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Full title: Combining multivariate genomic approaches to elucidate the comorbidity 

between ASD and ADHD. 

Abstract 

Background 

Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are 

two highly heritable neurodevelopmental disorders. Several lines of evidence point toward 

the presence of shared genetic factors underlying ASD and ADHD. We conducted genomic 

analyses of common risk variants (i.e. Single-Nucleotide Polymorphisms, SNPs) shared by 

ASD and ADHD, and those specific to each disorder. 

Methods 

With the summary data from two GWAS, one on ASD (N=46,350) and another on ADHD 

(N=55,374) individuals, we used genomic structural equation modelling and colocalization 

analysis to identify SNPs shared by ASD and ADHD and SNPs specific to each disorder. 

Functional genomic analyses were then conducted on shared and specific common genetic 

variants. Finally, we performed a bidirectional Mendelian randomization analysis to test 

whether the shared genetic risk between ASD and ADHD was interpretable in terms of 

reciprocal relationships between ASD and ADHD. 

Results 

We found that 37.5% of the SNPs associated with ASD (at p<1e-6) colocalized with ADHD 

SNPs and that 19.6% of the SNPs associated with ADHD colocalized with ASD SNPs. We 

identified genes mapped to SNPs that are specific to ASD or ADHD and that are shared by 

ASD and ADHD, including two novel genes INSM1 and PAX1. Our bidirectional Mendelian 

randomization analyses indicated that the risk of ASD was associated with an increased risk 

of ADHD and vice versa. 

Conclusions 
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Using multivariate genomic analyses, the present study uncovers shared and specific genetic 

variants associated to ASD and ADHD. Further functional investigation of genes mapped to 

those shared variants may help identify pathophysiological pathways and new targets for 

treatment. 
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Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are 

two common neurodevelopmental disorders (American Psychiatric Association, 2013) with a 

prevalence in children from 5 to 7% (Willcutt, 2012) and from 1 to 2% (Baio, 2018), 

respectively. ADHD is characterized by symptoms of inattention, impulsivity, and 

hyperactivity, and ASD by a deficit in social communication as well as restricted and 

repetitive patterns of interests and behaviors. Although both disorders differ in terms of 

diagnostic criteria, there is a considerable overlap in symptomatology. Individuals with ASD 

commonly display inattention, impulsivity, and hyperactivity symptoms (Lord et al., 2020) 

and likewise, individuals with ADHD often have impaired social and communication skills 

(Hollingdale et al., 2019). In addition, ASD and ADHD are frequently comorbid; 

approximately one third of children with ASD meet diagnostic criteria for ADHD (Lai et al., 

2019) and 15% of children with ADHD meet diagnostic criteria for ASD (Grzadzinski et al., 

2016).  

 

Little is known about what causes the association between ASD and ADHD. Both disorders 

are thought to be caused by a complex interplay of environmental and genetic risk factors 

(Cross-Disorder Group of the Psychiatric Genomics Consortium et al., 2013). Shared 

environmental risk factors, such as preterm birth (Bhutta et al., 2002) or prenatal exposure to 

valproate (Christensen et al., 2019) might partially explain the association between the 

disorders. Several lines of evidence also point toward the presence of shared genetic factors 

in ASD and ADHD. In family-based studies, relatives of children with ASD are at higher risk 

for ADHD than relatives of children without ASD (e.g. Ghirardi et al., 2018; Septier et al., 

2019) and in twin studies, researchers report strong genetic correlations between ADHD and 

ASD traits (e.g. Constantino et al., 2003; Ronald et al., 2008). A similar burden of rare 

protein-truncating variants has been found in individuals with ASD and those with ADHD 
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(Satterstrom et al., 2019). Moreover, most of the rare Copy Number Variants (CNVs) that are 

linked to ASD are also associated with ADHD (Gudmundsson et al., 2019). And yet, less 

than 10% of ASD and ADHD liabilities can be accounted for by rare genetic variants 

(Gudmundsson et al., 2019).  

