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A B S T R A C T   

Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane 
mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or 
electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that 
respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS 
channels are known to regulate the initiation, direction, and persistence of cell migration during development 
and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a 
unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In 
this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular 
mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we 
propose the future directions and impact of MS ion channel activity in the field of cell migration.   

1. Introduction 

Living organisms are exposed to a wide array of mechanical cues, 
from universal forces like gravity to microscopically localized stimuli 
such as fluid shear stress in blood vessels (Lu and Kassab, 2011), 
compression by neighbouring tissues (Barriga et al., 2018; Kim et al., 
2017), or extracellular matrix stiffness (Chaudhuri et al., 2020). 
Evolutionarily, living organisms have adapted to the forces surrounding 
them via mechanosensitive proteins within the cell (Cox et al., 2018; 
Fritzsch et al., 2007). Mechanosensitive proteins are essential to detect a 
mechanical cue and convert a mechanical force to a biochemical 
cascade, through the process known as mechanotransduction. An 
important family of mechanosensors are mechanosensitive (MS) ion 
channels, which are pore-forming protein structures localized in the cell 
plasma membrane and the membrane of certain organelles, i.e. the 
endoplasmic reticulum, endosomes, and lysosomes (Dong et al., 2010; 
Dong et al., 2008; Santana et al., 2019). MS ion channels are activated by 
mechanical forces thus allowing ion transport. The majority of MS ion 
channels have high specificity for calcium ions (Ca2+); therefore, they 
are often referred to as stretch-activated Ca2+ channels. MS ion channels 
are an important link between mechanical stimuli and Ca2+ mediated 
signalling and have been described to regulate the initiation, 

persistence, and directionality of cell migration. This review aims to 
provide the reader with a unified understanding of the molecular 
mechanisms by which MS ion channels regulate cell migration. We start 
with a description of the different MS ion channels that have been linked 
to cell migration. We then present a detailed analysis of the pathways 
and mechanisms of action downstream of MS ion channels during 
mechanotransduction in cell migration, with emphasis on Ca2+ medi-
ated signalling. Finally, we outline the emerging MS ion channels and 
discuss the key future directions. 

2. The mechanics of cell migration 

Cell migration is the process where an individual or a group of cells 
(collective migration) move from one location to another. Cell migration 
is an essential process during embryonic development, as cells migrate 
to accommodate tissue rearrangement and can travel long distances to 
the tissues where they will eventually differentiate into specialized cell 
types. Some widely studied examples include Drosophila border cells 
(Prasad et al., 2015), zebrafish lateral line primordium (Olson and 
Nechiporuk, 2018), convergent extension during gastrulation (Tada and 
Heisenberg, 2012), neural crest cells in Xenopus, chick and zebrafish 
(Shellard and Mayor, 2019). Additionally, cells are highly migratory in 
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certain diseases, such as the invasion of malignant cells during cancer 
metastasis (Stuelten et al., 2018), and cells of the immune system that 
travel to a site of bacterial or viral infection (Yamada and Sixt, 2019). 
Cell migration is also one of the mechanisms that cells adopt during 
wound closure after tissue damage (Xiao et al., 2019). 

The initiation of cell migration requires a step of front-rear cell po-
larization. In mesenchymal cell migration, a leading front extends actin- 
based protrusions, these connect to the extracellular matrix (ECM) via 
integrins that provide the traction necessary for cell movement (Fig. 1a). 
Intracellularly, integrins connect to the actin cytoskeleton via focal 
adhesion (FA) proteins. The integrin-FA complex acts as a mechano-
sensor, an increase in the matrix stiffness promotes the activation and 
clustering of integrins and FAs (Wei et al., 2008; Friedland et al., 2009), 
which feedback to the actin filaments inducing re-arrangement of the 
cytoskeleton structure, thereby affecting cell migration (Matthews et al., 
2006). In addition to traction forces, actin retrograde flow accompanied 
by myosin II-induced contraction at the rear of cells generates pushing 
forces to propel the cell forward (Fig. 1a). Actomyosin contraction and 
actin retrograde flow are also essential for integrin-free migration (also 
known as amoeboid migration), where cells are not attached to the ECM 
by FAs (Yolland et al., 2019). In amoeboid migration, actin retrograde 
flow is induced by strong mechanical stimuli, such as confinement, 
instead of integrin/FA mechanotransduction (Liu et al., 2015) and 
membrane blebbing is the main mechanism for cell polarization, instead 
of actin-based protrusions (Fig. 1b). Amoeboid migration is the mech-
anism for the cells of the immune system (Lämmermann et al., 2008) 
and in several cancers (Khoo et al., 2019; Canales Coutiño et al., 2020). 
Additionally, ameboid migration is the most efficient mechanism under 
extreme confinement, i.e. cells travelling in the smallest capillary vessels 
(approximately 4 μm in size) (Au et al., 2016). 

Cells undergoing migration are especially susceptible to many 
different mechanical stimuli, as cells under movement are constantly 
encountering different tissues and mechanical conditions. MS ion 
channels localized across the plasma membrane can be activated by a 
myriad of stimuli during the journey of a migrating cell, including 

compression by nearby tissues (Barriga et al., 2018; Kim et al., 2017), 
stiffness of ECM (Chaudhuri et al., 2020), and shear stress for cells 
migrating in blood vessels (Lu and Kassab, 2011). Furthermore, self- 
generated forces of a migrating cell, due to actomyosin contraction, 
have been shown to activate MS ion channels (Koser et al., 2016). 
Overall, the dynamic nature of the cell migration process and the 
microenvironment surrounding the migrating cells generate mechanical 
cues that can activate MS ion channels and induce a change in local Ca2+

levels. Localized regulation of Ca2+ levels, as observed in Ca2+ flickers, 
directly affects cell migration via Ca2+ dependent proteins (Wei et al., 
2009). As Ca2+ gating channels, MS ion channels from the transient 
potential receptor (TRP) and Piezo families have been shown to play an 
important role in the regulation of cell migration. 

