

Method

0.077 (−0.004, 0.157)
0.072 (−0.008, 0.152)
0.078 (−0.003, 0.158)
0.078 (−0.002, 0.158)
0.081 (−0.000, 0.162)
0.070 (−0.013, 0.153)
0.080 (−0.002, 0.161)
0.065 (−0.018, 0.148)

(95% CI)
Risk difference

0 .05 .1 .15 .2−.1 −.05

Approach 2

F I G U R E 5 TOPPS reanalysis: difference in proportions of participants who had bleeding events between the two treatment arms
under different methods for handling missing bleeding events. MIC-trt 1, MI performed by mi impute chained, imputation of each
block is conditional on all other blocks and stratified by randomized treatment; MIC-trt 2, MI performed by ice, imputation of each block is
conditional on all other blocks and stratified by randomized treatment; MIC-trt 3, MI performed by mi impute chained, imputation of
each block is conditional on two adjacent blocks and stratified by randomized treatment

5.2 Results

Of the 600 participants, the majority did not have any missing bleeding assessments in any of the six time blocks (Supple-
mentary Table S3). When treating a block as missing if any bleeding assessment was missing (ie, approach 1), 462 (77%)
participants had complete data in all six time blocks, and 9 (2%) had missing data in all six time blocks. The remaining
129 (21%) participants had between one and five incomplete time blocks. The 462 (77%) participants with complete data
were included in the CRA, while Deriv used data from 518 (86%) participants, those with complete data for all blocks, or
at least one nonmissing block in which a bleeding event was recorded.

In approach 2 (ie, treating a block as missing if at least three of the five bleeding assessments were missing), 553 (92%)
participants had complete data in all six time blocks, and 5 (1%) had missing data in all blocks. The rest of the participants
(42; 7%) had between one and five incomplete time blocks. CRA included 553 (92%) participants with complete data;
Deriv was performed on 576 (96%) participants whose endpoint was derivable from the observed time blocks.

Figure 5 presents the difference in proportions of participants who had bleeding events between the two treatment
arms under different methods for handling missing bleeding events. The estimated proportions by randomized treatment
are given in Supplementary Table S4. For MI methods, Monte Carlo errors for the estimated differences are less than 10%
of the corresponding estimated standard errors with 50 imputations.

Apart from Deriv and MI-Deriv, results are generally comparable across methods, which are also similar to the original
TOPPS analysis result (risk difference 0.084, 90% CI 0.017 to 0.152). MI-CRA and MI-Deriv are similar to CRA and Deriv,
respectively, as seen in Section 4. Deriv and MI-Deriv produce the largest estimated differences in both approaches, and
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are the only methods that are statistically significant under a superiority design (in approach 1). These results are in line
with our analytic and simulation results for Deriv and MI-Deriv. MI methods performed at the component level produce
estimates that are more efficient than CRA, with narrower CIs.

6 DISCUSSION

When analyzing a binary composite endpoint with nonsimultaneously missing data in the components, a strategy fre-
quently used in practice is to derive the endpoint from the observed components when possible and discard data from
participants whose endpoint cannot be derived. By exploring the missingness mechanism of the derived endpoint both
mathematically and by simulation, we showed that even when the components are MCAR, the composite endpoint
derived from the observed components can be MNAR. As a result, an analysis of the derived endpoint will be biased.
Omitting from analysis participants with missing data in the components (ie, a CRA) can reduce efficiency when the
components are MCAR, and lead to bias when the components are MAR.

Our simulation study compared a set of methods, readily available in common statistical software packages, for
handling missing values in the components of a binary composite endpoint. MI is a natural approach, and perform-
ing MI at the component level is generally preferable. Imputing the incomplete components when they are MCAR can
improve efficiency compared with a CRA or MI at the composite level (MI-CRA). Under complex MAR mechanisms
of the components, valid inference can be achieved with MI at the component level. By defining a model for the rela-
tions between the components in the data generating mechanism of our simulation design, we demonstrated that the
choice of imputation model for the incomplete components might not be straightforward. The correct choice depends on
the interactions between the components and also with randomized treatment. In the scenarios examined in our sim-
ulation study, MICE with conditional imputation models for the incomplete components, stratified by the randomized
treatment and fully observed component (ie, allowing for the distribution of the incomplete components to differ across
strata defined by values of the randomized treatment and fully observed component), is generally the preferred approach
to other specifications of MI under consideration.