 

Recent genomic Structural Equation Modelling (genomic SEM) of Genome-Wide 

Association Studies (GWAS) identified shared common risk variants (i.e. Single-Nucleotide 

Polymorphisms, SNPs) underlying several psychiatric disorders (including ASD and ADHD, 

but also anorexia nervosa, bipolar disorder, major depression, obsessive-compulsive disorder, 

schizophrenia, and Tourette syndrome) (Lee et al., 2019; Schork et al., 2019). However, by 

simultaneously including all of these disorders in one multivariate analysis, these studies may 

have missed SNPs that specifically explain the comorbidity between ASD and ADHD. 

Moreover, little research has focused on uncovering the SNPs that are uniquely associated to 

ASD or ADHD. Finally, no study has used a robust tool, such as the colocalization approach, 

to identify specific and shared SNPs of ASD and ADHD after taking linkage disequilibrium 

(LD) into account (Giambartolomei et al., 2018). So far, colocalization has been successfully 

applied to elucidate the specific and shared genetic risk between autoimmune diseases 

(Fortune et al., 2015), lipid levels and cardiovascular outcomes (Siewert & Voight, 2018), as 

well as schizophrenia and gene expression within human brain tissue (Dobbyn et al., 2018). 

By combining colocalization and genomic SEM, the present study offers a novel approach to 

identify the specific and shared genetic risk between ASD and ADHD. 

 

Alternatively, the association between ASD and ADHD might be explained by direct causal 

relationships between the two phenotypes, unidirectionally or bidirectionally. ADHD might 

lead to secondary impairments in social interaction and behavioral flexibility (Taylor et al., 
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2013), while ASD might contribute to secondary attention problems, hyperactive and 

impulsive behaviours. These directional relationships could change our interpretation of the 

colocalization analysis considering that a given SNP may colocalize between ASD and 

ADHD not because of variants independently affecting both ASD and ADHD, but because 

the increase in symptoms of one disorder may lead to symptom increase of the other. To 

remedy the issue of directionality, the present study will also be the first to conduct a 

bidirectional Mendelian randomization (MR) analysis on ASD and ADHD GWAS to 

determine the effect of ADHD on ASD and the effect of ASD on ADHD (Pingault et al., 

2018).  

 

This study used genomic SEM and colocalization to identify SNPs shared by ASD and 

ADHD and SNPs specific to each disorder. Functional genomic analyses were performed on 

shared and specific common genetic variants. Our analysis plan to identify SNPs shared by 

ASD and ADHD was (i) to use genomic SEM to determine the association of each SNP with 

a general factor (corresponding to the shared variance between the ASD and ADHD GWAS) 

and then (ii) to use a Bayesian colocalization method to independently verify whether those 

SNPs actually colocalize based on the original ASD and ADHD GWAS. (iii) Finally, a 

bidirectional Mendelian randomization analysis was performed to determine whether the 

shared genetic risk between ASD and ADHD was interpretable in terms of (reciprocal) causal 

relationships. The SNPs that did not colocalize between ASD and ADHD were considered to 

be specific to each disorder. 

 

METHODS  

GWAS Summary Statistics 
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Summary statistics for ASD and ADHD were obtained from the European ancestry subgroup 

of the Psychiatric Genomics Consortium and iPSYCH (PGC + iPSYCH). We used the most 

recent GWAS data on ASD (18,381 diagnosed ASD cases and 27,969 controls) (Grove et al., 

2019) and ADHD individuals (20,183 diagnosed ADHD cases and 35,191 controls) 

(Demontis et al., 2019). There was some overlap in the controls included in these 2 GWAS 

(iPSYCH).  

