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1 Introduction

We aim to model a sequence of high dimensional N ×N volatility matrices {(Σt)
T
t=1} of an N-dimensional

zero mean, normally distributed, time series vector of asset returns {(rt)Tt=1}. The prediction of ΣT+1 is a

fundamental problem in financial statistics that has received a lot of attention in portfolio selection and fi-

nancial management literature, see for example Tsay (2005). The major statistical challenge emanates from

the fact that each Σt is positive-definite and its number of parameters grows quadratically in N . A popular

paradigm in financial econometrics is to adopt observational-driven models that extend the popular univari-

ate GARCH-type formulations, see for example Engle (2002). In these models parameters are deterministic

functions of lagged dependent variables so are perfectly predictable one-step-ahead given past information.

We focus, instead, on parameter driven models that assume that elements of {Σt} vary over time as dynamic

processes with idiosyncratic innovations.

The starting point in our model construction is the one-dimensional stochastic volatility model intro-

duced by Taylor (1986) which allows the log-volatility of the observations to be an autoregressive unob-

served random process. The challenging extension to the multivariate case is discussed in the reviews by

Platanioti et al. (2005), Asai et al. (2006) and Chib et al. (2009). Due to both the computational complexity

that increases dramatically withN and the modelling complexity produced by the necessity to stochastically

evolve correlations and volatilities preserving the positive definiteness of Σt, all existing models assume

some form of model parsimony that often correspond to the simplifications suggested in the observation

driven models literature. In particular, the existing multivariate stochastic volatility (MSV) models assume

either constant correlations over time or some form of dynamic correlation modelling through factor mod-

els with factors being independent univariate stochastic volatility models; see, for example, Harvey et al.

(1994), Kim et al. (1998a), Pitt and Shephard (1999a), Bauwens et al. (2006), Tims and Mahieu (2003).

Different approaches to MSV models have been suggested by Philipov and Glickman (2006a,b) who pro-

pose modelling Σt as an inverted Wishart process, by Gouriéroux et al. (2009) who introduced the Wishart

autoregressive process, and by Carvalho et al. (2007) who suggest dynamic matrix-variate graphical models.

We propose a new MSV modelling formulation which is full in the sense that all N(N + 1)/2 elements
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of Σt evolve in time. A key idea of our approach is to assume Gaussian latent processes for functions of

the eigenvalues and rotation angles of Σt. By invert-transforming back to Σt the positive definiteness is

immediately ensured. For a N -dimensional vector of responses, we construct a MSV model with N(N +

1)/2 Gaussian latent paths corresponding to N eigenvalues and N(N − 1)/2 rotation angles. When N is

prohibitively large, we also propose a dynamic factor extension of our model in which the volatility matrices

of the factors are treated as the stochastic dynamically evolving {Σt}Tt=1 in our baseline MSV model. This

generalises the existing assumption of factor independence that is prominent in dynamic factor models in

many statistical areas including, in addition to financial econometrics, also economics, see for example Forni

et al. (2000), and psychology, see for example Ram et al. (2013).

While our model formulation allows for the construction of latent processes ensuring the positive defi-

niteness of {Σt} in theory, the estimation process remains a computationally challenging task. In practical

quantitative finance areas, such as portfolio construction and risk management, interest lies in applications

where the number of assets N is in the size of hundreds. Our approach is Bayesian so our view of the prob-

lem is that we deal with a non-linear likelihood function with a latent TN(N + 1)/2-dimensional Gaussian

prior distribution. Since the likelihood itself requires evaluation of a TN(N + 1)/2-dimensional Gaus-

sian density, computational efficiency is a major impediment not only because of the cubic computational

complexity required to perform the Gaussian density matrix manipulations, but also because Markov chain

Monte Carlo (MCMC) algorithms require carefully chosen simultaneous updates of the latent paths so that

good chain mixing is achieved.

An important contribution of the paper is that our proposed Bayesian inference is carefully designed to

handle both these problems. The crucial MCMC moves that update the latent paths are based on an auxiliary

gradient-based sampler suggested by Titsias (2011) and further developed in Titsias and Papaspiliopoulos

(2018). Moreover, we provide algorithms that achieve computational complexity of squared, rather than

cubic, order for the evaluation of the likelihood Gaussian density and its derivative with respect to rotation

angles and eigenvalues. This overcomes a crucial impediment that is common in many multivariate statistics

applications, see for example Banerjee et al. (2008) for a recent review of this problem in spatial statistics.
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We extend our methodology to modelling stochastic volatility in vector autoregressive (VAR) models

which are commonly used in applied macroeconomics. The main advantage of our approach is that it per-

mits estimation of the time-varying covariance matrix of the reduced-form VAR model that is invariant to the

ordering of the variables in the system unlike the prevailing time-varying Cholesky specification. We show

that the resulting estimates of our model can differ considerably from the Cholesky specification. More-

over, we illustrate in a simple three-variable system how different permutations of the variables can lead to

different empirical conclusions when the Cholesky time-varying specification is used, which is undesirable

particularly when the model is used for reduced-form analysis, such as forecasting.

Finally, we apply our method to a computationally challenging, financial big data example based on ten

years daily returns of 571 stocks of the Euro STOXX index. We formulate a factor MSV model and evaluate

the predictive ability of a series of models by gradually increasing the number of factors and evaluating the

distance between the predictive volatility matrix and the quadratic co-variation of the next day based on

5-minutes intra-day data.

The rest of the paper is organised as follows. Section 2 presents the baseline model and Section 3

incorporates it to a full factor MSV model. Section 4 describes the parameter estimation procedure, in

Section 5 we discuss the computational complexity of our proposed algorithm and compare it to competing

approaches, and Section 6.1 introduces a time-varying volatility VAR model that incorporates our MSV

approach to modelling the covariance of the VAR residuals and applies it to macroeconomic time series.

Section 6.2 illustrates the computational power of our algorithm by applying it to a 571 asset returns and

illustrates its superior predictive ability over competing models. We conclude with a small discussion in

Section 7.

2 The baseline multivariate stochastic volatility model

We assume that an observed vector time series rt satisfies rt|Σt ∼ N (0,Σt) and is covariance stationary so

E(Σt) = Σ exists and is a symmetric p.d. matrix. The spectral decomposition Σt = PtΛtP
T
t parameterises

the N(N + 1)/2 independent time-changing entries of Σt to N eigenvalues {(Λit)Ni=1} and N(N − 1)/2
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parameters in the eigenvector matrices Pt. We further write each Pt as a product of N(N − 1)/2 Givens

rotation matrices Pt =
∏
i<j Gij(ωij,t) where the elements of each Givens matrix Gij(ωij,t) are given by

Gij [k, l] =



cos (ωij,t), if k = l = i or k = l = j

sin(ωij,t), if k = i, l = j

− sin(ωij,t), if k = j, l = i

1, if k = l

0, otherwise.