3. TRP superfamily and Piezo MS ion channels 

MS calcium channels were first described in the early 1980s, where 
single ion currents were detected after stimulation of chick embryos 
with a patch-clamp (Guharay and Sachs, 1984). For decades, MS ion 
channels were thought to act exclusively as propagators of electric sig-
nals to the central nervous system. There are now several biological roles 
linked to MS ion channels in non-neuronal cells, including pathways that 
affect several aspects of cell migration. Two families of MS ion channels 
are currently known to regulate cell migration: transient receptor po-
tential (TRP) and Piezo channels. The following sections present an 
overview of these MS ion channels and how they have been linked to 
mechanotransduction. 

3.1. TRP channels 

TRP is a superfamily of ion channels. There is a total of 28 TRP 
mammalian channels, which are categorized into 6 different subfamilies 
based on sequence homology, the subfamilies are TRPC (canonical), 
TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (poly-
cystin) and TRPML (mucolipin). Each TRP channel consists of 6 

Fig. 1. Basic steps of cell migration. (a) Mesen-
chymal cell migration. Cells are attached to the 
extracellular matrix (ECM) via integrins and focal 
adhesions (FA). Actin polymerization at the leading 
edge extends filamentous actin (F-actin) protrusions 
inducing a front-rear polarization. New FA adhesions 
attach the protrusions to the ECM followed by F-actin 
rearward movement, known as actin retrograde flow. 
Disassembly of rear FA and myosin II contraction at 
the back of cell generate the pushing force to move 
the cell forward. (b) Amoeboid cell migration. Cells 
do not form adhesions with the ECM or other cells. 
Under confinement, amoeboid cells form membrane 
blebs, also known as pseudopodia, inducing a front- 
rear polarization. Actin retrograde flow is initiated 
by mechanical forces, such as confinement. Myosin II 
contraction at the back of cell generates the pushing 
force to move the cell forward.   

B. Canales Coutiño and R. Mayor                                                                                                                                                                                                          



Cells & Development xxx (xxxx) xxx

3

transmembrane (TM) domains, with the pore-forming domain localized 
between TM5 and TM6 (Fig. 2a). TRP channels are a very diverse group, 
although they are all permeable to cations, their pattern of expression 
and mode of activation varies greatly, even within members of a specific 
subfamily. For example, members of the TRPV subfamily can be acti-
vated by temperature, chemical stimuli, pH changes, low cation levels 
(store-operated) and mechanical stress; meaning that not all TRPV 
channels are mechanosensitive. Additionally, some TRP channels are 
expressed in a tissue-specific manner, the majority of which are exclu-
sively localized in sensory neurons or mechanically specialized cells 
such as sensory hair cells of the inner ear. Here, we focus on describing 
the TRP channels that are both mechanosensitive and are known to have 
a role in cell migration, these include members of the TRPC and TRPV 
subfamilies. Mechanosensitive TRP channels that have only been stud-
ied in non-migratory cells are beyond the scope of this paper. We direct 
the reader to these reviews that describe the mechanosensitive aspect of 
the TRP superfamily more extensively (Liu and Montell, 2015; O'Neil 
and Heller, 2005). 

3.1.1. Transient receptor potential canonical 
TRPC channels are the founding members of the TRP superfamily, 

first discovered in the retina of Drosophila as photoreceptors (Cosens and 
Manning, 1969). Mammalian TRPC channels were identified based on 
homology to the Drosophila channels (Wes et al., 1995). Mammalian 
TRPC channels are expressed in a wide variety of tissues, unlike the 
Drosophila orthologs that are restricted to the retina cells. There are 
seven TRPC channels in mammalian cells (TRPC1-7). The protein 
structure, determined by single-particle cryogenic electron microscopy 
(cryo-EM), has been obtained for TRPC3-6 (Duan et al., 2019; Tang 

et al., 2018), which has offered insights into the gating mechanism of 
TRPC channels. Structurally, all TRPC channels have four ankyrin re-
peats next to the cytoplasmic N-terminal, which mediate protein-protein 
interaction (Fig. 2a). Multiple coiled-coil domains are localized up-
stream of the TM1 domain. A TRP domain, which has channel gating 
functions, is in the cytoplasmic region next to the TM6 domain. There 
are calmodulin and IP3R binding domains in the C-terminal region 
(Fig. 2a), TRPC channels can be activated by IP3 and inactivated by 
calmodulin when intracellular Ca2+ levels are high, the store operated 
activation of these channels is regulated by these domains. TRPC 
channels can also be activated downstream from mechanosensitive G- 
protein coupled receptors that signal through phospholipase C (PLC). 
TRPC mechanical activation can be mediated directly by membrane 
deformations or indirectly and dependant on mechanosensitive G-pro-
tein coupled receptors. Within the TRPC family TRPC1, TRPC5 and 
TRPC6 are known to be activated by mechanical stimuli (Box 1). 

3.1.2. Transient receptor potential vanilloid 
The TRPV subfamily consists of six members TRPV1–6. TRPV1 was 

the first channel identified within this subfamily and is mainly activated 
by high temperatures. The other TRPV members were categorized based 
on sequence homology to TRPV1. The TRPV subfamily has been 
extensively studied due to the heat sensitivity of its founding member, 
however, several TRPV members were found to be irresponsive to 
temperature. TRPV channels are now known as the TRP family that is 
activated by the widest variety of stimuli, including mechanical stimuli 
such as stretch, changes in osmotic pressure and indirectly by PLC 
release from mechanosensitive G-protein coupled receptors. 