 

Genomic SEM 

Genomic SEM (GenomicSEM R package) models the genetic covariance structure of GWAS 

summary statistics using LD score regression (LDSC) (Nivard, 2019) to estimate the 

association of each SNP with the general factor (a latent variable corresponding to the shared 

variance between the ASD and ADHD GWAS). In genomic SEM, factor loadings were fixed 

to be equal between ASD and ADHD GWAS. For liability-scale estimates, we used a 

population prevalence of 1.12% for ASD and 5% for ADHD (Demontis et al., 2019; Grove et 

al., 2019). 

 

Colocalization Analyses 

Colocalization analyses were performed on the two original ASD and ADHD GWAS. These 

analyses were conducted on each genome-wide significant (p<5e-8) LD-independent (r2>0.2; 

window of 500kb) SNP associated with either ASD, ADHD, or the general factor of ASD 

and ADHD in genomic SEM analyses to account for two possible types of false results that 

occur when analysing individual SNPs (Supp. Fig. 1): (i) a SNP associated with a trait A may 

be falsely associated with the general factor of Trait A and B because a causal SNP of Trait B 

is in LD with the SNP of Trait A; (ii) the general factor might miss some SNPs that are in fact 

associated with both traits. For example, a shared causal SNP strongly associated with Trait 
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A but less strongly associated with Trait B may erroneously not be linked to the general 

factor. 

We used the R packages COLOC (Wallace et al., 2019) and Hyprcoloc (C. Foley & Staley, 

2019). Both methods implement a Bayesian test for the colocalization of two association 

signals in a selected region (250kb around a SNP under study), using the summary statistics 

of the two traits, to test five hypotheses: H0 (no association between the SNP and either trait), 

H1 (SNP association with trait 1 only), H2 (SNP association with trait 2 only), H3 (SNP 

association with both traits but not colocalizing, i.e. two distinct SNPs in LD); and H4 (SNP 

association with both traits and colocalizing). We set the prior probability that a SNP is 

causal in each trait to be identical (1e-4 is the recommended threshold for colocalization 

analysis in the context of GWAS (Giambartolomei et al., 2018; Wallace et al., 2019)) and the 

prior probability that a SNP is causal for both traits at 5e-6 (meaning that 5 out of 100 SNPs 

that are associated with one trait are also associated with the other). A given SNP was 

considered to colocalize if H4>0.5 using COLOC and Hyprcoloc packages (Dobbyn et al., 

2018; Wallace, 2019). A supplementary colocalization analysis was performed with H4>0.8. 

SNPs colocalizing between ASD and ADHD were considered as SNPs shared by ASD and 

ADHD. Among the SNPs not colocalizing between ASD and ADHD, those associated with a 

p-value below 5e-8 with ASD were classified as SNPs specific to ASD and those associated 

with a p-value below 5e-8 with ADHD were classified as SNPs specific to ADHD. 

To estimate the percentage of SNPs that colocalized between both traits we performed a 

similar analysis but at the p-value threshold of 1e-6, which enabled us to estimate this 

percentage using a larger number of colocalizing SNPs. 

 

Functional genomic Analysis 
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Functional annotation and analyses were performed separately on SNPs shared by ASD and 

ADHD (i.e. SNPs colocalizing between ASD and ADHD), and SNPs specific to each 

disorder using FUMA (Functional Mapping and Annotation of Genome-Wide Association 

Studies) (http://fuma.ctglab.nl/) (Watanabe et al., 2017). Using FUMA SNP2GENE, SNPs 

were mapped to genes based on (i) positional mapping (Ensembl genes (build 85) using 

ANNOVAR), deleteriousness score (CADD score≥12.37) and 15-core chromatin state (13 

brain tissue types from the GTEx.v8 project)), (ii) eQTL associations with 13 brain tissue 

types (FDR≤0.05), and (iii) 3D chromatin interactions mapping (Hi-C data) of 2 tissue types: 

adult and foetal cortex (Giusti-Rodriguez & Sullivan, 2019), with annotate 

enhancer/promoter regions (Roadmap 111 epigenomes) and 15-core chromatin state from 13 

brain tissues (FDR<10e-6). 