For nonmonotone patterns of missing data, the two standard model-based MI approaches are MICE16 and joint model
imputation;13 theoretical equivalence of these two approaches in certain settings has been explored previously.23,24 While
MICE involves specifying a series of conditional imputation models for the incomplete variables, joint model imputation
is commonly based on the specification of a multivariate normal distribution for the incomplete variables. Here our MI
results were obtained using MICE for the incomplete binary components, but alternatively these components could be
imputed using the joint model imputation approach. When joint model imputation is performed for incomplete binary
variables, one approach is to treat them as continuous in the imputation model, which means the imputed variables
can take values other than 0/1. An additional rounding step could be used, but some approaches to rounding have been
shown to yield bias in certain settings.25,26 Thus, joint model imputation might not be appropriate for the incomplete
binary components considered in our simulation study and the TOPPS trial. In addition, an advantage of MICE is that the
method is more flexible in handling missing values in several variables of different types. Here we considered the setting
where all incomplete variables to be imputed are binary components of the composite endpoint, but in practice we might
also need to impute other incomplete variables which are, for example, continuous, alongside the binary components.

In this article, we explored a binary composite endpoint constructed from two or more binary components. Unlike
the setting investigated by O’Keeffe et al9 (described in Section 1), we examined the scenario where the components are
not always missing (MCAR/MAR) simultaneously, and thus the composite endpoint can be derived from the components
depending on their observed values. This difference in the missingness pattern has implications for whether imputation
should be performed at the composite or component level, as has been shown in our simulation study.

Although we did not consider a composite endpoint that is the time to the first of two or more events, whichever occurs
first (as described in Section 1), our finding about potential bias associated with deriving the endpoint from observed
components can still apply to this type of composite endpoint. MI at the component level is also possible, although it is
potentially more complex since the imputation needs to be performed for both the time to event and event indicator.

In the reanalysis of the TOPPS trial, we chose to split the 30-day period into six time blocks of five days as had been done
in the original analysis of the trial. Other ways of splitting the follow-up period into time blocks could also be considered.
For example, in the most extreme case, we could even consider splitting this period into 30 blocks of one day; however,
given the size of the TOPPS data set, performing MI of 30 components while allowing for the imputation to be stratified
by randomized treatment would likely result in nonconvergence. In fact, even with six blocks of five days, convergence
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was not achieved for one of the methods considered (MIC-trt 1) under approach 1 used for defining the completeness
of these six blocks (Figure 5, Section 5.2). The choice of block size requires practical consideration on the ability to be
unbiased for any given data generating mechanism, while accounting for potential issues related to nonconvergence of
the imputation model for a given sample size and data set.

MI allows for the inclusion of auxiliary variables in the imputation model. Good candidates for auxiliary variables
are those that are predictive of both the missing values and the probability of data being missing.27 Including these aux-
iliary variables in the imputation model will improve the plausibility of the MAR assumption and reduce bias. Auxiliary
variables that are only predictive of the missing values can help to reduce the standard errors of estimates in the anal-
ysis model.27 In the reanalysis of the TOPPS trial, the inclusion of such auxiliary variables (if available) could improve
the performance of MI, although whether additional interaction terms need to be specified in the conditional imputation
models requires further exploration.

The reanalysis of the TOPPS trial suggested that results were relatively robust to the choice of method for handling
missing values in the components (ie, six blocks of five daily bleeding assessments) of the composite endpoint. However,
CRA produced the widest CI and represents a potential waste of resources. Compared with other methods under compar-
ison, Deriv and MI-Deriv produced the largest estimated differences. They were also the only methods that changed the
statistical significance of the results under a superiority design, which might be explained by the bias demonstrated in our
analytic and simulation results. This bias can also negatively impact the results of a noninferiority analysis. In practice,
bias associated with using the derived endpoint can potentially change the conclusion of the trial.

Our results highlighted the need to give careful consideration to the choice of method for handling missing data in the
components when analyzing a composite endpoint. Although superficially attractive, an analysis of the derived endpoint
should generally be avoided or used with extreme caution. Despite the risk of imputation model mis-specification, we
showed that MI at the component level is the preferred approach in this study setting.
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