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ABSTRACT Isolated microgrids powered by renewable energy sources, battery storage, and backup diesel
generators need appropriate demand response to utilize available energy and reduce diesel consumption
efficiently. However, real-time demand-side management has become a significant challenge due to the
communication time-delay issue. In this paper, a distributed model-free strategy is proposed to manage
the demand of Electric Water Heater (EWH) units. The distributed artificial intelligence technology based
on Reinforcement Learning (RL) is adopted to independently control the 150 EWHs using a virtual tariff.
Two different strategies are proposed to generate the virtual tariff and they are compared to each other
to investigate the impact of communication time-delay to the proposed RL algorithm in real-time control
scenario. The first strategy is based on measuring the battery State of Charge (SOC) in real time while the
second method is based on predicting the SOC 24-hours in advance using an Artificial Neural Network
(ANN). The results show that the communication time-delay greatly influences the convergence result of
the first method while the second method showed high immunity. The results also show that the proposed
algorithm reduces the use of energy consumption by an average of 8.91%(6.675kW) for each EWH, which
symbolizes the viability of the proposed approach.

INDEX TERMS Energy storage, distributed control, reinforcement learning, electric water heaters, Q-
learning, time-delay.

Nomenclature
α The learning rate
η The learning rate coefficient
µ The mean value
ρ The mass density of the water
σ The standard deviation value
ϕ1(t) The Gaussian density
ϕ2(t) The stochastic delay density
A The cross-sectional vector area
at The action
Et Reward for running the EWH
erf(·) The error function
Lt Reward for water tank temperature
Mf The mass of water in the full tank
Mt The demand for inlet cold water to the tank
rt Total reward function

st The state
t The time index
To The ambient temperature (◦C)
Tt The current average water temperature in the tank
Tariffk Virtual tariff
Templ Water temperature
ToD Time of day
v The flow velocity of the mass elements
Q The heat rate (kW) of the EWH
UA The heat loss coefficient

I. INTRODUCTION

THE world is rapidly turning into a global village, and
the requirement for energy and other related services is

also increasing. However, 1.4 billion people worldwide still
lack access to electricity, and about 85% of them are live
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in rural areas [1]. The CO2 emissions from the electricity
and commercial heat used in buildings have increased to
10GtCO2 [2]. Due to the depletion of fossil fuels and their
associated environmental impact, more distributed generators
based on Renewable Energy Sources (RES) are penetrating
the current power systems market. This will not only mitigate
the global climate change caused by fossil fuel but also
support social and economic development of remote and
isolated communities [3]–[5].

Energy storage is considered as an essential element to
balance the generation and demand. Energy management of
storage and non-critical loads is also vital to improve the
economic performance and reliability of an environmentally
friendly power system [6]. The domestic hot water consump-
tion accounts for up to 40% of the total domestic energy
usage [7]. An effective control strategy needs to optimize
the total power consumption including domestic hot water
consumption among renewable generators, energy storage
systems, and other facilities to minimize fuel consumption
while meeting load demand. It can not only help these
traditional power networks upgrade to smart grids, but also
reduce the cost of fossil fuels in the entire island power
system, optimize the energy structure, and reduce greenhouse
gas emissions. Many control and optimization approaches
have been investigated to achieve optimal results in energy
systems such as Linear Programming (LP) [8], Mixed Integer
Linear Programming (MILP) [9], [10], Mixed Integer Non-
Linear Programming (MINLP) [11], and Genetic Algorithm
(GA) [12]. These existing traditional analytical approaches
are quite cumbersome and need several simplifying assump-
tions. They all require a detailed mathematical model of the
system and some of them require system linearisation.

Artificial Intelligence (Al) based methods can, however,
perform complex non-linear non-convex optimization and
predict the energy demand and generation without the need
for a mathematical model [13]. There has been a growing
interest in the application of Al-based algorithms in energy
systems. Several studies have also been presented to predict
power consumption in energy systems, including Artificial
Neural Networks (ANN) [14], Multiple Linear Regression
(MLR) [15], Support Vector Machine (SVM) [16], and De-
cision Tree (DT) [17]. For energy prediction in buildings,
Mechaqrane et al. [18] presented a performance comparison
between a linear Auto-Regressive model with exogenous
input (ARX) and a neural network ARX (NNARX) model
to forecast the indoor temperature, with the latter resulting in
improved efficiency.