Each rotation matrix has one parameter, the rotation angle ωij,t, which appears in only four cells of the

matrix. For each time t there are N(N − 1)/2 angles {(ωij,t)i<j} associated with all possible pairs (i, j)

where i < j, j = 1, . . . , N . We choose ωij,t ∈ (−π/2, π/2) to ensure uniqueness of the rotation angles and

we transform angles and eigenvalues to δij,t = log(π/2 +ωij,t)− log(π/2−ωij,t) and hi,t = log(Λit). Our

proposed MSV model is

hi,t+1 = hi,0 + φhi · (hi,t − hi,0) + σhi · ηhi,t, i = 1, . . . , N, t = 1, . . . , T − 1,

δij,t+1 = δij,0 + φδij · (δij,t − δij,0) + σδij · ηδij,t, i < j, t = 1, . . . , T − 1,

hi,1 ∼ N
(
hi,0,

(σhi )2

1− (φhi )2

)
, δij,1 ∼ N

(
δij,0,

(σδij)
2

1− (φδij)
2

)
, (1)

where |φhi | < 1 and |φδij | < 1 are the persistence parameters of each autoregressive process, σhi and σδij are

corresponding error variances and ηhi,t, η
δ
ij,t ∼ N (0, 1) independently. Note that due to time-changing prior

structure in (1) our prior is not orthogonally invariant. The parameter vectors that need to be estimated are

the transformed rotation angles and eigenvalues {(δt)Tt=1},{(ht)Tt=1}, and the latent path parameters θh =

{(φhi , hi,0, σhi )Ni=1} and θδ = {(φδij , δij,0, σδij)i<j} related to transformed eigenvalues and rotation angles

respectively. The volatility matrices Σt are positive definite since they are obtained by just transforming

back the parameters ht, δt to Pt and Λt. The parametric prior specification in (1) is a modelling choice and

our approach allows for different prior specifications, dependeing on the application at hand.
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Givens angles have been used in the past in Bayesian literature in static problems with focus on im-

provement of covariance matrix estimation via reference or shrinkage priors; see Yang and Berger (1994)

and Daniels and Kass (1999). The effect of left-multiplying a Givens matrixGij(ωij,t) to a vector is to rotate

the vector clockwise by ωij,t radians in the plane spanned by the ith and jth components of the vector. The

covariance matrix Σt can therefore be viewed as that of a vector of N uncorrelated random variables with

variances (Λit)
N
i=1, rotated successively by applying Givens rotation matrices. Sparsity may be induced by

setting many angles equal to zero since when a rotation angle is zero there is no rotation in the corresponding

plane. Cron and West (2016) exploit this fact and proposed sparsity modelling of a covariance matrix by

placing priors on the Givens angles.

When the assumption of exchangeability between the asset returns is plausible, we suggest using a

hierarchical formulation of the form

φhi = (eφ̃
h
i − 1)/(eφ̃

h
i + 1)

φ̃hi |µh, λh ∼ N (µh, λ
−1
h )

(µh, λh) ∼ N (µ0, (k0λh)−1)Ga(α0, β0). (2)

In the large-dimensional financial applications we are interested in, this prior specification has great practical

importance. In all large portfolios there are assets with fewer observations due to new stock introductions

to the market or to an index, mergers and acquisitions, etc. In these cases, the Bayesian hierarchical model

allows borrowing strength from the persistence parameters which results to their shrinkage towards the

overall mean µh. Of course, other assumptions such as exchangeability within markets or sectors might be

more appropriate and the prior specification may be chosen accordingly. We propose non-informative prior

densities for θh and θδ by placing an inverse Gamma density for (σhi )2 and (σδij)
2 and an uninformative

uniform improper prior density for hi,0 and δij,0. Further details, such as the values of the hyperparameters

used in our simulations and real data, are given in the Supplementary material.
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3 The full factor MSV model

The basic model (1) can be extended to a full factor MSV model by assuming that the means of the initial

series rt are linear combinations of K factors which are modelled as MSV processes. This can be written

as rt = Bft + V 1/2εt, and ft|Σt ∼ N (0,Σt) where B is a N × K matrix of factor loadings, ft is a K-

dimensional vector that is modelled with the MSV model (1), V is anN×N diagonal matrix of variances vi

and εt is a vector ofN independentN (0, 1) variates. For identification purposes, constraints on the elements

bij of B must be imposed, so we set bij = 0 for i < j, i ≤ K and bii = 1 for i ≤ K. The covariance of

rt at time t is separated into systematic and idiosyncratic components BΣtB
T + V . The non-zero values

of the factor loadings matrix B are assigned a conjugate Gaussian prior density while the noise variances vi

are assumed to have a standard conjugate inverse Gamma prior; see the Supplementary material for further

details.

Existing factor MSV models in the financial econometrics literature assume that ft are independent

univariate stochastic volatility processes, a very unrealistic assumption given the broad empirical evidence

on observed priced factors. We refer to these models as independent factor models. Our full factor model

extension provides a generalisation by assuming that both the factor variances and the correlations evolve

stochastically and it reduces to model (1) when N = K, B = I and all vi = 0; and to an independent factor

model by setting all rotation angles equal to zero. Our approach is general and can be used to model the

stochastic volatility of the idiosyncratic component V 1/2εt; however, in that case, the factors ft should be

modelled with constant volatility. This approach is possible, but it will diminish the benefits of the factor

structure for reducing the dimension of the stochastic volatility matrix.

4 Estimation

To estimate the parameters of the model we follow a fully Bayesian procedure by applying an MCMC

algorithm. We describe here the algorithmic steps for the full factor MSV model noting that the steps for the

simple MSV model are obtained as a special case. Suppose a sample of observed time series vectors rt ∈
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R
N is available for t = 1, . . . , T , which we wish to model by using a factor MSV model having K latent

factors. While in the real application considered in Section 6.2 we do allow for missing values, for notational

simplicity here we assume that the vectors rt have no missing values (the treatment of missing values

under the full factor model is straightforward as explained in the previous Section). The joint probability

distribution of all observations, latent variables and parameters is written in the form

(
T∏
t=1

N (rt|Bft, V I)N (ft|0,Σt(xt))

)
p(X|θh, θδ)p(θh, θδ)p(B, V ),

where xt = {(hi,t)pi=1, (δij,t)i<j} denotes the K(K + 1)/2 vector of all transformed angles and log-

eigenvalues that determine the volatility matrix at time t. The expression N (rt|Bft, V I) represents the

density function N (Bft, V I) evaluated at rt. Finally, X = (x1, . . . , xT ) denotes the full set of latent

variables, represented as a row-wise unfolded vector of the K(K + 1)/2 × T matrix in which each T -

dimensional row vector stores the latent variables associated with a specific Gaussian autoregressive pro-

cess. Thus, p(X|θh, θδ) can be a high-dimensional Gaussian distribution, having an inverse covariance

matrix with K(K + 1)/2 separate blocks associated with the independent latent Gaussian processes and

where each T -dimensional block has a sparse tridiagonal form.

Performing MCMC on the above model is extremely challenging due the very large state space. For

instance, for a typical real-world dataset, as the one we consider in our financial application in Section 6.2,

the number of latent variables in X can be of order of millions, for example for K = 50 and T = 2000

the size of X is 2,55 millions. To deal with such dimensions, we develop a well-mixing computationally

scalable MCMC procedure that uses an effective move that jointly samples (in a single step) all random

variables in X .

4.1 The general structure of the MCMC algorithm

The random variables we need to infer can be naturally divided into three groups: i) the full factor model

parameters and latent variables (B, V, f1, . . . , fT ) that appear in the observation likelihoods, ii) the MSV
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latent variables X that determine the volatility matrices and iii) the hyperparameters (θh, θδ) that influence

the latent Gaussian prior distribution p(X|θh, θδ). We construct a Metropolis-within-Gibbs procedure that

sequentially samples each of the above three groups of variables conditional on the others. Schematically,

this is described as

B, V, f1, . . . , fT ← p(B, V, (ft)
T
t=1|rest) ∝

(
T∏
t=1

N (rt|Bft, V I)N (ft|0,Σt(xt))

)
p(B, V ),

X ← p(X|rest) ∝

(
T∏
t=1

N (ft|0,Σt(xt))

)
p(X|θh, θδ),

θh, θδ ← p(θh, θδ|rest) ∝ p(X|θh, θδ)p(θh, θδ).