GENE 2FUNC then annotates these genes in a biological context. An enrichment of 

differentially expressed gene (DEG, based on GTEx v6 RNA-seq data) in a certain tissue 

compared to all other tissue types is provided. Log-transformed p-values for the enrichment 

of DEG in each tissue are shown in an interactive heatmap for each gene, and globally for 

genes mapped to SNPs that are shared by ASD and ADHD and for those that are specific to 

ASD and ADHD. A supplementary analysis of the temporal expression in the brain (based on 

11 general developmental stages of brain samples of BrainSpan data) was also performed in 

the 3 gene sets. 

 

Bidirectional Mendelian Randomization Analyses 

We ran bidirectional summary data Mendelian randomization (MR) analysis to determine the 

effect of the liability for ADHD on ASD and the liability for ASD on ADHD (Pingault et al., 

2016). Because only few SNPs associated with ASD and ADHD at genome-wide 

significance level (p<5e-8) are available in the current GWAS ((Grove et al., 2019) and 



11 

 

(Demontis et al., 2019)), MR analyses were conducted at a p-value threshold of 1e-6. LD-

independent SNPs (r2>0.001; window of 500kb) associated with ASD (nSNPs=15) were 

selected as instruments for ASD to estimate the effect of ASD on ADHD. Associations were 

also ascertained in the opposite direction, using n=40 SNPs as instruments for ADHD.  

We estimated the main effects using the inverse weighted variance (IVW) estimator, which 

consists of a linear regression of the instrument-outcome association estimates on the 

instrument-exposure association estimates, weighted by the inverse of the variance of the 

instrument-outcome association estimates.  

We estimated the Cochran’s Q statistic to detect the presence of heterogeneity. If individual 

SNPs are valid instruments, corresponding causal estimates should only vary by chance, so 

larger than chance heterogeneity is indicative of invalid SNPs. To deal with heterogeneity, 

we conducted a number of analyses. We first performed leave-one-out sensitivity analyses to 

check for a disproportionate influence of individual SNPs on overall effect estimates using 

the IVW method. In addition, we implemented MR-PRESSO (Pleiotropy RESidual Sum and 

Outlier), which provides: (i) a global test to detect horizontal pleiotropy, (ii) a correction for 

horizontal pleiotropy via outlier removal, and (iii) a distortion test to test whether the causal 

estimate is significantly different (distorted) after the MR-PRESSO outlier adjustment. 

We implemented additional methods that can provide unbiased estimates when only some of 

the instruments are valid, including weighted median analysis, weighted mode analysis and 

MR contamination mixture method (Slob & Burgess, 2020). The MR contamination mixture 

method is implemented by constructing a likelihood function based on the SNP-specific ratio 

estimate (genetic association with exposure divided by genetic association with outcome). If 

a SNP is a valid instrument, then its ratio estimate is assumed to be normally distributed 

about the true causal effect. If a genetic variant is not a valid instrument, then its causal 

estimate will be normally distributed about zero with a standard deviation corresponding to 
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1.5 times the standard deviation of the ratio estimates. We implemented MR-Egger regression 

to test for unbalanced horizontal pleiotropy. We determined the strength of instrumental 

variables using the mean F-statistic (Bowden et al., 2019). MR RAPS (Robust Adjusted 

Profile Score) was implemented to deal with weak instrument bias (Zhao et al., 2018).  

All LD-independent SNPs were included in bidirectional MR, irrespective of whether the 

SNPs have been identified as specific or shared between the 2 traits. A supplementary 

bidirectional MR analysis was performed excluding SNPs colocalizing between ASD and 

ADHD. 