In recent years, RL has been used to implement De-
mand Response (DR) and distributed energy management
strategies for smart homes and smart grids [19]–[21]. Xu et
al. proposed a completely distributed multi-agent associated
with RL to optimize the reactive power dispatch. The pro-
posed Q-learning algorithm can increase the learning speed
and achieve near-optimal solutions [22]. In [23], a coop-
erative RL algorithm is proposed for distributed economic
dispatch without using a specific mathematical model. A

Markov decision process (MDP) modelled the energy trading
process and an RL algorithm was utilized to optimize the
decision in the MDP [24]. The simulation results verified
the performance of the proposed demand side management
system.When interacting with a specific environment, RL-
based optimization algorithms can learn and choose actions
based on experience [25]. In contrast, traditional optimization
methods need specific system’s and environmental mathe-
matical models, which require a high degree of data, knowl-
edge of control, and expertise. In [26], a distributed energy
management strategy for a combined heat and power system,
and a vanadium redox battery was introduced to optimize the
discharging policy using RL. A deep RL based energy trading
scheme with multiple Microgrids was proposed in [27] to
optimize the energy trading policy. Reference [28] presented
an RL based distributed energy management scheme to
maximise the profit through energy management and load
scheduling without prior information. Another distributed
operation strategy was proposed in [29] to operate a com-
munity battery energy storage system based on a double
deep Q-learning method. In [30], the authors presented a
decentralised Markov Decision Process (MDP) to solve an
online decentralised and cooperative dispatch problem in
order to calculate the approximate Q-value function con-
sidering communication delay. These studies, however, did
not consider the demand side management of Electric Water
Heater (EWH) units. In fact, EWHs are responsible for nearly
30% of the electricity utilised by domestic consumers in
winter-dominated climates [31].

The application of RL for demand side management of
EWHs started to receive some attention in the literature. AI-
Jabery et al. in [32] proposed a fuzzy Q learning to control an
EWH, and showed that the proposed algorithm could achieve
global convergence. In [33], the proposed Q learning and
action dependent heuristic dynamic programming methods
are shown to reduce the cost of domestic EWHs energy
consumption by approximately 26% and 21%, respectively.
Reference [34] presented a batch RL approach to control
a cluster of 100 EWHs to decrease the daily cost within a
learning period of 45 days. The study in [35] applied fitted
Q-iteration algorithm to an EWH to control the heater’s
ON/OFF actions. It is shown that energy consumption was
reduced by 15% in comparison to that when a thermostat
controller was used. Somer et al. in [36] proposed a model-
based RL approach to optimize the heating cycles of an
EWH to maximise the self-consumption of the local PV
generation. Six residential buildings were tested and the self-
consumption of PV generation was increased substantially.
Another RL scheme to optimize the hot water production was
presented in [37]. A set of 32 houses in the Netherlands was
used, and the energy consumption was reduced by roughly
20% without affecting customers’ comfort.

In the above studies, EWHs are considered as a standalone
system with their own constraints and they are not considered
as an integral part of a larger power network that also includes
intermittent RES, limited capacity energy storage systems,
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diesel generators, and Information and Communication Tech-
nology (ICT) systems. Taking a comprehensive approach that
also includes the influence of time-delay is an important
aspect to realise reliable smart grids in practice. Moreover,
in many islands, the energy tariff is subsidised and fixed,
and thus there is no incentive for consumers to change their
consumption behaviours. Furthermore, lacking knowledge
of each consumer’s demand profile makes the centralised
control of EWH demand less efficient in reducing total power
demand while satisfying individual consumer’s comfort re-
quirements. Therefore, this paper proposes an intelligent hi-
erarchically distributed strategy based on RL to control EWH
units in isolated microgrids. The distributed controllers use a
virtual dynamic tariff that is generated centrally. The virtual
tariff can be determined and broadcasted hourly using direct
measurement of Battery’s SOC. Realising that this method
makes the system prone to communication delays and packet
loss, an alternative approach that is based on prediction is
proposed. This method requires the tariff to be broadcasted
only once a day. The main highlights and contributions of the
paper can be summarised as follows:

1) This paper proposes a distributed control framework
to isolated networks whose energy tariff is fixed (as
the case in Ushant Island). The proposed framework
uses distributed controllers to optimize 150 electric
water heaters independently. The main consideration
is that the water consumption habits of each household
are different so that the distributed approach can more
accurately control the water temperature and reduce
diesel energy consumption.