The first step of sampling the full factor model parameters is further split into three conditional Gibbs moves

for updating the factor loadings matrix B, the diagonal covariance V and the latent factors f1, . . . , fT . This

involves simulating from standard conjugate conditional distributions, whose explicit forms are given in the

Supplementary material. However, the conjugate Gibbs step for sampling the latent factors f1, . . . , fT is

very expensive for our application, as it scales as O(TK3). Therefore, we replace this step with a more

scalable Metropolis within Gibbs step that costs O(TNK) as we detail in Section 5.2. The third step of

sampling θh and θδ also involves standard procedures: Gibbs moves for the parameters hi,0, δij,0, (σhi )2,

(σδij)
2 and Metropolis-with-Gibbs for the transformed persistence parameters of the AR processes; full

details are given in the Supplementary material. The most challenging step in the above MCMC algorithm

is the second one where we need to simulate X . This requires simulating from a latent Gaussian variable

model where the high-dimensional X follows a Gaussian prior distribution p(X|θh, θδ) and then generates

the latent factors F = (f1, . . . , fT ) through a non-Gaussian density p(F |X) =
∏T
t=1N (ft|0,Σt(xt)),

where X appears non-linearly inside the volatility matrices. We can think of p(F |X) as the likelihood

function in this latent Gaussian variable model where F plays the role of the observed data. To sample X

we implement an efficient algorithm proposed by Titsias (2011) that we describe in Section 4.2 in detail.

We emphasize that the usual ordering of eigenvalues is not needed during the sampling process since
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each sampled value of xt reconstructs invariantly a sample for Σt. Finally, from a practical perspective,

the most interesting posterior summary of the MCMC algorithm is the predictive density of ΣT+1 which is

constructed by transforming all the predictive densities of xT+1 produced exactly as described in the very

first paper on Bayesian estimation for univariate stochastic volatility models by Jacquier et al. (1994b).

4.2 Auxiliary gradient-based sampling for latent Gaussian variables models

The algorithm in Titsias (2011); Titsias and Papaspiliopoulos (2018) is based on combining the Metropolis-

Adjusted Langevin Algorithm (MALA) with auxiliary variables in order to efficiently deal with a latent

Gaussian variable model. The use of auxiliary variables allows to construct an iterative Gibbs-like procedure

which makes efficient use of gradient information of the intractable likelihood p(F |X) and is invariant under

the tractable Gaussian prior p(X|θh, θδ). For the remainder of this Section we shall simplify notation by

dropping reference to the parameters θh and θδ which are kept fixed when sampling X , so that the Gaussian

prior is written as p(X) = N (X|M,Q−1), where M is the mean vector and Q is the inverse covariance

matrix. Suppose that we are at the n-th iteration of the MCMC and the current state of X is Xn. We

introduce auxiliary variables U that are of the same dimension as X and are sampled from the following

Gaussian density conditional on Xn:

p(U |Xn) = N (U |Xn +
ζ

2
∇ log p(F |Xn),

ζ

2
I),

where∇ log p(F |Xn) denotes the gradient of the log-likelihood evaluated at the current state Xn. U injects

Gaussian noise into the current state Xn and shifts it by (ζ/2)∇ log p(F |Xn), where ζ is a step size param-

eter. Thus, Xn is moved towards the direction where the log-likelihood takes higher values and p(U |Xn)

corresponds to a hypothetical MALA proposal distribution associated with a target density that is solely

proportional to the likelihood p(F |X). A difference, however, is that in this distribution the step size or

variance is ζ/2, while in the regular MALA the variance is ζ. This is because U aims at playing the role of

an intermediate step that feeds information into the construction of the proposal density for sampling Xn+1.

The remaining variance ζ/2 is added in a subsequent stage, when a proposal is specified in a way that in-
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variance under the Gaussian prior density is achieved. More precisely, if the target were just proportional

to the likelihood p(F |X), then we could propose a candidate state Y given U from Y ∼ N (Y |U, ζ/2) and

by marginalizing out the auxiliary variable U we would have recovered the standard MALA proposal dis-

tribution N (Y |Xn + (ζ/2)∇ log p(F |Xn), ζ). However, since our actual target is p(F |X)p(X) and p(X)

is a tractable Gaussian term, we modify the proposal distribution by multiplying it with this Gaussian dis-

tribution so that the whole proposal becomes invariant under the prior. The proposed Y is sampled from the

proposal density

q(Y |U) =
1

Z(U)
N (Y |U, ζ

2
I)p(Y ) = N (Y |(I +

ζ

2
Q)−1(U +

ζ

2
QM),

ζ

2
(I +

ζ

2
Q)−1)

where Z(U) =
∫
N (Y |U, ζ2I)p(Y )dY . A proposed Y is accepted or rejected with Metropolis-Hastings

acceptance probability min(1, r) where

r =
p(F |Y )p(U |Y )p(Y )

p(F |Xn)p(U |Xn)p(Xn)

q(Xn|U)

q(Y |U)
=

p(F |Y )p(U |Y )p(Y )

p(F |Xn)p(U |Xn)p(Xn)

Z(U)−1N (Xn|U, (ζ/2)I)p(Xn)

Z(U)−1N (Y |U, (ζ/2)I)p(Y )

=
p(F |Y )N (U |Y + (ζ/2)Dy, (ζ/2)I)

p(F |Xn)N (U |Xn + (ζ/2)Dt, (ζ/2)I)

N (Xn|U, ζ2I)

N (Y |U, ζ2I)

=
p(F |Y )

p(F |Xn)
exp

{
−(U −Xn)TDt + (U − Y )TDy −

ζ

4
(||Dy||2 − ||Dt||2)

}
(3)

where Dt = ∇ log p(F |Xn), Dy = ∇ log p(F |Y ) and ||.|| denotes the Euclidean norm of a vector. An

important observation in the resulting form of (3) is that the Gaussian prior terms p(Xn) and p(Y ) have been

cancelled out from the acceptance probability, so their evaluation is not required: the resulting Q(Y |U) is

invariant under the Gaussian prior. The basic sampling steps are summarised in Algorithm 1. A simplified

(i) U ∼ N (U |Xn + (ζ/2)Dt, (ζ/2)I)
(ii) Y ∼ N (Y |(I + (ζ/2)Q)−1(U + (ζ/2)QM), (ζ/2)(I + (ζ/2)Q)−1) and with

probability min(1, r), where r is given by (3), Xn+1 = Y or otherwise Xn+1 = Xn.

Algorithm 1: Auxiliary gradient-based sampler
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version is obtained when we ignore the gradient from the likelihood p(F |X). Then, the algorithm reduces to

an auxiliary random walk Metropolis which is implemented exactly as Algorithm 1 with the only difference

that the gradient vectors Dt and Dy are now equal to zero, leading to simplifications of some expressions;

for example, the probability r reduces to the likelihood ratio. An elegant property of the above auxiliary

sampling procedure is that when the Gaussian prior tends to a uniform distribution by letting Q → 0,

it proposes as standard MALA or as standard random walk Metropolis algorithms. This can be seen by

observing that the marginal proposal distribution in step (ii) of Algorithm 1 reduces to the previous standard

schemes where the underlying target distribution is proportional to the likelihood p(F |X). This suggests

that in order to set the step size parameter ζ we can follow the standard practice in adaptive MCMC, so that

for the auxiliary gradient-based sampler we can tune ζ to achieve an acceptance rate of around 50−60% and

for the auxiliary random walk Metropolis an acceptance rate of 20 − 30%. Empirically, it has been found

that these regions are associated with optimal performance, see Titsias and Papaspiliopoulos (2018).