 

RESULTS 

Genomic SEM 

Genomic SEM was conducted on 6,971,687 SNPs that were present in both ASD (number of 

available SNPs=7,757,027) and ADHD (number of available SNPs=8,094,094) GWAS. SNP 

heritabilities of ASD and ADHD were 11.7% (SE=0.9%) and 21.4% (SE=1.3%) respectively. 

The genetic correlation between ASD and ADHD was 0.37 (0.05).  

We conducted a GWAS on the general factor and examined the overlap in results with the 

two original GWAS. We assessed the overlap both ways by (i) testing whether SNPs 

identified in the general factor GWAS reached genome-wide significance (p<5e-8) in the 

original GWAS; and (ii) testing whether the SNPs identified in the original GWAS reached 

genome-wide significance in the general factor GWAS.  

The Manhattan plot of the general factor GWAS is depicted in Fig. 1. We found 267 genome-

wide significant SNPs in the general factor GWAS, which reduced to 8 LD-independent 

SNPs after clumping (27 when the p-value threshold was set at 1e-6). We then verified 

whether the 8 SNPs identified in the general factor GWAS were also identified in the original 

trait GWAS at genome-wide significance threshold. For ASD, 1 out of 8 (rs6047310) was 



13 

 

identified, and 3 out of 8 SNPs (rs1222063, rs4916723 and rs6584649) for ASD (See Table 

1, General factor SNPs section, p-value columns for ASD and ADHD).  

There were 74 genome-wide significant (p<5e-8) SNPs in the original ASD GWAS, which 

reduced to 2 LD-independent SNPs after clumping (16 when the p-value threshold was set at 

1e-6). One of these two SNPs (rs910805) reached genome-wide significance in the general 

factor GWAS. Note that this SNP is in the same region 20p11 as the aforementioned SNP 

rs6047310, which was identified in the general factor GWAS and reached significance in the 

original ASD GWAS.  

There were 275 genome-wide significant (p<5e-8) SNPs in the original ADHD GWAS, 

which reduced to 16 LD-independent SNPs after clumping (46 when the p-value threshold 

was set at 1e-6). Most of these SNPs (n=13) were unique to ADHD and did not reach 

genome-wide significance in the general factor GWAS. 

 

INSERT TABLE 1 and FIGURE 1 HERE 

 

Colocalization Analyses 

Among the 8 SNPs associated with the general factor, all of them colocalized between ASD 

and ADHD (Fig. 2 and Supp. Fig 2-8). When the p-value threshold was set at 1e-6, the 

proportion of SNPs shared by ASD and ADHD as determined by genomic SEM that 

colocalized between ASD and ADHD GWAS was 66.7% (18/27).  

 

Neither of the two SNPs (rs10099100 and rs910805) associated with ASD in the original 

GWAS colocalized with ADHD. When the p-value threshold was set at 1e-6, the proportion 

of SNPs of ASD that colocalized with ADHD GWAS was 37.5% (6/16).  
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Among the 16 SNPs associated with ADHD in the original GWAS, 3 of them colocalized 

with the ASD GWAS (the same 3 SNPs that were identified in the general factor GWAS). 

When the p-value threshold was set at 1e-6, the proportion of SNPs for ADHD that 

colocalized with ASD GWAS was 19.6% (9/46).  

 

INSERT FIG. 2 HERE 

 

Supplementary analysis with a higher H4 threshold 

When we performed our colocalisation analysis with H4>0.8 (H4: probability of the 

hypothesis of colocalization between ASD and ADHD GWAS), we found that 48% (13/27) 

of SNPs associated with the general factor colocalized between ASD and ADHD GWAS. In 

addition, 18.8% (3/16) of the SNPs associated with ASD colocalized with the SNPs 

associated with ADHD and 15.2% (7/46) of the SNPs associated with ADHD colocalized 

with the SNPs associated with ASD (p-value threshold was set at 1e-6).  

