Supp. Figure 1. Conceptual framework of colocalization analysis. Approaches solely taking individual SNP association parameters into account may lead to false results in two ways (panels 1 and 2). A SNP associated with a trait A may be falsely associated with the general factor of Trait A and B because a causal SNP of Trait B is in Linkage disequilibrium (LD) with the SNP of Trait A (Panel 1). The general factor might miss some SNPs that are in fact associated with both traits. For example, a shared causal SNP strongly associated with Trait A but less strongly associated with Trait B may erroneously not be linked to the general factor (Panel 2).


Supp. Figure 2. Region around rs6047310 (250kb around the SNP) in ADHD (upper figure) and ASD (lower figure) GWAS $(\mathrm{chr}=20)$. The genes INSM1 and PAXI are not shown because they were mapped to rs 6047310 using Chromatin interaction mapping which can involve longrange interactions.


Supp. Figure 3. Region around rs6584649 and rs 11591402 (250kb around the SNP) in ADHD (upper figure) and ASD (lower figure) GWAS $(\mathrm{chr}=10)$.


SORCS3 $\rightarrow$

Supp. Figure 4. Region around rs2391769 (250kb around the SNP) in ADHD (upper figure) and ASD (lower figure) GWAS (chr =1). The gene DPYD is not shown because it was mapped to rs2391769 using Chromatin interaction mapping which can involve long-range interactions.


Supp. Figure 5. Region around rs 1222063 (250kb around the SNP) in ADHD (upper figure) and ASD (lower figure) GWAS (chr =1).


Supp. Figure 6. Region around rs4916723 (250kb around the SNP) in ADHD (upper figure) and ASD (lower figure) GWAS (chr = 5).

Supp. Figure 7. Region around rs325506 (250kb around the SNP) in ADHD (upper figure) and ASD (lower figure) GWAS (chr =5).


Supp. Figure 8. Region around rs7318041 (250kb around the SNP) in ADHD (upper figure) and ASD (lower figure) GWAS $(\mathrm{chr}=13)$.

[^0]Supp. Figure 9. Tissue specific expression patterns (average expression per label ( $\log 2$ transformed)) using GTEx v6 RNA-seq data (FUMA GENE2FUNC) of the SNPs (A) shared by ASD and ADHD and those that are specific to (B) ASD and (C) ADHD. Gray bars correspond to the significance after FDR correction.

(A) Shared by ASD and ADHD
(B) Specific to ASD
(C) Specific to ADHD

Supp. Figure 10. Temporal expression in the brain (average expression per label; $\log 2$ transformed p-values for the enrichment of Differentially Expressed Gene (DEG); based on 11 general developmental stages of brain samples from the BrainSpan data; FUMA GENE2FUNC) of genes that are (A) shared by ASD and ADHD and those that are specific to (B) ASD and (C) ADHD.


Supp. Figure 11. Leave-one-out sensitivity analysis of the MR analysis (IVW = Inverse Variance Weighted method). (A) The relationship between ASD as the exposure ( $p$-value at 1e-6) and ADHD as the outcome. (B) The causal relationship between ADHD as the exposure ( $p$-value at $1 \mathrm{e}-6$ ) and ASD as the outcome.
(A) MR-IVW: ASD on ADHD

(B) MR-IVW: ADHD on ASD


Supp. Figure 12. Funnel plot of MR causal estimates against their precision (inverse of standard error) when examining (A) the relationship between ASD as the exposure ( $p$-value at $1 \mathrm{e}-6$ ) and ADHD as the outcome and (B) the relationship between ADHD as the exposure ( $p$ value at $1 \mathrm{e}-6$ ) and ASD as the outcome. Each data point corresponds to an individual genetic variant. The x axis corresponds to the coefficient of the genetic variant-outcome association divided by the coefficient of the genetic variant-exposure association.
(A) MR-IVW: ASD on ADHD

(B) MR-IVW: ADHD on ASD


Supp. Figure 13. Log-likelihood from the contamination mixture method as a function of the causal estimate for (A) ASD on ADHD and (B) ADHD on ASD.
(A) MR-IVW: ASD on ADHD

(B) MR-IVW: ADHD on ASD


Supp. Figure 14. Bidirectional MR using multiple MR methods after excluding SNPs shared by ASD and ADHD. The left scatter plot depicts the relationship between the genetic instruments indexing ASD (p-value at 1e-6) and ADHD as the outcome (left graphs). The right scatter plot depicts the relationship between genetic instruments indexing ADHD ( p -value at $1 \mathrm{e}-6)$ and ASD as the outcome. Upper graphs: of SNP regression coefficients quantifying the level of association using different methods.