TRPV proteins share high homology with TRPC channels over the 

Fig. 2. MS ion channel families involved in cell 
migration. (a) Transient receptor potential channels 
(TRP). TRP channels form 6 transmembrane (TM) 
domains. TM 1-2 are represented in cyan, TM 3-4 in 
orange and TM 5-6 in magenta. The pore forming 
domain is formed between TM5 and TM6. Each sub-
family of TRP channels contains unique domains in 
the cytoplasmic N- and C- termini. TRPC channels 
have three ankyrin repeats and a coiled-coil domain 
in the N-terminus. A TRP domain, which has gating 
functions, a calmodulin and IP3R binding domains 
are localized in the C-terminus. TRPV channels have 
six ankyrin repeats in the N-terminus. A TRP domain, 
a calmodulin and PIP2 binding domains are localized 
in the C-terminus. (b–b′) Piezo1 channels. (b) Each 
Piezo1 channel has at least 26 TM regions and up to 
40 TM domains. The TM domains form three defined 
structures, known as blades. Each blade is colour 
coded in cyan, orange and magenta for easier repre-
sentation. The carboy-terminal extracellular domain 
(CED) is located directly on top of the pore forming 
domain and is important for ion selectivity (Zhao 
et al., 2016). (b′) Due to its large size, a Piezo1 
channel induces a small curvature to the plasma 
membrane, when force is applied the plasma mem-
brane is stretched, thereby opening the Piezo1 
channel.   
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region spanning the pore-forming domains TM5 and 6. The biggest 
structural difference compared to TRPC is that TRPV channels do not 
have multiple coil coiled domains (Fig. 2a). High-resolution structures 
have been acquired for TRPV1, 2 and 6 using cryo-EM X-ray crystal-
lography (Gao et al., 2016; Liao et al., 2013; Huynh et al., 2016; Zub-
cevic et al., 2016; Saotome et al., 2016). A major leap in the 
understanding of TRPV1 response to different stimuli, reported by Gao 
et al., was the cryo-EM analysis of the TRPV1 structure performed while 
the channel was exposed to different pharmacological drugs, a peptide 
toxin and small vanilloid agonists. Two pore-forming gates support a 
dual gating mechanism, called upper and lower gate. These undergo 
substantial conformational changes associated with gating and were 
found to be key in TRPV1 response to different chemical stimuli (Cao 
et al., 2013). Although TRPV1 is not mechanosensitive, the discoveries 
of the different gating regulatory mechanisms can provide a clue to the 
regulation of mechanosensitive MS ion channels that also respond to 
chemical stimuli. Within the TRPV family, TRPV2 and TRPV4 are 
mechanoproteins, sensitive to hypotonic cell swelling, shear stress, and 
membrane stretch (Box 1). 

3.2. Piezo channels 

The Piezo family of channels is formed by two members, Piezo1 
which is expressed in a wide variety of tissues, and Piezo2 that is 
expressed in sensory neurons that respond to touch (Coste et al., 2010). 
Unlike TRP channels, Piezo channels are exclusively activated by me-
chanical stimuli, this provides an advantage for mechanotransduction 
studies since the biological response can be directly attributed to a 
mechanical cue. Due to their direct mechanosensitivity, Piezo channels 
respond to mechanical cues within milliseconds after applying force 
(Nilius and Honoré, 2012), while signal after TRP channel mechanical 
activation can take up to 30 s (Berrout et al., 2012; Everaerts et al., 2010; 
Nilius et al., 2004). 

High-resolution cryo-electron microscopy structure of the mouse 
Piezo1 (Saotome et al., 2018) depicts that its TM domains form four 
bundles; three TM bundles in a conformation resembling propeller 
blades and one extracellular bundle known as CED (C-terminal extra-
cellular domain) (Fig. 2b). It is predicted that human Piezo1 and Piezo2 
adopt a similar structure. A major structural difference between TRP and 
Piezo channels is the number of TM domains. Each TRP channel has 6 
TM domains, while a single Piezo channel has at least 26 TM regions 

Box 1  

TRPC1 was first identified as mechanosensitive in Xenopus oocytes. Expression of an antisense morpholino for TRPC1 is sufficient to lower the 
ion currents recorded via patch-clamp after applying pressure with a Piezoelectric transducer. Mechanosensitivity of this channel can be rescued 
by the expression of human TRPC1 (Maroto et al., 2005). Since then, TRPC1 has been characterized as an MS ion channel in root ganglion 
neurons (Staaf et al., 2009), mice myocardial tissue (Seth et al., 2009), axons (Kerstein et al., 2013), glioblastoma cells (Huang et al., 2015), 
tumour-associated pancreatic stellate cells (Fels et al., 2016) and bronchial epithelial cells (Li et al., 2019; Wang et al., 2020). Additionally, 
Mammalian TRP proteins can be found as heterocomplexes. Heterochannels formed by the binding of TRPC1 to TRPC5 leads to the generation of 
novel channels with biophysical properties distinct from those of TRPC1 and TRPC5 individual channels (Strübing et al., 2001). TRPC1 can also 
form complexes with TRPP2, TRPV4 and TRPC4 (Maroto et al., 2005; Chen and Barritt, 2003). The mechanical sensibility of TRP hetero-
complexes formed by mechanosensitive and non-mechanosensitive TRP proteins, i.e. TRPC1 and TRPC4, is yet to be studied and might provide a 
better understanding of the properties and mechanisms for TRP channel regulation. Heterochannels formed between TRP proteins confer an 
additional layer of complexity to the role of TRP channels in mechanotransduction. 