 

Functional genomic analyses of SNPs shared by ASD and ADHD 

We applied FUMA to the SNPs that both (i) colocalized between ASD and ADHD and (ii) 

were associated with the general factor at p<5e-8. FUMA SNP2GENE prioritized 8 genes 

(Supp. Table 1): MANBA in region 4q24 around rs227378 (Fig. 2), XRN2, INSM1, NKX2-4 

and PAX1 in region 20p11 around rs6047310 (Supp. Fig. 2), SORCS3 in region 10q25 around 

rs6584649 (Supp. Fig. 3), PTBP2 and DPYD (in region 1p21 around rs2391769 (Supp. Fig. 

4)). 

The prioritized genes included 6 genes which were reported in previous GWA and genomic 

SEM studies: XRN2, SORCS3, PTBP2, NKX2-4, MANBA and DPYD (Alonso-Gonzalez et al., 

2019; Cross-Disorder Group of the Psychiatric Genomics Consortium et al., 2013; Demontis 
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et al., 2019; Grove et al., 2019), while INSM1 and PAX1 were novel genes. INSMI is known 

to play a key role in neurogenesis and neuroendocrine cell differentiation during embryonic 

and/or fetal development (Fig. 3 (A)). PAX1 is a member of the paired box (PAX) family of 

transcription factors without specific expression in brain tissues. We did not find significant 

DEG values in any tissue for this set of genes (Supp. Fig. 9 (A)). 

 

INSERT FIG. 3 HERE 

 

Functional genomic analyses of SNPs Specific to ASD 

We applied FUMA to the SNPs specific to ASD (rs10099100 and rs910805). Positional 

mapping and chromatin interaction mapping of rs910805 prioritized two genes (XRN2 and 

NKX2-4) which were previously reported as candidates by Grove et al. (Grove et al., 2019) 

(Supp. Table 2). The gene XRN2 had already been mapped to one SNP (rs6047310) shared by 

ASD and ADHD. The SNPs rs910805 and rs6047310 are on the same region 20p11 and they 

are in low LD (R²=0.17). We did not find significant DEG values in any tissue for this set of 

genes (Supp. Fig. 9 (B)). 

  

Functional genomic analyses of SNPs Specific to ADHD 

We applied FUMA to the 13 genome-wide significant SNPs specific to ADHD. Positional 

mapping (17 genes), eQTL mapping (5 genes), and chromatin interaction mapping of SNPs 

(26 genes) prioritized 36 unique genes (some genes identified by multiple mapping methods; 

Supp. Table 3). We used different mapping parameters on FUMA than the study by Demontis 

et al. (Demontis et al., 2019). Therefore only 19 out of the 36 genes were previously reported 

as candidate genes by Demontis et al. (Demontis et al., 2019).  
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This set of genes was mostly expressed in the nervous, muscle, uterus and heart tissues (Supp. 

Fig. 9 (C)). 

 

Supplementary analysis: temporal expression in the brain 

Genes mapped to SNPs shared by ASD and ADHD (Supp. Fig 10 (A)) and those specific to 

ASD or ADHD (Supp. Fig 10 (B and C)) did not show a temporal specificity of gene 

expression in brain tissues. 

 

Bidirectional Mendelian Randomization Analysis 

Using bidirectional Mendelian randomization, we found that the risk of ASD was associated 

with an increased risk of ADHD (β – MR-IVW=0.51 (0.09), p-value<0.001, number of 

SNPs=15; Fig. 4 and Supp. Table 4). Testing the reverse direction, we found that the risk of 

ADHD was associated with an increased risk of ASD (β – MR-IVW=0.33 (0.05), p-

value<0.001, number of SNPs=40). 