2) The distributed RL controller based on a distributed
Q-learning algorithm is adopted. It can learn how to
choose actions based on experience and be directly ap-
plied in real-time to reduce diesel consumption effec-
tively with different EWH demand profiles. Seven dif-
ferent scenarios of different combinations of RES and
energy storage are considered. Simulation results show
that the energy consumption of the diesel with RL al-
gorithm is reduced by an average of 8.91%(6.675kW)
compared to controlling the EWHs by traditional hys-
teresis control, the proposed algorithm can support
the service provider in optimizing the overall energy
operation.

3) A dynamic virtual tariff as a cost indicator is proposed
to provide a directive/incentive signal for the local
RL based controllers to optimize diesel consumption.
To investigate the impact of potential time delays on
RL algorithm. Two approaches, a direct measurement
(DM) strategy and prediction strategy, are proposed
for generating the virtual tariff. The simulation results
show that the communication time-delay will produce
certain fluctuations during the iterations, and the final
convergence results will also be affected. It demon-
strates that the prediction strategy allows the frame-
work to execute the algorithm on the basis of ensuring

communication quality. Results show that the errors
caused by the prediction strategy are negligible.

The rest of this paper is organised as follows. The micro-
grid network is described in Section II along with the pro-
posed virtual tariff. The electric water heater mathematical
model, and the time-delay model are introduced in Section
III. The proposed algorithms are introduced in Section IV.
In Section V, simulation results for different scenarios are
presented. Finally, section VI presents the conclusion.

II. MICROGRID DESCRIPTION AND DYNAMIC VIRTUAL
TARIFF
The standalone microgrid under study is shown in Fig. 1. It
consists of RES, a battery energy storage system (BESS), a
diesel generator, and domestic loads. When the diesel gener-
ator is not operating, the battery unit acts as the grid forming
unit controlling the bus voltage and frequency, and hence
absorbing surplus power and supplying shortage power.
However, the battery has a finite capacity and thus when
it is fully charged, renewable energy production has to be
curtailed. Similarly, when it is fully discharged, either some
of the loads have to be shed or the diesel generator has to
be dispatched. The required capacity of a BESS is normally
determined by a set of various factors, such as uncovered
energy demand, and excess renewable energy generation,
in addition to the technical and financial constraints. If the
battery is to be sized to completely eliminate the need for the
diesel generator, i.e., rely 100% on RES, the battery capacity
has to be large enough to cover any shortage in energy even if
it happens very rarely. This may result in a high capital cost
of the battery and, therefore, it is more economical to size
the battery to cover 80% or 90% of the renewable energy
generation and rely on the diesel generator to cover the rest.
On the other hand, DR can play an important role in reducing
the diesel usage and the battery size.

A. VIRTUAL TARIFF
The general purpose of any DR is to shift the load demand
to time periods when the electricity price is low. However, in
many islands like Ushant, the energy tariff is fixed and thus
traditional demand response becomes difficult. To deal with
this hurdle, a dynamic virtual tariff is proposed to optimize
the distributed operation of EWHs independently. This tariff
is generated at the energy management system (EMS) based
on the surplus/shortage of renewable energy generation and
hence the battery SOC and the consumption of diesel.

When the SOC is at its maximum limit, there is surplus in
renewable energy. When the SOC is between its maximum
and minimum limits, the renewable energy and battery are
able to supply power demand. However, when the SOC
reaches its minimum limit, there is shortage in energy the
diesel generator must be started to cover the deficiency.
Therefore, the tariff can be simply divided into three levels
to reflect surplus/shortage of renewable energy. The value
of proposed tariff has a scale of 1 to 3. When the SOC
is at its maximum limit, the tariff is set to level 1. For
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FIGURE 1. Islanded Microgrid and control strategy framework

SOC range from 30% to 100%, the tariff is set to level 2.
And when the SOC reaches its minimum value of 30%, the
tariff is set to level 3 which means that the battery is fully
exhausted, discharge is not allowed, and the diesel generator
is operating.