## Supp. Table 1. FUMA analysis of SNPs shared by ASD and ADHD.

| ensg | symbol | CHR | $\begin{gathered} \begin{array}{c} \text { Positional } \\ \text { mapping } \end{array} \\ \text { posMapMaxCADD } \end{gathered}$ | $\begin{gathered} \text { EQTL } \\ \text { mapping } \\ \text { eqtlMapSNPs } \end{gathered}$ | Chromatin interaction mapping | SNP | Previsously reported by Genomic SEM studies | Previsously reported by GWAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENSG00000117569 | PTBP2 | 1 |  |  | Adult_Cortex | rs2391769 |  | Grove et al. |
| ENSG00000188641 | DPYD | 1 |  |  | Fetal_Cortex | rs2391769 | Lee et al. |  |
| ENSG00000109323 | MANBA | 4 |  | 37 |  | rs227378 |  | Grove et al. |
| ENSG00000156395 | SORCS3 | 10 | 13.2 |  | Adult_Cortex | rs6584649 | Lee et al. | Demontis et al. |
| ENSG00000173404 | INSM1 | 20 |  |  | Adult_Cortex | rs6047310 |  |  |
| ENSG00000088930 | XRN2 | 20 | 13.49 |  | Adult_Cortex:Fetal_Cortex | rs6047310 | Schork et al. | Grove et al. |
| ENSG00000125816 | NKX2-4 | 20 |  |  | Fetal_Cortex | rs6047310 |  | Grove et al. |
| ENSG00000125813 | PAX1 | 20 |  |  | Fetal_Cortex | rs6047310 |  |  |

Supp. Table 2. FUMA analysis of SNPs specific to ASD.

| ensg | symbol | CHR | Positional <br> mapping <br> posMapMaxCADD | EQTL <br> mapping <br> eqtlMapSNPs | Chromatin <br> interaction <br> mapping | IndSigSNPs | Reported by <br> Grove et al. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENSG00000088930 | XRN2 | 20 | 12.87 |  | Fetal_Cortex | rs910805 | X |
| ENSG00000125816 | NKX2-4 | 20 |  |  | Fetal_Cortex | rs910805 | X |

Supp. Table 3. FUMA analysis of SNPs specific to ADHD.