TRPC5 is the most recent TRPC channel linked to mechanosenstivity. TRPC5 channels can be activated by membrane stretching or osmotic 
pressure in HEK293 cells (Gomis et al., 2008; Shen et al., 2015). The TRPC5 channel is the only TRP channel specifically localized in the apical 
membrane of airway epithelial cells in rodents and acts as an important mechanotransductor of osmotic pressure (Lembrechts et al., 2012). 
TRPC5 channels can also regulate vascular tone (Liang et al., 2019) and angiogenesis in mice (Zhu et al., 2019). TRPC5 channels, like the other 
members of the subfamily, can be activated in a PLC dependent manner. However, unlike other TRPC channels, TRPC5 is insensitive to IP3 
(Venkatachalam et al., 2003). These small differences in channel structure and response to stimuli are an opportunity for further research to 
understand the specific biological functions related to each MS ion channel. 

TRPC6 has been identified as mechanosensitive in myocyte muscular cells in response to intravascular pressure in arteries (Welsh et al., 2002). 
The function of TRPC6 is controlled by both tension and curvature of the surrounding lipid bilayer leading to an increase of Ca2+ influx and 
elevated Na+ levels (Dyachenko et al., 2009). Unlike other TRPC channels, the mechanical activation of TRPC6 in smooth muscle cells was found 
to be independent of chemical stimuli, including the TRPC activator, PLC (Spassova et al., 2006). TRPC6 has only been identified as mecha-
nosensitive in vascular smooth muscle cells although it is expressed in a wide variety of tissues. This raises the question of whether TRPC6 
confers mechanosensitivity to other cell types. Additionally, TRPC6 channels can form heteromers with TRPC3 and TRPC7 (Lepage et al., 2006), 
thereby they have the potential to form a large number of unique ion channels. 

TRPV2 can be activated by cell swelling and membrane stretch in vascular smooth muscle cells, leading to elevated intracellular Ca2+ levels 
(Muraki et al., 2003). Expression of TRPV2 in hamster ovary K1 cells, which are otherwise non-mechanosensitive, confers response to membrane 
stress through the patch-clamp technique (Muraki et al., 2003). Additionally, TRPV2 acts as a mechanosensor in mice smooth muscle cells in 
response to osmotic stress (Iwata et al., 2009). TRPV2 is expressed in several cell types and is required for directional migration of macrophages 
(Link et al., 2010), prostate tumours (Monet et al., 2010), bladder cancer (Liu and Wang, 2013) and oesophageal squamous cell carcinoma 
(Kudou et al., 2019). Whether TRPV2 acts as a mechanosensor in these cells is yet to be studied and could provide a better understanding of the 
mechanism of action of TRPV2. 

TRPV4 is the most characterized TRP member in cell migration. TRPV4 is associated with the response to osmotic pressure (Liedtke, 2005; 
Mamenko et al., 2015) and shear stress (Zhang and Gutterman, 2011; Köhler and Hoyer, 2007). The mechanosensitive nature of TRPV4 was 
found to be dependent on the actin cytoskeleton directly interacting with ankyrin repeats located in the N-terminus of TRPV4. Deletion of the 
ankyrin repeat domain dramatically impairs TRPV4 mechanosensitivity by disrupting its association with the cytoskeleton, which possibly 
provides a mechanical link for gating (Liedtke et al., 2000). Additionally, TRPV4 high expression is linked to increased cell migration in 
endothelial cells (Fiorio Pla et al., 2012), pulmonary smooth muscle cells (Martin et al., 2012), breast cancer cells (Lee et al., 2016), glioblastoma 
(Yang et al., 2020; Ou-Yang et al., 2018).  
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(Fig. 2b) (Saotome et al., 2018) and bioinformatic analysis of protein 
structure predicts that Piezo1 can have up to 40 TM domains (Coste 
et al., 2015). Due to the large size of Piezo channels, a local concave 
curvature of the plasma membrane is induced around Piezo1 (Fig. 2b); 
upon membrane stretch, the local Piezo curvature rearranges to the 
convex form of the plasma membrane and the pore-forming domain is 
exposed, activating the channel (Zhao et al., 2018) (Fig. 2b). 

Piezo channels have been activated in vitro by a variety of me-
chanical stimulus including stretch by substrate deformation (Koser 
et al., 2016), severe stress through a shear flow (Ranade et al., 2014), 
localized indentation with a blunt probe (Poole et al., 2014), micro-
channel confinement (Hung et al., 2016) and microscopic stimulation 
with magnetic nanoparticles (Wu et al., 2016). Piezo1 is essential for 
development, a global Piezo knock-out in mice is lethal mainly through 
failure of vascular development (Ranade et al., 2014; Li et al., 2014), 
indicating the vital role mechanosensors play in cell biology and the 
importance of local regulation of Ca2+ levels. Altered Piezo1 expression 
is associated with several aggressive cancers including breast cancer (Yu 
et al., 2020), gliomas (Zhou et al., 2020; Qu et al., 2020) and squamous 
cell carcinoma (Hasegawa et al., 2021). 

4. MS ion channels in cell migration – mechanisms of action 

MS ion channels have been linked to several biological processes that 
directly affect cell migration. Ca2+-dependent processes that lead to 
actin remodelling, myosin II contractility, maintenance of persistence, 
the establishment of directionality, binding to and integrity of the ECM 
are all regulated by MS ion channels. Moreover, MS ion channels control 
changes in gene expression that affect important cell migration pro-
cesses such as epithelial to mesenchymal transition (EMT). In this sec-
tion, we analyse the role of each MS ion channel in cell migration, 
highlighting the similarities in the mechanisms of action between 
different MS ion channels, which might provide strong evidence for a 
unified mechanism of action. We also discuss antagonistic effects be-
tween MS ion channels, which show the complexity of MS ion channel- 
mediated mechanotransduction. 