The proposed control structure is shown in Fig. 1. It con-
sists of a centralised controller that generates the virtual tariff
at the central EMS and distributed controllers for EWHs. Two
strategies for generating the virtual tariff are proposed:

Direct Measurement Strategy: Every hour, the battery
SOC is measured directly from the Battery Management
System (BMS)and the virtual tariff is then determined, as
explained above, and broadcasted to the EWHs’ controllers
in real time. This method is based on real data but it is prone
to communication delays and packet loss.

Prediction Strategy: At the start of each day, the his-
torical data is used to predict the generation of RES and
load demand for a 24-hour horizon. Generation of renewable
energy sources and load demand can be predicted with high
accuracy [38], [39], and thus they are assumed to be known
during the optimization process. Two years’ historical data
is used to train an Artificial Neural Network (ANN) model
to predict renewable energy generation and load demand,
and is updated every 24 hours. A battery model is then
used to calculate the SOC profile for 24 hours. The virtual
tariff is then calculated and broadcasted to the distributed
controllers. This strategy broadcasts the tariff once a day
which will reduce the potential impact of communication
delays or packet loss in advance.

Once the tariff is broadcasted, the distributed RL con-
trollers will select appropriate actions to operate the EWHs
locally to minimise virtual cost in real-time which will result
in a reduction in diesel consumption in the island but at
the same time satisfy consumers’ requirements in terms of
maintaining comfortable water temperature.

III. SYSTEM MODELLING

A. ELECTRIC WATER HEATER MODEL
The thermal model of the EWH describes the dynamic heat-
power exchange while considering the inlet cold water and
environmental conditions. The dynamic thermal model can
be obtained using the Equivalent Thermal Parameter (ETP)
approach [40], [41]. When the EWH is ON between the time
t and t+ 1, the temperature at t+ 1 can be obtained as:

Tt+1 = (Tt − β+Q
α )e−α∆t + β+Q

α . (1)

where α = 1
RC , β = To

RC and R = 1
UA . Q is proportional to

the power rating of EWH.
On the other hand, when the EWH is OFF between time t

and t+ 1, Q is zero and the temperature at t+ 1 drops due to
the thermal loss and inlet cold water.

Tt+1 = (Tt − β
α )e−α∆t + β

α . (2)

Consumed hot water is continuously replaced by cold
water through the tank inlet. Therefore, the water temperature
can be obtained as

Tt+1 =
(Mf −Mt)Tt + ToMt

Mf
. (3a)

Mt = ρvA∆t. (3b)

Combining equations (1) to (3), the mathematical function
that describes the dynamics of the EWH can be expressed as

Tt+1 = (
(Mf−Mt)Tt+ToMt

Mf
− β+†tQ

α )e−α∆t + β+†tQ
α .

(4)

s.t. ∀ t ∈ 1, ..., T

†t =

{
1 if ON
0 if OFF .

(5)
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B. COMMUNICATION DELAY MODEL
In order to investigate the possible impact of communication
delay on the RL algorithm, a mathematical delay model is
proposed to calculate the delay probability and incorporate it
to the proposed approach. From a measurement point of view,
the end-to-end delay across a settled path essentially consists
of two parts: a deterministic delay Dd and a stochastic delay
Ds. The probability density function (PDF) of delay can be
written as [42]

ϕ(t) = pϕ1(t) + qϕ1(t) ∗ ϕ2(t)

=
p

σ
√

2π
e−

(t−µ)2

2σ2 +
qλ

σ
√

2π
e−λt

∫ t

0

eλu−
(u−µ)2

2σ2 du.

(6)

where p+ q = 1 and ϕ1(t) ∗ϕ2(t) =
∫ t

0
ϕ1(u)ϕ2(t− u)du.