There was substantial heterogeneity in our MR-IVW analyses (Q=51.4 on 15 SNPs, p-value 

=3.5e-06, and Q=79.2 on 40 SNPs, p-value=2e-04, respectively). Leave-one-out sensitivity 

analyses did not indicate a disproportionate influence of an individual SNP in any of our MR-

IVW analyses (Supp. Fig. 11). Our two sets of instrumental variables had high mean 

strengths (mean F-statistic=29.4 (SD=6.7, range: 15.0 - 40.7) and 31.1 (SD=7.6, range: 21.0 - 

62.6), respectively). MR-Egger did not show directional pleiotropy in any direction. Overall, 

MR estimates were consistent across sensibility analyses (Supp. Table 4). The MR-PRESSO 

global test detected horizontal pleiotropy in both MR-analyses (p<0.001 for both) and only 

identified one outlier for the ASD exposure and one outlier for the ADHD exposure. The 

MR-PRESSO distortion tests were not significant (p=0.5 for the exposure ASD and p=0.8 for 

the exposure ADHD). MR contamination mixture method identified 6 outliers for the 
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exposure ASD and 12 outliers for the exposure ADHD (including the outliers identified by 

MR-PRESSO). 

 

INSERT FIG. 4 HERE 

 

Supplementary analysis: excluding SNPs colocalizing between ASD and ADHD  

Among the 15 SNPs identified when the exposure was ASD, 5 colocalized between ASD and 

ADHD. And among the 40 SNPs identified when the exposure was ADHD, 8 colocalized 

between ASD and ADHD. After excluding the SNPs that colocalized between ASD and 

ADHD from the bi-directional MR, our findings were still significant in both directions 

(Supp. Table 5 and Supp. Fig. 14). 

 

DISCUSSION 

Using powerful multivariate genomic approaches, we examined the complex relationships 

between ASD and ADHD. By combining genomic SEM with colocalization analysis, an 

approach that takes into account linkage disequilibrium between SNPs, we found that around 

one third of the common genetic variants associated with ASD were linked to ADHD and 

that about one fifth of the common genetic variants associated with ADHD were linked to 

ASD.  

 

ASD and ADHD are highly comorbid neurodevelopmental disorders (Grzadzinski et al., 

2016; Lai et al., 2019). Abundant evidence from family-based (e.g. Ghirardi et al., 2018; 

Septier et al., 2019) and twin-based (e.g. Constantino et al., 2003; Ronald et al., 2008) studies 

suggests that the comorbidity between the two disorders is largely explained by shared 

genetic factors. Previous studies have shown the role of rare genetic variants in contributing 
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to this comorbidity (Gudmundsson et al., 2019; Satterstrom et al., 2019). Prior research has 

also investigated the common genetic variants underlying several psychiatric disorders (Lee 

et al., 2019; Schork et al., 2019) by modelling shared variation between multiple disorders. 

Here, we focused on ASD and ADHD and we showed that a sizeable minority of common 

variants contributing to one disorder also contribute to the other disorder. Genes, including 

novel genes, mapped to these common variants point towards the existence of common 

pathophysiological pathways underlying these disorders. However, functional analyses 

neither showed that the genes underlying the comorbidity of these two neurodevelopmental 

disorders were preferentially expressed in the brain, nor that expression in the brain took 

place early in development. Rather, they were expressed throughout development, including 

in adulthood. 

 

Importantly, a majority of identified SNPs were still specific to each disorder. Those SNPs 

were mapped to genes that were also expressed in the brain without clear developmental 

patterns. Fine-grained gene-phenotype mapping is now required to better understand the 

nature of these specific genetic influences. For example, it is unlikely that common genetic 

variants homogenously affect all symptoms within a disorder. Instead, the specific genetic 

variants and pathways may play a more prominent role in the symptoms of one disorder that 

rarely occur in patients affected by the other disorder. Such fine-grained mapping to multiple 

symptom dimensions or individual symptoms should provide a renewed understanding of the 

pathways from genetic variants to disease presentation. 

 

From a methodological perspective, combining colocalization analysis and genomic SEM 

analysis appears useful to identify shared common genetic variants associated with two traits. 