| ensg | symbol | CHR | $\begin{gathered} \text { Positional } \\ \text { mapping } \\ \text { posMapMaxCADD } \end{gathered}$ | EQTL mapping eqtlMapSNPs | Chromatin interaction mapping | IndSigSNPs | Reported by Demontis at al. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENSG00000066056 | ARTN | 1 |  | 114 | Adult_Cortex:Fetal_Cortex | rs2527776;rs549845;rs17531412;rs113551349;rs17531412:rs2527776:rs549845 | X |
| ENSG00000066185 | B4GALT2 | 1 | 16 |  |  | rs2527776 | X |
| ENSG00000066322 | C1orf210 | 1 |  |  | Adult_Cortex | rs2842198:rs549845:rs17531412:rs2527776 |  |
| ENSG00000117394 | C1orf228 | 1 |  |  | Fetal_Cortex | rs2842198:rs17531412:rs2527776 |  |
| ENSG00000117395 | CCDC23 | 1 |  |  | Fetal_Cortex | rs2842198 |  |
| ENSG00000117399 | CCDC24 | 1 | 16 |  | Adult_Cortex:Fetal_Cortex | rs2527776;rs17531412 | X |
| ENSG00000117400 | CCDC30 | 1 |  |  | Adult_Cortex:Fetal_Cortex | rs2842198 |  |
| ENSG00000117407 | CDC20 | 1 | 22.4 |  | Adult_Cortex:Fetal_Cortex | rs2842198 |  |
| ENSG00000117408 | DHODH | 16 |  | 8 |  | rs212178 |  |
| ENSG00000117410 | DUSP6 | 12 | 23.2 |  |  | rs1427829 | X |
| ENSG00000117411 | EBNA1BP2 | 1 |  |  | Adult_Cortex | rs2842198 | X |
| ENSG00000126091 | ELOVL1 | 1 | 22.4 |  | Adult_Cortex:Fetal_Cortex | rs2842198;rs2842198:rs549845:rs17531412 | X |
| ENSG00000126106 | ERMAP | 1 |  |  | Fetal_Cortex | rs2842198 |  |
| ENSG00000127125 | FOXJ3 | 1 |  |  | Adult_Cortex:Fetal_Cortex | rs2842198:rs17531412 |  |
| ENSG00000128573 | FOXP2 | 7 | 18.18 |  | Adult_Cortex:Fetal_Cortex | rs10262192 | X |
| ENSG00000261701 | HPR | 16 |  | 18 |  | rs212178 | X |
| ENSG00000132768 | HYI | 1 | 18.87 |  |  | rs2842198 | X |
| ENSG00000135272 | IPO13 | 1 | 13.6 |  | Adult_Cortex:Fetal_Cortex | rs2527776;rs17531412 |  |
| ENSG00000137872 | KDM4A | 1 | 17.97 |  |  | rs17531412 | X |
| ENSG00000139318 | MDFIC | 7 |  |  | Fetal_Cortex | rs10262192 |  |
| ENSG00000142949 | MED8 | 1 | 18.26 | 57 | Adult_Cortex:Fetal_Cortex | rs2842198;rs2842198:rs549845:rs17531412:rs2527776 | X |
| ENSG00000156687 | MPL | 1 | 22.4 |  |  | rs2842198 |  |
| ENSG00000159214 | PCDH7 | 4 | 18.34 |  |  | rs28411770 | X |
| ENSG00000159479 | PPCS | 1 |  |  | Adult_Cortex:Fetal_Cortex | rs2842198 |  |
| ENSG00000164010 | PTPRF | 1 | 18.13 |  | Adult_Cortex:Fetal_Cortex | rs17531412;rs549845;rs2842198:rs549845:rs17531412:rs2527776 | X |
| ENSG00000164011 | SEMA6D | 15 | 17.68 |  |  | rs8039398 | X |
| ENSG00000169851 | SLC2A1 | 1 |  |  | Adult_Cortex | rs2842198:rs17531412 |  |
| ENSG00000177868 | SLC6A9 | 1 | 16 |  |  | rs2527776 | X |
| ENSG00000178922 | ST3GAL3 | 1 | 17.97 | 53 | Adult_Cortex:Fetal_Cortex | rs17531412;rs113551349;rs2527776;rs2842198:rs17531412:rs549845:rs2527776 | X |
| ENSG00000179178 | SZT2 | 1 | 18.87 |  | Adult_Cortex:Fetal_Cortex | rs2842198;rs2842198:rs549845:rs17531412:rs2527776 | X |
| ENSG00000186409 | TIE1 | 1 |  | 61 | Adult_Cortex | rs2842198;rs2842198:rs17531412 |  |
| ENSG00000196517 | TMEM125 | 1 |  |  | Adult_Cortex | rs2842198 |  |
| ENSG00000198198 | TMEM53 | 1 |  |  | Fetal_Cortex | rs2842198:rs17531412:rs2527776 |  |
| ENSG00000198815 | WDR65 | 1 |  |  | Adult_Cortex | rs2842198 | X |
| ENSG00000243710 | ZMYND12 | 1 |  |  | Adult_Cortex:Fetal_Cortex | rs2842198 | X |
| ENSG00000253313 | ZNF691 | 1 |  |  | Adult_Cortex | rs2842198 |  |

Supp. Table 4. Bidirectional Mendelian randomization (MR). Causal relationship between ASD as exposure ( $p$-value at 1e-6) and ADHD as outcome (left). Causal relationship between ADHD as exposure ( $p$-value at le-6) and ASD as outcome (right).