ϕ1(t) is the deterministic delay density that can be approxi-

mated byϕ1(t) = 1
σ
√

2π
e−

(t−µ)2

2σ2 .ϕ2(t) = λe−λt assumes to
follow the exponential distribution by one alternating renewal
process with the mean length of the closure periods λ−1.

To determine the time-delay probability, (6) can be recal-
culated to infer the Cumulative Distribution Function (CDF)
of time delay such as

P (t) =

∫ t

0

ϕ(u)du

=
1

2
{erf(

µ√
2σ

) + erf(
t− µ√

2σ
)}

+
p− 1

2
eη{erf(

λσ2 + µ√
2σ

) + erf(
t− λσ2 − µ√

2σ
)}.

(7)

where η = 1
2λ

2σ2 + µλ − λt and erf(x) = 2√
π

∫ x
0
e−t

2

.
The relative parameters is set as µ = 5.3ms, σ = 0.078, p =
0.580 and λ = 1.39 [42]. According to (7), the probabilities
of different time-delay for each broadcast can be added to
analyze the performance.

IV. PROPOSED REINFORCEMENT LEARNING FOR EWH
CONTROL
Reinforcement learning is an area of machine learning con-
cerned with how to take actions in an unknown environ-
ment so as to maximise a cumulative reward. It learns by
modifying an optimization policy in real-time through in-
teracting with the environment and using past experience.
The dynamic EWH problem is modelled as a discrete finite
MDP. In this model, the EWH operation (ON/OFF) depends
on the virtual tariff and the water temperature. RL elements
including state and action spaces, reward function, learning
and exploration rates, and discount factor are described in
detail in the following subsections:

1) State Space
The state variables are time of day (ToDj), virtual tariff
(Tariffk) and water temperature (Templ).

S =

 j = 1 : J
s|sj,k,l = (ToDj , Tariffk, T empl) k = 1 : K

l = 1 : L
(8)

where ToD is discretised into J = 144(24x6, every 10
minutes), the virtual tariff is divided into K = 3 levels in
the range of 1 to 3, and the water temperature is divided into
L = 5 levels between 55◦C and 70◦C.

2) Action Space
Action Space is the ON/OFF commands for each EWH

A = {a|(ON,OFF )} (9)

3) Reward

rt = −Et + Lt. (10)

where rt updates the Q table and to encourage the agent
to choose the appropriate action. Et is based on the virtual
tariff and Lt facilitates consumer preferences and comfort
requirement:

Et =

{
Power ∗∆t ∗ Tariff , ON

0 , OFF
(11)

FIGURE 2. Output curve of term Lt for different temperature.

Lt is represented by Fig. 2. It shows high negative penalty
for going outside the temperature range of 55 and 70 degrees.
It is similar to a coefficient without unit. Furthermore, Lt
shows the highest value when the temperature is about 68 de-
gree which reflects consumer preference. Other preferences
can be implemented by modifying the reward function. The
main purpose of the reward function is used to update the Q
table and let the agent to know the quality of different actions.
During the iterative process, the reward value will train the
RL agent to choose the best action with high probability.

4) Q-learning
In the Q-learning algorithm, an action at a given state is
chosen to explore or exploit the future reward value. The Q-
value table Q(st, at) is updated at each iteration. The highest
value for each state s in the Q-table corresponds to the highest
expected reward after taking action. The optimal updating
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policy based on the Bellman equation [43] is expressed as
follows:

Q(st, at) =Q(st, at) + α(r(st, at)

+ γmax
at+1

Q(st+1, at+1)−Q(st, at)).
(12)

where α controls how much previous learning is retained in
the update of Q-table. α starts at 0.9, and after 80 days of
training it becomes 0.15.