In order to apply the above algorithm to the full factor MSV model where the size of X can be of order

of millions, we have to make sure that the computational complexity remains linear with respect to the size

of X . This is made possible because the Gaussian prior N (X|M,Q−1) has a sparse tridiagonal inverse

covariance matrix Q. Thus, given that Q is tridiagonal, the matrix (2/ζ)I + Q will also be tridiagonal and

similarly the matrix L obtained from the Cholesky decomposition LLT = (2/ζ)I + Q, will be a lower

two-diagonal matrix which can be computed efficiently in linear time. Then, a sample Y in the step 2 of

Algorithm 1 can be simulated according to

Y = L−T (L−1(
2

ζ
U +QM) + Z), Z ∼ N (0, I),

where parentheses indicate the order in which the computations should be performed. All these computa-

tions, including the two linear systems needed to be solved, can be performed efficiently in linear time since

the associated matrices are either tridiagonal or lower two-diagonal. Therefore, the overall complexity when

sampling Y is linear with respect to the size of this vector. Since this vector has size K(K + 1)/2× T the

computational complexity scales as O(TK2).
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Finally, the above algorithm requires the evaluation of the acceptance probability which is dominated

by the likelihood ratio that involves the density p(F |X) given by (4.1) which consists of a product of T

K-dimensional multivariate Gaussian densities. Furthermore, we need to compute gradients of the form

∇ log p(F |X) of this log likelihood that appear in the acceptance probability and are required also when

sampling U . A usual computation of these quantities scales as O(TK3) which is too expensive for the real

applications of the full factor MSV model. By taking advantage of the analytic properties of the Givens

matrices we can reduce the computational complexity to O(TK2), that is quadratic with respect to dimen-

sionality of the Gaussians. To achieve such a complexity, we have developed the specialized algorithms

detailed in the next Section.

5 Computational complexity

5.1 O(N2) computation for the MSV model

A crucial property of the MSV model is that the evaluation of its log density and the corresponding gradi-

ents with respect to the parameters inside the volatility matrix Σt can be computed in O(N2) time. This

differs from other more commonly-used parametrisations of the multivariate Gaussian distribution where

computations scale as O(N3) and they are infeasible for large N . Assume that we wish to evaluate the log

density associated with the vector rt ∼ N (0,Σt) written as

logN (rt|0,Σt) = −N
2

log(2π)− 1

2

N∑
i=1

hit −
1

2
vTt vt, (4)

where vt = Λ
− 1

2
t P Tt rt and where we used that log |Σt| = log |Λt| =

∑N
i=1 hit. Clearly, given vt the

above expression takes O(N) time to compute. Therefore, in order to prove O(N2) complexity we need

to show that the computation of vt scales as O(N2). This is based on the fact that the transformed vector

Gij(ωji,t)
T vt takes O(1) time to compute since all of its elements are equal to the corresponding ones

from the vector vt apart from the i-th and j-th elements that become vt[i] cos(ωji,t) − vt[i] sin(ωji,t) and
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vt[j] sin(ωji,t)+vt[j] cos(ωji,t), respectively. Thus, the whole product with allN(N−1)/2 Givens matrices

can be carried out recursively in O(N2) time as shown in Algorithm 2.

Initialize vt = rt.
For i = 1 to N − 1

For j = i+ 1 to N
Set c = cos(ωij,t), s = sin(ωij,t)
Set t1 = vt[i], t2 = vt[j]
Set vt[i]← c ∗ t1 − s ∗ t2
Set vt[j]← s ∗ t1 + c ∗ t2

End For
End For
vt = vt ◦ diag(Λ

−1/2
t )

Algorithm 2: Recursive algorithm for computing vt inO(N2) time; diag(A) is the vector of the diagonal
elements of a square matrix A.

The derivatives of the log density (4) with respect to the vector of log eigenvalues ht is simply −1/2 +

(1/2)vt ◦ vt, where the symbol ◦ denotes element-wise product, and it is computed in O(N) time given that

we have pre-computed vt. The partial derivative with respect to each rotation angle ωij,t takes the form

−vTt
∂vt
∂ωij,t

= −vTt Λ
− 1

2
t

(
GTNN−1 . . . G

T
ij−1

) ∂GTij,t
∂ωij,t

(
GTij+1 . . . G

T
12

)
rt = −αTij,tβij,t

where αij,t = vTt Λ
−1/2
t (GTNN−1 . . . G

T
ij−1) and βij,t = (∂GTij,t/∂ωij,t)(G

T
ij+1 . . . G

T
12)rt and the partial

derivative matrix (∂Gij,t/∂ωij,t) is very sparse, having only four non-zero elements, given by

∂Gij,t
∂ωij,t

[k, l] =



− sin (ωij,t), if k = l = i or k = l = j

cos(ωij,t), if k = j, l = i

− cos(ωij,t), if k = i, l = j

0, otherwise

(5)

where i < j. All αij,t and βij,t, for i < j, can be computed in O(N2) time by carrying out two separate

forward and backward recursions constructed similarly to the Algorithm 2. Then, all final N(N − 1)/2
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dot products αTij,tβij,t that give the derivatives for all Givens angle parameters can be computed in overall

O(N2) time by using the fact that βij,t contains only two non-zero elements, implying that an individual

dot product αTij,tβij,t takes O(1) time. This is due to the fact that the final multiplication in the computation

of β is performed with the sparse matrix ∂Gij,t/∂ωij,t that has only four non-zero elements. A complete

pseudo-code of the above procedure is given in the Supplementary material.

To illustrate the computational cost of the full MSV model and how it increases with T and N, in Table

1, we report the computing times in seconds (on a Windows 1.8GHz PC) per 100 MCMC draws based on

a small Monte Carlo exercise for different combinations of T and N. The numbers in Table 1 are based on

the average computing time (averaged over 100 replications) of fitting our full MSV model to i.i.d. standard

normal artificially generated samples of different sizes. It is clear from the numbers reported in the table

that computing time increases linearly in T and nonlinearly in N, as expected.

Computing times in seconds per 100 MCMC draws
T/N 1 5 10 50 100

50 0.14 0.31 0.73 23.17 173.73
100 0.24 0.55 1.38 45.65 352.52
200 0.44 1.03 2.69 99.25 708.91
500 1.02 2.46 7.20 245.26 1766.69

1000 2.10 5.12 15.29 488.30 3495.84

Table 1: Computing times in seconds for combinations of sample sizes and model sizes

5.2 Sampling the factors in O(TNK) time

The exact Gibbs step for sampling each latent factor vector ft scales as O(K3) while sampling all of such

vectors requires O(TK3) time, a cost that is prohibitive for large scale multivariate volatility datasets. To

see this, notice that the posterior full conditional distribution over ft is written in the form

p(ft|rest) ∝ N (rt|Bft, V I)N (ft|0,Σt), (6)

which gives a density for p(ft|rest) of the form N (ft|M−1t BTV −1rt,M
−1
t ) where Mt = BTV −1B + Σt.

To simulate from this density we need to first compute the stochastic volatility matrix Σt and subsequently
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the Cholesky decomposition ofMt. Both operations have a costO(K3) since the matrix productBTV −1B,

that scales asO(NK2), needs to be computed once across all time instances and therefore will not dominate

the computational cost since typically N � TK. Furthermore, given that there is a separate matrix Mt

for each time instance we need in total T computations of the volatility and Cholesky matrices in each

iteration of the sampling algorithm, which adds a cost that scales as O(TK3). The matrix-vector products

Bft, needed to compute the means of the Gaussians, scale overall as O(TNK), but in practice this will

be much less expensive than the term O(TK3). We note here that a matrix multiplication is the simplest

computation with little overhead that can be trivially parallelised in modern hardware. To avoid theO(TK3)

computational cost we replace the exact Gibbs step with a much faster Metropolis within Gibbs step that

scales as O(T (NK + K2)). Specifically, given that (6) is of the form of a latent Gaussian model, where

N (ft|0,Σt) is the Gaussian prior and N (rt|Bft, V I) the (Gaussian) likelihood, we can apply the auxiliary

gradient-based scheme as described in Section 4.2. By introducing the auxiliary random variable Ut drawn

from

p(Ut|ft) = N (Ut|ft +
ζt
2
Dft ,

ζt
2
I),

whereDft = ∇ logN (rt|Bft, V I) = BTV −1(rt−Bft), the auxiliary gradient-based method is applied as

shown in Algorithm 3. Now observe that the step for sampling y takes O(K2) time because the eigenvalue

(i) Ut ∼ N (Ut|ft + (ζt/2)Dft , (ζt/2)I)

(ii) Propose y ∼ N (y|(2/ζtI + Σ−1t )−1(2/ζt)Ut, ((2/ζt)I + Σ−1t )−1) and accept it with
probability

r = N (rt|By,V I)
N (rt|Bft,V I) exp

{
−(Ut − ft)TDft + (Ut − y)TDy − ζt

4 (||Dy||2 − ||Dft ||2)
}

.