4.1. Actomyosin regulation 

Actin cytoskeleton remodelling is key in the process of cell migra-
tion. Changes to the actin-based structures directly translate to cell 
shape modifications, and to the formation of actin-rich structures such 
as lamellipodia and filopodial protrusions, which are essential for 
mesenchymal cell movement. Actin stress fibres that connect to focal 
adhesions provide a link between mechanosensors and the cytoskeleton 
and are required for integrin-based migration (Seetharaman and 
Etienne-Manneville, 2020). Actomyosin contractility at the back of 
migrating cells and actin retrograde flow is observed in all modes of cell 
migration and provides the pushing force for cell movement (Yolland 
et al., 2019). Tight regulation of the formation and dynamics of the actin 
structures is essential for cell migration. One of the most prominent 
mechanisms of action for MS ion channels in regulating the behaviour of 
migrating cells is linked to actin cytoskeleton rearrangement, protrusion 
dynamics and interaction of MS ion channels with actin-binding 
proteins. 

4.1.1. Actin remodelling 
Changes in cell shape and an increase in actin remodelling occur 

after TRPV4 and Piezo1 chemical activation, by 4α-PDD and Yoda1 
respectively (Martin et al., 2012; Chubinskiy-Nadezhdin et al., 2019; Lee 
et al., 2016). The mechanism of action appears to involve direct inter-
action of TRPV4 and Piezo1 with actin fibres and with actin-binding 
proteins. TRPV4 can induce a re-arrangement of the microtubule 
network by physically interacting with tubulin in smooth muscle cells, 
leading to increased cell migration (Martin et al., 2012). In contrast, 
Piezo1 activation leads to increased stress fibre formation and a more 

stable cytoskeleton structure, which leads to decreased cell migration in 
fibroblasts (Chubinskiy-Nadezhdin et al., 2019). While both Piezo1 and 
TRPV4 have been linked to roles in regulating actin structures and 
modifying cell shape, their function appears to have high specificity and 
the overall effect on cell migration can drastically change depending on 
the specific actin fibres interacting with the MS ion channel. Further-
more, TRPV4 can prevent phosphorylation of the ERM actin-binding 
proteins (ezrin, radixin and moesin) in breast cancer cells, TRPV4 
mediated decrease in ERM phosphorylation is accompanied by a switch 
in the mechanism of cell migration from a mesenchymal mode based on 
actin protrusions to amoeboid with high membrane blebbing (Lee et al., 
2016). 

4.1.2. Regulation of the small GTPase Rac1 
Actin-based protrusions can be regulated by MS ion channels by 

regulating the activity of the small GTPase Rac1. Immunostaining and 
FRET experiments in keratinocytes and endothelial cells show co- 
localization between TRPV4 and filamentous actin (F-actin) specif-
ically in highly dynamic actin structures, such as filopodia and lamel-
lipodia (Becker et al., 2009; Fiorio Pla et al., 2012; Yang et al., 2020). In 
GN11 cells, TRPV4 activation leads to a retraction of the lamellipodia 
and a decrease in migratory behaviour and cells migrate in a slow and 
non-directional manner (Zaninetti et al., 2011). TRPC1 can also nega-
tively regulate protrusion dynamics, TRPC1 KD in MDCK cells leads to 
accelerated cell lamellipodial protrusions and cell migration (Fabian 
et al., 2012). 

The mechanism of protrusion regulation appears to be linked to MS 
ion channel direct and indirect activation of the small GTPase Rac1. A 
downregulation of Piezo1 or TRPC5 correlates with the accumulation of 
the active form of Rac1 in gastric cancer and podocyte cells respectively 
(Zhang et al., 2018; Tian et al., 2010). TRPC5 is found to physically 
interact with Rac1 in podocyte cells and the expression of a dominant- 
negative form of Rac1 in TRPC5 KD cells can rescue the otherwise 
inhibited cell migration (Tian et al., 2010), suggesting that Rac1 acts 
downstream of TRPC5. TRPV4 activation in glioblastoma cells is found 
to promote the activation of Rac1 (Ou-Yang et al., 2018). MS ion 
channels could modulate Rac1 activity directly by increasing Ca2+ entry 
to the cell, as Rac1 activity has been shown to aberrantly increase by 
high and prolonged Ca2+ levels (Hayashi et al., 2018). Alternatively, 
Rac1 can be activated indirectly by MS ion channels through the phos-
phoinositide 3-kinase (PI3K) signalling pathway; TRPC6 and TRPC1 
have been found to affect PI3K activity (Chaudhuri et al., 2016; Zhang 
et al., 2020). PI3K signalling has been linked to several biological pro-
cesses including cell survival, migration and protein synthesis. Among 
the PI3K effectors are several Rac-GEFs (HCE et al., 2003), including P- 
Rex1, SWAP-70, Vav1 and Sos1 (Shinohara et al., 2002; Han et al., 1998; 
Das et al., 2000; Innocenti et al., 2003); which mediate the transition 
between the inactive GDP-bound and the active GTP-bound states of 
Rac1 (Fig. 3a). 