To ensure exploration, an ε-greedy policy is selected [25].
The strategy can either pick an arbitrary action with the prob-
ability ε, or take an action corresponding to the maximum
value in the Q-value table. ε starts at 0.8 to enable sufficient
levels of exploration, and after 80 days of training it becomes
0.01 as the focus moves to exploiting the optimal policy. Note
that both α and ε decrease with the number of days to ensure
sufficient exploration even as the learning process goes on as
follows:

α =


α0 , if N = 1

η α0√
N

, if 80 ≥ N > 1

0.15 , if N > 80

(13)

ε =

 ε0 , if N = 1
ε0
N , if 80 ≥ N > 1

0.01 , if N > 80
(14)

EWH-based Reinforcement Learning Algorithm:
(Prediction and Direct Measurement Strategies)
Initialise all parameters and variables
Select Virtual Tariff generation strategy
%%% Prediction strategy
1: Process for each day
2: Generate predicted demand and generation via NN
3: Generate the virtual tariff 24-hour ahead
%%% Direct Measurement strategy
1: Process for each hour
2: Read SOC measurement from the Battery Management
System
3: Generate the real-time virtual tariff
%%% RL for EWH in real-time decision making
4: Process for each agent to do in parallel each hour
5: Repeat (for each step in iteration)
6: Choose at from current st via ε-greedy policy
7: Take action at
8: Obtain reward r(st, at) and next new state st+1

9: Q(st, at) = Q(st, at) + α(r(st, at)
+γmaxQ(st+1, at+1)−Q(st, at))

10: Output the optimal policy
11: End Process

The proposed RL Algorithm in the pseudo code shows
the detailed DR algorithm, including the prediction strategy
and DM strategy. For the RL agent to learn the optimal
policy, it has to explore actions that are less rewarding in
order to learn from experience. Therefore, it is wise to train
the agent offline using historical load/generation data and

a mathematical model for the EWH before commissioning.
This will avoid operating the real EWHs suboptimally during
the learning period.

During offline training, two years’ data is provided to
train the RL algorithm day by day. Once the training is
established, RL can then be commissioned to control EWHs
in real time in a model-free fashion; it applies the ON/OFF
actions to the real EWH, measures its reward and updates its
parameters accordingly. If there is a difference between the
model and/or the hot water demand used in the model and
those in practice, RL can also adapt to this change thanks to
it learning capability.

At the end of each day, the microgrid load/generation data
of that day are fed back to the ANN to keep updating the
historical data that is used for prediction as shown in Fig. 1.

V. SIMULATION RESULTS

Numerical simulation has been carried out to assess the
performance of the proposed DR. The microgrid shown in
Fig.1 has been used in this simulation. The training data is
obtained from Ushant island in France for the time period of
January 1st, 2014 to December 30th, 2015. Another data set
from the year of 2016 is used for real-time testing. The load
demands of 150 EWH units follow a Poisson distribution,
which is proportional to the hourly average household hot
water usage is adopted from [44]. A 0.2MW/2MWh Lithium-
ion battery storage is used. Seven different renewable energy
generation scenarios are explored as shown in Table I [45].
Scenarios 1, 2 and 3 consider wind and solar PV generation
while scenarios 4, 5 and 6 consider solar PV and tidal
generation. Scenario 7 consists of three types of RES. The
diesel generator supplies power only if the load demand
cannot be met by RES and the battery. The ANN model is
trained by using a long short-term memory (LSTM) network
with 256 units. Adam, which is a replacement optimization
algorithm for stochastic gradient descent for training deep
learning models, is selected as an optimizer with a learning
rate of 0.01 via Python. The RL models are established and
tested in Matlab.

Gen-Demand Profiles (5 days), Jan 2016 - Dynamic Virtual Tariff
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FIGURE 3. Performance of the proposed strategy in Scenario 3.
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TABLE 1. Renewable energy resources for seven different scenarios

Scenario Number Wind Solar PV Tidal
1 300kW 5 sites, 293.5kWp -
2 800kW 20% of rooftops, 3888.93MWh/Annum -
3 2MW 20% of rooftops, 3888.93MWh/Annum -
4 - 5 sites, 293.5kWp Sabella-D10 tidal turbine, 100.4kW
5 - 20% of rooftops, 3888.93MWh/Annum Sabella-D10 tidal turbine, 100.4kW
6 - 5 sites, 293.5kWp Two Sabella-D10 tidal turbines, 200.8kW
7 800kW 20% of rooftops, 3888.93MWh/Annum Sabella-D10 tidal turbine, 100.4kW

PERFORMANCE OF THE PROPOSED RL-BASED
STRATEGY
The generation and demand data for scenario 3 with a 2MWh
storage is shown in Fig. 3(a). Battery power and SOC as well
as the power from the diesel generator are shown in Fig. 3(b).
the virtual tariff is generated by the centralized EMS and is
shown in Fig. 3(c) along with surplus and deficit powers. It is
clear that the virtual tariff can accurately describe the current
state of energy storage and the surplus/deficit of renewable
energy, i.e. the state of energy in the whole microgrid.