Algorithm 3: Auxiliary gradient-based sampling for the latent factors

decomposition of the covariance matrix ((2/ζt)I + Σ−1t )−1 can be expressed analytically as Pt((2/ζt)I +

Λ−1t )−1P Tt where Σt = PtΛtP
T
t is the spectral decomposition of Σt. Therefore, we can essentially apply

Algorithm 2 to sample y in O(K2) time. Furthermore, the most expensive operation in the M-H ratio above

is the computation of the matrix-vector product Bft which costs O(NK). Therefore, overall for all factors

across time we needO(T (NK+K2)) operations which is typically dominated byO(TNK) sinceK � N .
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Thus, by taking advantage of the analytic form of the eigenvectors of Σt, the computational complexity for

proposing y (when sampling ft) is reduced from O(K3) to O(K2). The crucial sharing of eigenvectors

property is due to the spherical or isotropic covariance matrix (2/ζ)I that is added to Σ−1t and it does not

alter the eigenvectors. In contrast, this does not hold for the Gaussian proposal used in Gibbs sampling

because the inverse covariance matrix of that proposal, given by Mt = BTV −1B + Σ−1t , is obtained by

adding an non-isotropic covariance matrix BTV −1B to the matrix Σ−1t which makes the eigenvectors of

Mt different from those of Σt.

5.3 Full factor MSV model against an MSV model

From a computational perspective, the full factor model has an advantage over the model in (1), because it

deals with missing values more efficiently. Suppose that N = K and that we use the multivariate model

in (1) and the returns vector at time t contains missing values, so that rt = (rt,o, rt,m) where rt,o is the

sub-vector of observed components and rt,m are the missing components. The standard Bayesian treatment

is to marginalize out the unobserved values rt,m and obtain the likelihood term (at time t) given by rt,o ∼

N (0,Σt,o) where Σt,o is the sub-block of the full covariance matrix Σt that corresponds to the observed

dimensions. The computation of Σt,o is expensive since it requires first the computation and storage of the

full matrix Σt which scales as O(N3). Given that we have T such matrices the whole computation scales as

O(TN3) which is prohibitively expensive, especially within an MCMC algorithm where these computations

are repeated in each iteration. A Gibbs step for sampling the missing rt,m, instead of marginalizing them

out, also suffers from the same computational cost. In contrast, for the full factor model the treatment of

missing values is very simple since rt,o and rt,m are conditionally independent given the latent factors ft

and thus the marginalization of rt,m is trivial. The computational burden is moved to the MCMC sampling

of the latent vectors ft, but as we showed in Section 5.2, sampling ft can be achieved in O(TNK) time.

Since in nearly all financial applications of daily asset returns there are many missing values, encoun-

tered for example because in multinational market portfolios holidays differ between countries, we recom-

mend using the full factor model with N = K, B = I and vi > 0 for all i even when the number of assets
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N is manageable.

5.4 Comparison with other approaches

5.4.1 A computational strategy based on sequential Monte Carlo

Another popular computational strategy to implement sequential analysis of state-space models such as our

proposed MSV model is sequential Monte Carlo, see for example Chopin and Papaspiliopoulos (2020). The

main strength of these methods is that they deliver attractive theoretical properties. Traditionally, their main

disadvantage has been that their computational efficiency deteriorates exponentially with the dimension of

the latent space, so their performance can be poor in large-dimensional systems; see for example Rebeschini

and Van Handel (2015). However, recently there has been a lot of work that has delivered operational im-

provements with low computational cost in moderate to high dimensions. In this subsection, we investigate

the option of applying an SMC computational strategy for inference in our MSV model.

We adopt the SMC2 approach (Chopin et al., 2013; Fulop and Li, 2013) in which two set of particles

are carried forward, one for the latent variables and one for the static parameters. We perform a small

experimental study that compares our MCMC algorithm with SMC2. We use subsets of the first T = 100

daily returns of the first N = 8 stocks from the asset returns dataset from Section 6.2 (detailed information

on the dataset can be found in Section 6.2.1) and we perform SMC2 with the default settings as suggested

in the accompanying Python package of Chopin and Papaspiliopoulos (2020). Table 2 compares minimum

effective sample sizes (ESS) per running times (seconds) of SMC2 and our MSV algorithm. We find that

SMC2 performs favorably except when both T and N increase.

T = 25 T = 50 T = 100
MCMC SMC2 MCMC SMC2 MCMC SMC2

N = 3 23.1 17.6 8.6 9.2 3.6 4.4
N = 4 15.3 10.4 6.3 4.7 2.2 3.6
N = 5 9.3 7.0 3.1 4.1 1.0 0.05
N = 6 6.0 5.4 2.2 3.2 0.14 0.09
N = 7 4.2 4.1 0.6 2.0 0.1 0.005
N = 8 1.2 2.8 0.9 0.7 0.1 0.005

Table 2: Minimum Effective sample size per second for MCMC and SMC2 based inference for an N -
dimensional MSV model for time slots T .

18



It is possible to further improve the performance of the naive SMC2 implementation above by adopting

modern implementation strategies, some of which we outline here. The algorithm is parallel in the static

parameter dimension (Duan and Fulop, 2015) and it can benefit from the massive computational power

of GPU parallel architectures (Fulop and Li, 2013, 2019). For fixed ESS, Chopin et al. (2013) state that

the computational complexity of SMC2 is O(NθT
2) where Nθ denotes the number of particles for the

static parameters of the model. In practice this means that, with P parallel processors the same ESS can

be achieved with the same computational cost for
√
PT instead of T data points. A major improvement

may also be achieved by employing a sequential quasi-Monte Carlo strategy (Gerber and Chopin, 2015)

that achieves a O(NθT ) rate of convergence. Finally, a simple idea (Chopin and Papaspiliopoulos, 2020,

Section 18.3) that may dramatically improve the efficiency of SMC2 is based on the observation that it

seems preferable to run many SMC2 replicates with lower Nθ and then average the results. Chopin and

Papaspiliopoulos (2020) report that 25 replications of the algorithm with Nθ = 103 produce the same level

of variance reduction as with one run with Nθ = 104. By additionally exploiting 25 parallel cores, this

would imply that this simple method has the potential to achieve the same variance reduction in data size

five times larger. Thus, our conclusion is that SMC2 implementation accompanied with a selection of the

above strategies can perform better than MCMC for moderate values of N and T . The comparative merits

of the two algorithms in high dimensions and large data sizes requires further study and it is beyond the

scope of this paper.

5.4.2 Comparison with a Wishart autoregressive process

Another modelling approach in multivariate stochastic volatility models that has recently attracted the at-

tention of the machine learning community is the Wishart autoregressive (WAR) process introduced by

Gouriéroux et al. (2009). They provide an alternative interpretation of a WAR process of order one,

WAR(1) as an outer product of Gaussian autoregressive vector processes as follows. Suppose that uij(t)

for i = 1, . . . , ν and j = 1, . . . , N are zero-mean Gaussian processes with an exponential kernel function
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k(t, s) = exp(−λ|t− s|) with λ > 0. Then

Σt =

ν∑
i=1

Lui(t)ui(t)
TLT ∼WD(V, ν)

where ui(t) = (ui1(t), . . . , uiN )T , L is the Cholesky decomposition of the N ×N matrix V and WD(V, ν)

denotes the Wishart density with scale matrix V and degrees of freedom ν with ν > N .

Wilson and Ghahramani (2010) generalise the WAR processes by varying the kernel of the Gaussian

process and propose an MCMC algorithm to estimate the parameters u and L when some observed time se-

ries rt are modelled as N-dimensional zero mean, normally distributed, time series vectors with covariances

Σt. They also suggest setting ν = N + 1 which they found to be effective in their 3-dimensional WAR(1)

multivariate stochastic volatility dataset applied on exchange rate returns.