MS ion channels can additionally affect PI3K through Akt, the PI3K 
canonical effector. Akt expression and activity has been linked to cell 
migration via several different mechanisms. Akt can mediate the phos-
phorylation of girdin, an actin-binding protein that promotes stress fibre 
formation and lamellipodia, this can represent an additional mechanism 
for MS ion channel regulation of actin structures. Akt1 signalling also 
enhances matrix metalloproteinase-2 (MMP2) activity in mouse mam-
mary epithelial cells. Additionally, PI3K activation leads to the phos-
phorylation of the 3′-hydroxyl group of the inositol ring of 
phosphatidylinositol-4,5-bisphosphate (PIP2) to generate 
phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 is a critical lipid 
second messenger that recruits cytosolic proteins containing pleckstrin 
homology (PH) domains to the plasma membrane to promote either 
their activation or co-localization with other effector proteins. TRPV 
channels have a PIP2 binding domain in the C-terminal region (Fig. 2b). 
Recruitment of TRPV4 to pseudopodia is dependent on the activation of 
the PI3K/AKT pathway (Gambade et al., 2016) and the translocation of 
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TRPC6 to the cell membrane is found to be dependent on PI3K activation 
to PIP3 (Chaudhuri et al., 2016). 

The effect of MS ion channels in AKT activity has been explained by 
the calcium-dependent nature of AKT. TRPV4 in metastatic breast can-
cer was linked to cell migration by a calcium dependent regulation of 
AKT (Lee et al., 2017). Downregulation of Piezo1 that considerably 
suppressed Ca2+ signal increments, inhibits the phosphorylation of Akt 
in human prostate malignant tumour tissues, preventing Akt activation 
(Han et al., 2019). Additionally, silencing of TRPC1, TRPV2 and TRPV4 
leads to reduced Akt gene expression (Che et al., 2016; Chung et al., 
2015). However, the mechanism that links MS ion channels with 
changes in AKT gene expression levels is not understood. It is note-
worthy that MS ion channels have been linked to changes in gene 
expression of additional genes, not only AKT. This will be discussed in 
Section 4.4. 

4.1.3. Regulation of small GTPase RhoA 
The main forces that propel cell migration are driven by the binding 

of myosin II to actin filaments, specific myosin II localization at the back 
of the migrating cells drives the contractility to push the cells forward. 
Myosin II localization and activity regulation is crucial for cell migra-
tion. The tensional force of myosin II is regulated by the phosphorylation 
of the myosin regulatory light chain (MRLC), which is partly regulated 

by ROCK, an effector of the small GTPase RhoA. Regulation of RhoA 
activity, and therefore of myosin II, has been linked to various MS ion 
channels. TRPC6 forms a molecular complex with RhoA in fibroblasts 
and kidney podocytes (Tian et al., 2010). TRPC6-mediated Ca2+ influx 
increases RhoA activity, via the calcium dependent Pyk2, leading to 
ubiquitous myosin II activation within the cell thereby inhibiting cell 
migration (Tian et al., 2010) (Fig. 3b). RhoA activity also has a positive 
correlation with Piezo1 activation, total RhoA is decreased in Piezo1 
knockdown gastric cancer cells (Zhang et al., 2018). In contrast, TRPV4 
has the opposite effect on RhoA activity. Loss of TRPV4 leads to aberrant 
mechanosensitivity and a significant increase in basal Rho activity in 
endothelial cells (Adapala et al., 2016; Thoppil et al., 2016). 

Most of the evidence suggests RhoA as a downstream effector of MS 
ion channels; however, the reverse has also been observed, where RhoA 
activity regulates the gating upstream of TRPC1. RhoA physically as-
sociates with TRPC1 to form a RhoA/TRPC1 complex. Inactivation of 
RhoA can reduce RhoA/TRPC1 complexes and inhibit Ca2+ influx, 
which is paralleled by an inhibition of cell migration (Chung et al., 
2015), raising the question of whether TRPC1 activation requires RhoA 
activity. The myosin II driven forces and the cytoskeletal reorganization 
required for the initiation and maintenance of cell migration induce self- 
generated forces that feedback into the cytoskeleton leading to MS 
channel activation. Piezo1 can be activated by myosin II-driven intrinsic 

Fig. 3. Role of MS ion channels in cell migration. (a) Actin protrusions. MS ion channels can regulate the extension of actin-based protrusions through PI3K sig-
nalling. Ca2+ binding to PI3K leads to the activation of several Rac1-GEFs, including P-Rex1 and SWAP-70, Vav1, Sos1. Rac1-GEFs mediate the transition from 
inactive Rac1-GDP to Rac1-GTP, leading to actin polymerization and protrusion extension. (b) RhoA activation. The Ca2+ sensitive Pyk2 kinase is activated after MS 
ion channel opening. Pyk2 activates PDZ-RhoGEF which mediates the transition from inactive Rho-GDP to Rho-GTP, leading to Myosin II phosphorylation. Global 
Myosin II contraction leads to inhibition of cell migration. (c) Chemotaxis. The presence of a chemoattractant agent leads to re-localization of TRPC1 and TRPC6 MS 
ion channels to the direction of the chemoattractant signal. Localized Ca2+ can regulate actin remodelling via PI3K or induce Ca2+ flickers at the leading edge of the 
cell, promoting directional cell migration. (d) Focal adhesion (FA) disassembly. MS ion channels regulate FA disassembly via calpain, a Ca2+ dependant protease that 
mediates FA degradation. Restricted calpain activity at the rear of the cell mediates specific FA disassembly at the back of the cell, promoting cell migration. (e) Yap/ 
Taz nuclear localization. Piezo1 activation is correlated with Yap translocation from the cytoplasm to the nucleus, leading to Yap mediated gene transcription. 
However, the biochemical signals downstream of Piezo1 have not been identified yet. Dashed line represents unknown signalling proteins. 
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forces alone (Koser et al., 2016). This feedback loop could be the reason 
for the requirement of RhoA for TRPC1 activation and possibly of other 
MS ion channels. 