|  | ASD on ADHD |  |  | ADHD on ASD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{n}($ SNPs $)=15$ |  |  | n (SNPs) $=40$ |  |  |
|  | $\beta$ | SE | $p$-value | $\beta$ | SE | $p$-value |
| MR-IVW | 0.51 | 0.09 | 2.34e-08 | 0.33 | 0.05 | $1.54 \mathrm{e}-11$ |
| MR-Weighted median | 0.46 | 0.09 | $1.09 \mathrm{e}-07$ | 0.31 | 0.05 | $1.09 \mathrm{e}-10$ |
| MR-Weighted mode | 0.56 | 0.19 | 1.09e-02 | 0.33 | 0.11 | $5.23 \mathrm{e}-03$ |
| MR-RAPS | 0.56 | 0.08 | 1.12e-11 | 0.34 | 0.05 | $4.90 \mathrm{e}-11$ |
| MR-PRESSO Outlier-corrected | 0.51 | 0.08 | 3.85e-05 | 0.34 | 0.05 | 1.46e-08 |
| MR-Contamination mixture method | 0.66 | 0.09 | 1.77e-05 | 0.41 | 0.05 | $5.90 \mathrm{e}-10$ |
| MR-Egger intercept | -0.02 | 0.03 | $4.52 \mathrm{e}-01$ | 0.03 | 0.02 | 1.74e-01 |
| MR-Egger | 0.76 | 0.34 | $2.50 \mathrm{e}-02$ | 0.04 | 0.22 | 8.47e-01 |

MR: Mendelian randomization. SNPs: Single-Nucleotide Polymorphisms. ASD: Autism Spectrum
Disorder. ADHD: Attention Deficit Hyperactivity Disorder.
MR-IVW: Mendelian Randomization Inverse Weighted Variance; MR-RAPS: Mendelian
Randomization Robust Adjusted Profile Score; MR-PRESSO: Pleiotropy RESidual Sum and Outlier.

Supp. Table 5. Bidirectional MR after excluding SNPs shared by ASD and ADHD. Causal relationship between ASD as exposure ( $p$-value at 1e6 ) and ADHD as outcome (left). Causal relationship between ADHD as exposure ( $p$-value at $1 \mathrm{e}-6$ ) and ASD as outcome (right).

|  | ASD on ADHD |  |  | ADHD on ASD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{n}(\mathrm{SNPs})=10$ |  |  | $\mathrm{n}(\mathrm{SNPs})=32$ |  |  |
|  | $\beta$ | SE | $p$-value | $\beta$ | SE | $p$-value |
| MR-IVW | 0.33 | 0.08 | 9.16e-05 | 0.23 | 0.04 | 1.51e-06 |
| MR-Weighted median | 0.33 | 0.10 | $4.38 \mathrm{e}-04$ | 0.28 | 0.05 | $1.99 \mathrm{e}-06$ |
| MR-Weighted mode | 0.44 | 0.20 | $5.19 \mathrm{e}-02$ | 0.32 | 0.12 | $9.69 \mathrm{e}-03$ |
| MR-RAPS | 0.38 | 0.09 | 8.78e-06 | 0.25 | 0.05 | $8.00 \mathrm{e}-07$ |
| MR-PRESSO Outlier-corrected | 0.33 | 0.08 | $3.55 \mathrm{e}-03$ | 0.23 | 0.04 | $4.30 \mathrm{e}-05$ |
| MR-Contamination mixture method | 0.48 | 0.08 | $7.05 \mathrm{e}-04$ | 0.36 | 0.04 | $5.21 \mathrm{e}-08$ |
| MR-Egger intercept | -0.05 | 0.03 | $8.60 \mathrm{e}-02$ | 0.01 | 0.02 | $4.64 \mathrm{e}-01$ |
| MR-Egger | 0.85 | 0.31 | 6.00e-03 | 0.08 | 0.18 | $6.57 \mathrm{e}-01$ |

MR: Mendelian randomization. SNPs: Single-Nucleotide Polymorphisms. ASD: Autism Spectrum
Disorder. ADHD: Attention Deficit Hyperactivity Disorder.
MR-IVW: Mendelian Randomization Inverse Weighted Variance; MR-RAPS: Mendelian
Randomization Robust Adjusted Profile Score; MR-PRESSO: Pleiotropy RESidual Sum and Outlier.

For more information regarding SNPs included in our functional analyses, please refer to Supplementary Data 1 to 4.
Supp. Data 1. Data on SNPs shared by ASD and ADHD reported in GWAScatalog.
Supp. Data 2. Data on SNPs specific to ASD reported in GWAScatalog.
Supp. Data 3. Data on SNPs specific to ADHD reported in GWAScatalog.
Supp. Data 4. Data on SNPs that both (i) colocalized between ASD and ADHD and (ii) were associated with the general factor at p<5e-8 (i.e., Functional genomic analyses of SNPs shared by ASD and ADHD).


[^0]:    ADHD
    

    ASD
    
    $\stackrel{\text { EDNRB }}{ }$