The most serious drawback of the Wishart process approach is that it suffers from the usualO(N3) cubic

complexity due to the need to invert the matrix Σt to evaluate the likelihood function. Thus, Wishart process

models are not able to scale well with large N . To provide an illustration on the resulting covariance matrix

estimates of the WAR and how they compare to our MSV approach, we use the daily dataset of Section 6.2

(detailed information on the dataset can be found in Section 6.2.1) and perform Bayesian inference for the

WAR(1) model by applying a Hamiltonian Monte Carlo sampler (Girolami and Calderhead, 2011). A small

subset based on the first N = 3 stocks and T = 50 data points of our daily returns dataset comprising of

N = 571 and T = 2017 took about 11 hours to run 10,000 iterations (5,000 warm-up) in PyStan (which

uses the fast HMC algorithm written in C++) (Carpenter et al., 2017) on a Windows 1.8GHz PC whereas

our MSV model ran in 78 seconds.

In addition to the computational complexity, a notable difference between the two models is that the

WAR(1) model has νN = N(N + 1) = 12 latent autoregressive processes whereas the MSV model has

N(N + 1)/2 = 6. As a result, a small dataset of T = 50 does not allow the Wishart model to fit the data

adequately, producing smooth estimates that are dominated by the smoothing parameters priors. We use

λ ∼ Ga(1, 1), a LKJ(2)-correlation prior (Lewandowski et al., 2009) for the lower part ofLD and aN (0, 10)

for the diagonal elements of LD. Figure 1 presents the data and the posterior mean estimates of MSV and
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WAR(1) models. The smoothness in the WAR(1) estimates is evident when a ‘jump’ appears in the volatility

of returns: the MSV models responds faster. We expect that this phenomenon will be alleviated when T

increases but the computational complexity of the WAR(1) model makes such comparison infeasible.
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Figure 1: Data (first row) and posterior means of variances (second row) and covariances (third row) for 3
stock returns in 50 time slots. Blue solid line: MSV model; Orange dashed line: WAR(1) model.
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6 Applications

6.1 Small-dimensional macroeconomic application

6.1.1 The stochastic volatility VAR model

Stochastic volatility models have received a lot of attention in the applied macroeconomic literature, due to

their ability to accommodate structural changes or breaks in the volatility of macroeconomic series. There

has been considerable evidence (Sims (1980), Bernanke and Mihov (1998), Kim and Nelson (1999), Mc-

Connell and Perez Quiros (2000), Sims and Zha (2006), Primiceri (2005)) documenting that inflation and

unemployment in the U.S. have undergone a period of high volatility during the oil shocks in the late 1970s

and early 1980s, followed by an exceptionally low volatility period 1984-2000 known as the Great Mod-

eration. Moreover, the increase in financial volatility during the 2007-2008 financial crisis has generated

renewed interest in the estimation of changes in macroeconomic volatility.

The standard approach to the estimation of time-varying volatility in the macroeconomic literature has

been to use multivariate time series models such as vector autoregressions (VARs) with stochastic volatility.

This approach allows for joint dynamics of the series while modelling the stochastic volatility in a multi-

variate fashion also permits the covariances between the series to evolve over time. It is straightforward to

employ the MSV model of Section 2 or its factor extension to the residuals of a VAR(p) model

yt = B0 +
∑p

i=1
Biyt−i + εt, εt|Σt ∼ N (0M ,Σt). (7)

The standard approach in the applied macroeconomic literature (e.g. Primiceri (2005)) for maintaining

symmetry and positive definiteness of the stochastic covariance matrix has been to use a Cholesky decompo-

sition of the form Σt = A−1t ΛtA
−1′
t , assuming that the elements of the diagonal Λt follow random walk in

logarithms1, and modelling the elements of the inverse lower unitriangular matrix in the Cholesky decompo-

sition A−1t as random walks. This approach has become prevailing in the literature with vast work applying

1To sample from the geometric random walks, Primiceri (2005) employs a procedure by Kim et al. (1998b) and Cogley and
Sargent (2005) use a Metropolis within Gibbs step from Jacquier et al. (1994a).
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the algorithms from Cogley and Sargent (2005) and Primiceri (2005) to different macroeconomic problems.

One of the drawbacks of this approach is that the ordering of the variables in the VAR model matters for

inference. The triangularisation of the covariance matrix is useful for conducting structural analysis as in

Primiceri (2005), where the ordering of the variables serves as an identifying restriction for the monetary

policy shock. However, in models where structural shock analysis is not required and the reduced-form

VAR model is used for estimation or forecasting, diagonalisation has only been employed as means to fa-

cilitate estimation of the drifting volatilities (Cogley and Sargent (2005), Clark (2012), Koop and Korobilis

(2013), Carriero et al. (2016), Koop and Korobilis (2019)) and has the undesirable effect of making the

model-implied estimates and forecasts depend on the ordering of the variables in the system. To make this

clear, suppose that we have an M × 1 dimensional vector yt generated by the stochastic volatility VAR(p)

model in (7). Then the typical element of Σt is given by Σij,t =
∑M

k=1 λkk,tãjk,tãik,t, where λkk,t is the kth

diagonal element of Λt, and ãjk,t is the jkth element of the lower unitriangular A−1t . For a system of three

variables, for example, this implies the following parametric restrictions on Σt :

Σt =


λ11,t λ11,tã21,t λ11,tã31,t

λ11,tã21,t λ11,tã
2
21,t + λ22,t λ22,tã32,t + λ11,tã21,tã31,t

λ11,tã31,t λ22,tã32,t + λ11,tã21,tã31,t λ11,tã
2
31,t + λ22,tã

2
32,t + λ33,t

 .

The order of the variables in the system together with the assumptions on the stochastic law of motion and

the distribution of the elements of At and Λt therefore have an implication on the stochastic properties of

the elements of Σt. For example, when geometric random walk process with Gaussian errors is assumed

for the elements of Λt and Gaussian random walks are assumed for the elements of A−1t , the stochastic

volatility of the first variable in the system, Σ11,t, is log-Normal, while the stochastic volatility of the second

variable involves multiplicative terms between elements of Λt and quadratic terms of the elements of the

inverse of At whose elements follow Gaussian random walks. In general, there is M ! number of possible

permutations, which can be extremely large even for small M . For example, in Koop and Korobilis (2013)

M = 25, and there are over 15 quadrillion possible orderings (1.55 × 1025) which could potentially lead
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to very different conclusions, and it is clearly computationally infeasible to check all possible permutations.

In contrast, our MSV specification on Σt is invariant to ordering of the variables in the system, and hence

robust to such permutations.

To illustrate how the order of the variables can lead to empirically different conclusions, we estimate a

VAR model on U.S. unemployment, inflation and nominal interest rate for the period 1948Q1-2019Q2, using

the approach of Primiceri (2005) and report the estimated pairwise covariances and correlations between the

three variables for the six possible different orderings. Figure 2 presents the estimated paths of the off-

diagonal elements of Σt, the top panel displays the estimates of a constant-parameter VAR(2) with our

multivariate stochastic volatility (MSV) specification, the bottom panel displays selected orderings of a

constant-parameter VAR(2) with volatility specification as in Primiceri (2005), and the dotted lines show

the 68% credible sets (the Supplementary material contains the estimates of all six orderings). It is clear

from Figure 2 that changing the order of the variables in the VAR can result in completely different paths

for the estimated covariances over time: when inflation is ordered last, after unemployment and interest

rate, the estimated covariance between unemployment and inflation is positive around the 1980s, while

when inflation is ordered second, after interest rate and before unemployment, the estimated covariance

between unemployment and inflation is negative at the same period. Similar discrepancies can be found

when looking at the estimates under various permutations for the covariance between the nominal interest

rate and inflation, or unemployment respectively.