Genomic SEM is a powerful approach that boost power to identify novel shared risk SNPs 
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that remain undetected in univariate GWAS of overlapping traits (Amare et al., 2019; 

Grotzinger et al., 2019), while colocalization allows identification of shared and specific 

SNPs after taking linkage disequilibrium (LD) into account. At the conventional genome-

wide p-value threshold of 5e-8, both approaches converge (all SNPs identified by genomic 

SEM colocalized between ASD and ADHD). However, there were some divergences 

between both approaches at a more lenient p-value threshold. Specifically, of the 27 SNPs 

that were found to be shared by ASD and ADHD in the genomic SEM (p-value threshold at 

1e-6), 9 SNPs did not colocalize between ASD and ADHD GWAS. Converging findings in 

the present study provide more certainty that the SNPs that were identified by both methods 

are truly shared. However, a systematic comparison of genomic SEM analysis and 

colocalization methods, with simulation studies, would be valuable to further understand 

when the two methods converge or diverge, as well as their respective strengths and 

limitations. 

 

Finally, results from the bidirectional Mendelian randomisation analyses indicated that the 

risk of ASD was associated with an increased risk of ADHD and vice versa. This 

bidirectional relationship was also found using multiple MR methods, including some that 

have been developed to control for bias due to horizontal pleiotropy, such as MR-PRESSO 

and MR contamination mixture methods (Slob & Burgess, 2020). When SNPs colocalizing 

between ASD and ADHD were excluded, the bidirectional relationship between both 

disorders prevailed. Importantly, we note that a strong shared heritable confounder can lead 

to MR findings consistent with bi-directional causal relationships, even in the absence of such 

relationships. Such a strong shared heritable confounder is entirely plausible for disorders as 

comorbid as ASD and ADHD, and consistent with our genomic SEM and colocalization 
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findings. Therefore, our MR findings, although largely consistent across methods, cannot 

definitively establish such reciprocal causal relationships at the phenotypic level. 

 

Limitations  

First, although summary statistics for ASD and ADHD were obtained from the largest 

samples available, they enabled the identification of only a few SNPs at the conventional 

genome-wide p-value threshold of 5e-8 (and thus few genes, especially for ASD). This 

contrasts with the findings that many more genes have been linked to ASD or ADHD with 

regards to rare genetic variants (Gudmundsson et al., 2019; Satterstrom et al., 2019). Thus, 

GWAS of ASD and ADHD based on larger samples are needed to fully explore the genetic 

complexity of these disorders. Second, there were some sample overlap in controls that might 

have biased our findings. However, genomic SEM (Grotzinger et al., 2019) and 

colocalization (C. N. Foley et al., 2019) are unbiased by sample overlap. The extent to which 

MR findings are biased by sample overlap remains uncertain but the bias is likely to be small 

(Burgess et al., 2016). 

 

Conclusion 

Our study combined multivariate genomic approaches to elucidate the comorbidity between 

two of the most common neurodevelopmental disorders. The present study uncovers common 

genetic variants and genes shared by ASD and ADHD and those specific to each disorder. 

About one fifth to one third of the common genetic variants associated with one disorder are 

also linked to the other disorder. From a methodological perspective, our study highlights the 

advantage of using multiple methods (genomic SEM, colocalization, and Mendelian 

randomization) to identify and interpret the contribution of common genetic variation to the 

comorbidity of the two disorders. Further investigation of the shared and specific genetic 
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factors of neurodevelopmental disorders may help identify pathophysiological pathways and 

new targets for treatment.  
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Key points 

• We identified genes mapped to SNPs that are shared by ASD and ADHD and those thar are 

specific to each disorder. 

• About one third of the common genetic variants associated with ASD were linked to 

ADHD. 

• About one fifth of the common genetic variants associated with ADHD were linked to 

ASD. 

• Bidirectional Mendelian randomization analyses indicated that greater ASD 

symptomatology increased the risk of ADHD and vice versa. 

 

 