4.2. Chemotaxis 

Initiation and direction of cell migration are guided by specific me-
chanical and chemical cues that the cells can detect and follow. Within 
the chemical cues, the process of chemotaxis describes the movement of 
cells towards an increasing gradient of a specific chemical signal, thus 
establishing the directionality of cell movement. Chemotaxis is observed 
in migrating cells both in development and disease, notable examples 
include immune cells migrating towards bacterial chemoattractants 
during infection (Sokol and Luster, 2015), neural crest collective cell 
migration in the direction of SDF1 (Shellard and Mayor, 2016) and fi-
broblasts in response to platelet-derived growth factor (PDGF) during 
wound healing. (Schneider et al., 2010). The process of chemotaxis 
begins when a receptor detects the specific ligand, the cell polarizes 
actin protrusions in the direction of the increasing chemoattractant 
concentration and cell migration is directed towards the target tissue. 
Several MS ion channels have been shown to respond to gradients of 
specific chemoattractants (Table 1). Furthermore, chemotaxis is blocked 
when MS ion channels are chemically or genetically inhibited (Fabian 
et al., 2012; Damann et al., 2009), suggesting an essential role for MS ion 
channels in directional cell migration through chemotaxis. 

In terms of a mechanism of action, the subcellular localization of MS 
ion channels is affected by chemoattractant presence. Immunocyto-
chemistry of TRPC1 in the absence of PDGF shows the channel is 
distributed across the plasma membrane of glioblastoma cells. In 
contrast, when a gradient of PDGF is added, TRPC1 translocate to the 
protrusions at the leading edge of the cell (Lepannetier et al., 2016) 
(Fig. 3c). The mechanism for TRPC1 translocation was found to be 
dependent on PI3K mediated transport (Lepannetier et al., 2016). 
TRPC6 role in chemotaxis is also linked to PI3K signalling, specifically, 
TRPC6 can affect phosphorylation of AKT and MAPK downstream of 
activation via the CXCR2 receptor and lead to altered remodelling of 
actin fibres (Lindemann et al., 2013). 

MS ion channels, as residents of the very dynamic plasma membrane, 
are also subject to rearrangements of the lipid bilayer. Decreased 
membrane fluidity reduces TRPV2 translocation to protrusions and cells 
cannot respond to chemoattractant signals (Gambade et al., 2016). 
TRPC1 channel translocation to the protrusions at the leading edge has 
been attributed to lipid raft proteins. TRPC1 was shown to co-localize 
with lipid raft proteins caveolin-1 and β-cholera toxin (Bomben et al., 
2011; Huang et al., 2015). However, in vivo studies of lipid rafts have 
not been carried yet and there is high controversy as to whether lipid 
rafts are an artefact of in vitro studies. Whether TRPC1 localization in 
response to a chemoattractant is affected by PI3K signalling, cell 
membrane microdomain or other mechanisms is still not fully under-
stood. Ca2+ signalling can represent a mechanism for the role of MS ion 
channels in chemotaxis, Ca2+ levels are increased at the leading edge of 

the cell during cell migration and local calcium changes at the site of 
chemotactic stimulation are essential for inducing cell polarization 
(Collins and Meyer, 2009). MS ion channel translocation to the leading 
edge of the cell could be required to induce the local Ca2+ increase 
during chemotaxis. Several questions are still open about the role of MS 
ion channels in chemotaxis; are MS ion channels responsible for calcium 
increase at the protrusions during cell migration? What are the me-
chanical consequences of MS ion channels localizing to the leading edge 
of the cells? To what extent is chemotaxis affected/influenced by me-
chanical stimuli? MS ion channels represent an exciting opening of 
possibilities joining biomechanics, calcium signalling and complex 
biological processes. 

4.3. Integrins, focal adhesions and MMP activity 

MS ion channels can additionally regulate cell migration by modi-
fying the interactions of cells with the ECM. MS ion channels can 
regulate integrins, focal adhesions (FA) and matrix metalloproteinases 
(MMPs). As mentioned, the integrin/FA complex is an important cell 
mechanosensor. The mechanical strain received by β1 integrin and FA 
proteins can be transmitted to MS ion channels localized at actin pro-
trusions and induce their activation (Matthews et al., 2010). However, 
MS ion channels are also known to regulate integrin disassembly. Piezo1 
activity causes a switch to an integrin-free mode of cell migration in 
small cell lung cancer (SCLC) (McHugh et al., 2012) and decreased 
integrin β1 protein levels are also detected in Piezo1-knockdown cells 
(Yang et al., 2014). FA proteins are also affected by MS ion channel 
activity through a mechanism of action that appears to be dependent on 
the activity of calpain, a calcium-sensitive protease implicated in FA 
disassembly (Fig. 3d). Disrupting Ca2+ influx via TRPC1, Piezo2 or 
TRPV4 KD reduces calpain activity and consequently, larger focal ad-
hesions are seen in TRPV4 KD HEK293 cells, T47D and U87 cells (Schaar 
et al., 2016; Mrkonjić et al., 2015; Pardo-Pastor et al., 2018). 

MS ion channel activity can also mediate the degradation and 
composition of the ECM. Matrix composition can be altered by blockade 
or knockdown of TRPC6, which leads to decreased expression of the 
ECM protein fibronectin (Yang et al., 2017). Silencing of TRPV2 by small 
interfering RNA diminishes the expression of degrading enzymes MMP2, 
MMP9, and cathepsin B and decreases the formation of metastasis in PC3 
prostate tumours established in mice xenografts and bladder tumour 
development and progression (Monet et al., 2010; Liu and Wang, 2013). 
Additionally, Piezo1 activation leads to an increase in the expression of 
multiple ECM remodelling proteins in glioblastoma cells, including 
TIMP1, MMP2, MMP9 (Zhou et al., 2020). Overall, the role of MS ion 
channel in regulating the integrity of the ECM is linked to the regulation 
of the expression of ECM regulating proteins, highlighting a critical role 
for MS ion channels in gene expression control. 