Figure 3 further reiterates the point by displaying the estimated paths of the pairwise correlations (taking

into account the time variation in the diagonal elements), the top panel displays the estimates of a constant-

parameter VAR(2) with our dynamic MSV specification, the bottom panel displays selected orderings of a

constant-parameter VAR(2) with volatility specification as in Primiceri (2005) (the Supplementary material

contains the estimates of all six orderings).
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Figure 2: Estimated off-diagonal elements of the covariance matrix

6.1.2 Extension to time-varying autoregressive parameter VAR

Next, we consider further allowing the autoregressive parameters to change over time. For our MSV specifi-

cation, we estimate the time variation in the parameters, using the kernel-weighted quasi-Bayesian approach

of Petrova (2019), which models the drifts in the autoregressive matrix nonparametrically with the use of a

kernel (additional details on the extra Gibbs step in the MCMC can be found in the Supplementary material).

For the alternative specification, we use Cholesky volatility and random walk processes for the autoregres-

sive parameters as in Primiceri (2005). Figures 4 and 5 present the estimated paths for the covariances and

pairwise correlations respectively after allowing for time variation in the autoregressive parameters, for our

the time-varying parameter TVP-MSV model and for selected permutations of the TVP Primiceri (2005)

model (the Supplementary material contains the estimates of all six orderings). It is clear that even after

allowing for time-variation in the autoregressive matrices and hence in the conditional mean of the series,

the uncovered discrepancies for different permutations remain and different decisions on the ordering of the
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Figure 3: Estimated pair-wise correlations

variables can lead to different empirical conclusions.

6.1.3 The long-run volatility and inflation persistence

Next, we estimate the long-run volatility of the three series, computed as
∑∞

j=0C
j
tΣtC

j′
t , where Ct is the

corresponding time-varying companion matrix of the VAR model. The top panel of Figure 6 presents the

volatility estimates with our TVP-MSV VAR model, and the bottom panel presents the estimates of the TVP

Cholesky specification with the variables ordered as in Primiceri (2005) (unemployment, inflation and the

nominal interest rate).

From Figure 6, there are several interesting results. First, for the estimated long-run volatility of unem-

ployment using our TVP-MSV model, we find that the spike in volatility during the 2008 financial crisis

is much larger compared to the estimated volatility using the Cholesky specification. Interestingly, it is

also larger than the spike estimated with our model during the oil crises periods. Second, our estimated

long-run interest rate volatility is much lower during the period of Paul Volcker as chairman of the Fed than
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Figure 4: Estimated off-diagonal elements of the covariance matrix

the estimates with the Cholesky specification of the model, which we think is reasonable particularly since

the long-run volatility can be viewed as the volatility of the series when an infinite horizon in the future

is considered. The large difference in the estimated volatilities is partly a consequence of the difference

in the modelling choices for the autoregressive parameters, since the random walk specification proposed

by Cogley and Sargent (2005) delivers draws for the autoregressive matrix with spectral radius close to the

unit circle (even when rejection sampling is employed to discard unstable draws). But, crucially, the main

difference is due to the different modelling approaches for the multivariate stochastic volatility.

Finally, we compute the Cogley et al. (2010)’s measure of inflation persistence h steps given by

R2
t,h = 1−

eπ

[∑h−1
j=0 C

j
tΣtC

j′
t

]
e′π

eπ

[∑∞
j=0C

j
tΣtC

j′
t

]
e′π

,

where eπ is a selection vector which select the inflation series. R2
t,h measures the proportion of total vari-
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Figure 5: Estimated pair-wise correlations

ation explained by past shocks, with values close to one implying that past shocks die out slowly implying

that inflation was more persistent and predictable. Figure 7 presents the posterior median of R2
t,h and the

corresponding 68% credible sets, computed at each point in time and for horizons of one quarter, two and a

half years, and five years ahead for our TVP-MSV model and the TVP Cholesky specification with ordering

as in Cogley et al. (2010).

The main finding from Figure 7 is that we find a larger fall in inflation persistence after the beginning

of the Great Moderation if we use the MSV specification than if we use the Primiceri (2005)’s specification

for the volatility at short horizons. On the other hand, our estimate of the R2
t,h dies much quicker over

the horizon, implying that inflation is virtually unpredictable five years in the future over all periods of the

sample.
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Figure 6: Long-run volatility estimates

6.2 Large-dimensional financial application to volatility of asset returns

6.2.1 Data and MCMC specifics

In this Section, we illustrate how to apply our methodology to modelling daily returns from 600 stocks of

the STOXX Europe 600 Index downloaded from Bloomberg between 10/1/2007 to 5/11/2014. The cleaning

of the data involved removing 29 stocks by requiring for each stock at least 1000 traded days and no more

than 10 consecutive days with unchanged price. The final dataset has N = 571 and T = 2017. There were

36340 missing values in the data due to non-traded days, asynchronous national holidays, etc. A smaller

dataset was created by selecting 1000 days and the 29 stocks from the Italian stock market. This dataset was

used for a large empirical study to compare our models with independent factor MSV models.

All MCMC algorithms in this Section has an adaptive time for burn-in consisted of 104 iterations with

resulting acceptance probability of 50 − 60% for all auxiliary Langevin steps. After this adaptive burn-in

phase all proposal distributions are kept fixed and then we further perform 104 iterations to finally collect
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Figure 7: Inflation Persistence

103 or 2× 103 (thinned) samples for the large and small datasets respectively.

6.2.2 Predictive ability

We compare the predictive ability of our full factor MSV model against an independent factor MSV model

in which all factors are assumed to be uncorrelated. The basis of our comparison is the predictive likelihood

function. Each model produces a predictive distribution and therefore a predictive likelihood can be evalu-

ated for a future observation. The comparison of these predictive likelihoods decomposes the Bayes factor

one observation at a time and a cumulative predictive Bayes factor through a future time period, which serves

as a Bayesian evidence in favour of a model based on predictive performance; see, for example, Geweke

and Amisano (2010). Denote by Xt the dynamic latent path and by θ all the static parameters of the model.

Assume that at time T we have obtained MCMC samples Xs
1:T and θs, s = 1, 2, . . . , S based on observed

data r1:T = (r1, r2, . . . , rT ). For each model, the one-step-ahead predictive likelihood conditional on θ is
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given by

p(rT+1|r1:T , θ) =

∫
p(rT+1|r1:T , θ)dF (XT+1 | r1:T , θ)

and a Monte Carlo estimate is obtained as

p̂(rT+1|r1:T , θ) = S−1
S∑
s=1

p(rT+1|Xs
T+1, θ)

where Xs
T+1 are samples from the transition densities (1) and θ is fixed at the posterior mean estimate at

time T . This procedure is repeated producing M one-step-ahead predictive likelihoods for data rT+1:T+M

where θ is kept fixed at the sample mean S−1
∑S

i=1 θ
s and the required samples from the density f(Xt |

r1:t, X1:t−1) for t = T + 1, . . . , T + M − 1 are obtained through the auxiliary particle filter of Pitt and

Shephard (1999b); see Carvalho et al. (2010) for a review on particle learning. Thus, marginal likelihoods

for each model can be obtained through

p̂(r1:T+M |r1:T , θ) =
T+M∏
t=T+1

p̂(rt+1|r1:t, θ)

and the predictive Bayes factors in favor of one model against the other can be readily calculated, see

Geweke and Amisano (2010), Pitt and Shephard (1999a).

The smaller dataset based on 29 stocks was selected by excluding the last 100 days of the larger dataset

such that T = 1000 andM = 100, representing a predictive period of about 4 months. Marginal likelihoods

are calculated for all full and independent factor MSV models. For the class of independent factor MSV

models the best model turned out to be the 2-factor model with estimated log-Bayes factor 50.9 against

the second best model with 3 factors. A log-Bayes factor greater than 5 is considered to be a very strong

evidence in favour of one model against the other, see Kass and Raftery (1995). Actually the marginal

likelihood decreased with the number of factors, implying that the dynamic nature of the covariance structure

cannot be captured by increasing the size of independent latent processes, see Figure 8. This also reflects the

inherent limitation of the independent factor models that attempt to estimate dynamic correlations through
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(static) linear combinations of univariate independent stochastic processes. More latent processes just add

further noise resulting to a fall in the Bayes factors.