4.4. Gene expression 

The extent of the role of MS ion channels in cell migration extends 
beyond the cytoplasm and cytoskeleton of the cell. As mentioned in 
previous sections, signalling downstream of MS channels can lead to 
transcriptional regulation of genes that are essential for cell migration. 
Microarray analysis of endothelial progenitor cells showed that 13 genes 
had altered levels of expression following TRPC1 silencing (Kuang et al., 
2012). Regulation of gene expression through MS ion channels is indi-
rect, meaning that the mechanical stimuli have not been directly asso-
ciated with changes in gene expression. Instead, gene expression 
alterations mediated by Piezo1 channels are driven by interaction with 
mechanosensitive transcription factors such as Yap/Taz (yes-associated 
protein/transcriptional coactivator with PDZ-binding motif) (Pathak 
et al., 2014) (Fig. 3e). Moreover, TRPV4 inhibition leads to softening of 
the ECM, which prevents nuclear translocation of Yap/Taz (Sharma 
et al., 2019), leading to misregulation of Yap associated genes, including 
Wnt/β-catenin signalling-related genes which can also be 

Table 1 
MS ion channels as chemoattractant receptors.  

MS ion 
channel 

Chemoattractant Cell type Reference 

TRPC1 EGF Glioblastoma Cuddapah et al., 2013;  
Bomben et al., 2011 

PDGF Glioblastoma Lepannetier et al., 2016 
FGF-2 MDCK Fabian et al., 2011 

TRPC6 CXCR2 Neutrophils Lindemann et al., 2013 
CXCL1 Neutrophils Lindemann et al., 2020 
CXCL2 Neutrophils Damann et al., 2009 

TRPV2 FCS Macrophages Link et al., 2010 
CSF Macrophages Link et al., 2010 

TRPV4 PAF Neutrophils Yin et al., 2016  
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downregulated by TRPV2 and Piezo2 depletion (Kudou et al., 2019; 
Yang et al., 2016). 

A common mechanism that is affected by altered MS ion channel 
activity is epithelial to mesenchymal transition (EMT), mainly via 
regulation of the ERK signalling pathway. TRPC1 inhibition attenuates 
the TGF-β1-induced EMT in gastric cancer by suppressing Ras/Raf1/ 
ERK signal transduction (Ge et al., 2018). Pharmacological inhibition of 
TRPV4 channels can also repress TGFβ1 and p-ERK expression and block 
the EMT process in HCC cells and mouse primary epidermal keratino-
cytes in vitro (Sharma et al., 2019; Fang et al., 2018). In colon cancer 
cells, overexpression of TRPC5 causes decreased E-cadherin, and 
increased mesenchymal biomarker expression, thus promoting mesen-
chymal cell migration (Chen et al., 2017). 

5. Conclusions and future directions 

Mechanotransduction is an essential albeit poorly understood pro-
cess. MS ion channels provide a substantial understanding of how me-
chanical forces transform to biological processes, as MS ion channels are 
involved in the regulation of several cell migration mechanisms via Ca2+

dependent processes and less understood mechanisms, like the regula-
tion of gene expression. While the field is growing and there is sub-
stantial evidence that links MS ion channels to cell migration, there are 
still several questions that need to be addressed. A mechanism of action 
for the MS ion channel-mediated regulation of gene expression is ur-
gently needed. While Piezo1 has been linked to the activity of the 
transcription factors Yap/Taz (Pathak et al., 2014), it is unknown 
whether Piezo1 might regulate gene expression in a Yap/Taz indepen-
dent manner. Furthermore, there is still no clear mechanism of action for 
TRP channels in the regulation of gene expression. Additionally, MS ion 
channels are found localized in the membrane of different organelles, 
such as endoplasmic reticulum, lysosomes and other vesicles (Zhang 
et al., 2017; Abe and Puertollano, 2011); however, the role of MS ion 
channels in the cell organelles remains very poorly studied and it not 
known if MS ion channel intracellular signalling contributes to the 
regulation of cell migration. 

Moreover, the mechanism for the mechanical activation of TRP 
channels is not well established. Identifying the mechanogating mech-
anism for TRP channels is a priority, as there is still controversy as to 
whether TRP channels are mechanosensitive. Furthermore, TRP chan-
nels are known to be activated by several chemical and mechanical 
signals, and it is imperative to understand how TRP channels respond to 
simultaneous signals within the cell. Additionally, most TRP channels 
have been categorized as non-mechanosensitive, yet all TRP channels 
are highly similar in sequence, motifs and domains; understanding what 
protein conformations, or what specific motifs confer mechanosensi-
tivity to the specific MS TRP channels could provide a frame of reference 
for identifying completely uncharacterized MS ion channels. Finally, 
some MS ion channels are only beginning to be associated with either 
mechanotransduction or cell migration, such as TREK, P2X7 and Elkin1 
(Patkunarajah et al., 2020; Sauter et al., 2016; Zhu et al., 2021). Further 
studies of emerging MS ion channels will be essential to consolidate their 
role in cell migration. Overall, the role of MS ion channels in cell 
migration is a rapidly growing field that provides a fascinating under-
standing of the regulation of complex processes such as the role of me-
chanics in cell biology. 
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