Figure 8: Logarithm of marginal likelihood. Dotted, blue, cross: full factor model with exchangeable priors;
Dotted, green, star: full factor model with exchangeable priors and σi = σ; Solid, red, circle: full factor
model with independent priors; Dashed, black, square: Independent factor model.

The best full factor MSV model turned out to be the 7-factor model with log-Bayes factor 385.24 against

the independent 2-factor MSV model. The largest 29-factor model had a log-Bayes factor of 71.10 in favour

against the best independent factor model. There is overwhelming evidence that full factor models provide

better predictions. Moreover, the general picture of Figure 8 indicates that the full factor MSV model is

more robust, across number of factors, when compared with the independent factor model.

Figure 8 also depicts the log-marginal likelihood of the full factor model in which, as a robustness

check, independent N(0, 103) priors were used for φ̃hi |µh, λh instead of the exchangeable priors in (2) and

the full factor model in which the elements vi of matrix V are assumed to be equal to a fixed variance σ2. It

seems that both the exchangeability assumption and allowing for different error variances vi achieve some

predictive ability compared with a plain MSV model with independent priors and equal variances vi = σ2

with all our specifications performing considerably better than the independent factor model.
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6.2.3 Computational efficiency

One may question whether the increased efficiency achieved by sampling the factors with the Metropolis

sampler of Section 5.2 achieves a realistically faster algorithm than the simple Gibbs sampling algorithm.

Figure 9 presents how computation time scales with number of factors in the large dataset. The left panel

illustrates that for large problems the Gibbs sample has a prohibitive computational cost, whereas the right

panel demonstrates how the computing time ratio increases with the number of factors.

In smaller examples with few factors in which the computation of the Gibbs sampler is feasible, it is of

interest to inspect the Markov chain mixing of the two algorithms. For the small dataset, Table 6.2.3 presents

the effective sample sizes and the computing times for the 7-factor full MSV model with the Metropolis and

Gibbs samplers. The parameters inspected are the 29 × 30/2 elements of the 29-dimensional covariance

matrix ΣT based on 10, 000 unthinned iterations. The computing times are comparable, but the Metropolis

algorithm clearly outperforms the Gibbs sampler in terms of Markov chain convergence efficiency.

Method Time(s) Minimum ESS Maximum ESS s / Minimum ESS
Metropolis 2954.2 3025.3 6538.7 0.98

Gibbs 3339.2 122.2 4164.3 27.33

Table 3: Effective sample sizes (ESS) and computing times in seconds (s) for sampling the factors in the
7-factor full MSV model

6.2.4 Results from the large dataset

To apply our full factor MSV model to the large dataset we need to choose the number of factors K. The

scale of the problem makes the calculation of marginal likelihoods for each K computationally infeasible,

so we propose comparing one-step ahead forecasts of different K against a proxy. We use as a proxy for

ΣT+1 the realized covariation matrix calculated as the cumulative cross-products of five minutes intraday

returns; see Andersen et al. (1999) and Barndorff-Nielsen and Shephard (2004). If an element of an N ×N

covariance matrix σij is estimated by the elements of the posterior mean of ΣT+1 with elements σ̂ij and

its corresponding proxy estimate is σ∗ij , we use as discrepancy measures to test how competing models

perform the mean absolute deviation given as N−2
∑

i,j |σ∗ij − σij | and the root mean square error given by
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Figure 9: Left panel: Average computing time for Metropolis-Hastings (circle) and Gibbs sampling (square)
algorithms. Right panel: Computing time ratio between Gibbs sampling and Metropolis-Hastings algo-
rithms.

[N−2
∑

i,j(σ
∗
ij − σij)2]1/2.

For K = 20, 30 and 40 the corresponding values of these quantities were (0.0605, 0.0601, 0.0635) and

(0.0567, 0.0553, 0.0614) respectively, so there is an indication that out of sample forecasting ability of the

STOXX 600 volatility matrix is better with around K = 30 factors. Sometimes prediction of more days

ahead might be of interest, for example when portfolio re-allocation is performed in different time scales, so

we also predicted ΣT+2 and again the corresponding discrepancy measures were (0.0763, 0.0720, 0.0811)

and (0.0775, 0.0697, 0.0867) respectively, verifying that K = 30 factors have a comparatively better pre-
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dictive ability.

Figure 10: Next day minimum variance portfolio weights of 571 stocks of STOXX Europe 600 index based
on 30 factors against those based on 40 factors.

Figure 10 presents the 571 minimum variance portfolio weights with 30 and 40 factors calculated as

Σ−1T+1ι/ι
′Σ−1T+1ιwhere ΣT+1 is estimated with the MCMC-based posterior predictive mean and ι is anN×1

vector of ones. It is clear that the magnitude of the weights remains considerably constant especially in the

financially important values away from zero. By updating the parameters of our model on a daily basis, this

minimum variance portfolio produced, over 10 consecutive days, mean daily returns and standard deviations

0.0016 (0.0056), 0.0017 (0.0044) and 0.0013 (0.0045) for the 20, 30 and 40 factor models respectively. The

equally-weighted portfolio obtained smaller variance with corresponding values 0.0015 (0.0078).

Figures 11 and 12 are image plots of all estimated daily pairwise 571 × 570/2 correlations and 571

variances of all stocks across the whole period under study. It is interesting that these graphs allow visual

inspection of European financial contagion events by inspecting, vertically, simultaneous correlation and

volatility increases. Indeed, it is clear that our model has identified the early 2009 financial crisis with

events such as plummeting of UK banking shares, all-time high number of UK bankruptcies and eight U.S.

bank failures. Moreover, one can see the mid-2012 crisis after a scandal in which Barclays bank tried to

manipulate the Libor and Euribor interest rates systems.
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Figure 11: Posterior mean correlations of 571 stocks of STOXX Europe 600 index

Figure 12: Posterior mean volatilities of 571 stocks of STOXX Europe 600 index
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7 Conclusion

The contribution of the current paper is to propose a novel multivariate stochastic volatility model which has

three important advantages over existing approaches in the literature. First, it allows the entire covariance

matrix of potentially large system to evolve stochastically without imposing additional restrictions such as

independence across equations or constant off-diagonal elements. Second, our MCMC algorithm is designed

to handle large dimensional systems and achieves computational complexity of squared, rather than cubic,

order for the evaluation of the likelihood. For very large dimensional problems, we also provide a factor

model extension to our MSV model. Third, our multivariate stochastic volatility modelling framework is

invariant to permutations of the variables in the system, an issue from which methods using the Cholesky

decomposition widely applied macroeconomic VAR models with stochastic volatility suffer from.

The literature on financial econometrics suggests that univariate stochastic volatility models could be

enriched by including generalisations such as allowing for non-Gaussian fat-tailed error distributions and/or

jumps for the returns and leverage effects expressed through asymmetries in the relation between past neg-

ative and positive returns and future volatilities; the review papers by Asai et al. (2006) and Chib et al.

(2009) discuss how these can be incorporated in factor models in which the factors are modelled as inde-

pendent stochastic volatility processes. These are possible important extensions of our approach, but they

are not simple in a mutlivariate large-dimensional setup, especially if scalability of the MCMC algorithm is

of primary concern, and are left to future research.
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Supplementary material

The Supplementary material provides MCMC specifics and the additional macroeconomic results of Section

6.1, full details about the prior distributions over the parameters (θh, θδ) and (B, σ2), a description of the

steps for sampling these parameters, and a peudo-code for the recursive algorithm for computing the partial

derivatives with respect to the rotation angles.
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