Off-line Simulation of the RL based Strategy (one day data)
The purpose of this simulation is to demonstrate the ability
of RL to achieve optimal performance. According to the
one day’s virtual tariff, the RL algorithm will update the
Q-table and repeat the iterations using the same daily data
until convergence is achieved. The energy consumption of an
EWH of both strategies is shown in Fig. 4, along with the
results obtained using a GA optimization algorithm and the
traditional hysteresis control. Two other global optimization
approaches, Simulated Annealing (SA) algorithm and Par-
ticle Swam (PS) algorithm, are also utilized to verify the
experimental results of RL as shown in Table 2. Optimal
solution can only be achieved if continuous space/action
space is used. Furthermore, in terms of the large search space,
the computational cost is expensive and it will also be time-
consuming if all state-action pairs need to be visited. The
proposed RL can quickly search for sub-optimal solutions
and perform real-time control. The results demonstrate that
the proposed RL algorithm can reach the optimal results
very fast within a few iterations. The energy consumption
using the DM strategy and the prediction strategy are 62.53
kWh and 63.73 kWh, respectively. It is very close to the
GA result of 61.33 kWh. The energy consumption when
the EWH is controlled by the traditional hysteresis controller
is 90.67 kWh. Table 3 shows the effect of a single hyper-
parameter modification on the experimental results, and ap-
propriate hyper-parameter settings could achieve outstanding
results compared with others. However, when the time-delay
model is considered, it is shown that the time-delay can
lead to large fluctuations and poor convergence. The GA
optimizer finds the optimal solution from the simulations
and this will always happen unless the GA uses a different
model, e.g. a linearised model, or a model without noise.
The RL controller converges quickly to the optimal solution,
whilst directly interacting with the environment, i.e. without

TABLE 2. Optimal Results for Different Methods

Methods Mean V ariance
RL 62.88 3.94e-4
GA 61.38 3.66e-4
SA 61.34 6.09e-4
PS 61.32 1.94e-4

relying on the simulation model.The oscillations are caused
by the controller trying to explore new action-state pairs.
The superiority of the proposed RL strategy considering the
prediction strategy is clearly demonstrated.
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FIGURE 4. Energy consumption of the porposed RL-based strategy
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FIGURE 5. (a) Daily energy consumption of training results during two-year
period based on the DM strategy, (b) Daily energy consumption of testing
results during one-year period (scenario 3).

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3112817, IEEE Access

TABLE 3. Impact of Single Hyper-Parameter

α ε Results ε α Results
0.9 0.01 128.349 0.005 0.15 71.05
0.7 0.01 131.64 0.001 0.15 70.68
0.5 0.01 125.058 0.01 0.15 62.53
0.2 0.01 65.82 0.05 0.15 63.4
0.1 0.01 98.73 0.1 0.15 80.53

Off line training of RL (two year data)
Two years of historical generation/demand data from Ushant
Island is used to generate the virtual tariff for two years. The
virtual tariff according to the direct measurement of SOC
is then used to train the RL agent offline using the EWH
mathematical model. Energy consumption is shown in Fig.
5(a). The ability of RL approach to track the optimum cost
achieved by the GA algorithm is clear.

Real time control of EWH
The trained RL is used to control 150 EWH units in real
time as explained in subsection IV-4. The yearly island load
data of 2016 and the resources from scenario 3 are used.
The virtual tariff is generated and broadcasted to EWHs in
two ways as was explained in section II-A: daily broadcast
using ANN prediction of SOC, and hourly broadcast using
direct measurement of SOC. The trained RL agent issues the
ON/OFF actions on an hourly basis. At the end of each hour,
the reward is calculated, the and the next action is chosen.
Fig. 5(b) shows the energy consumption for one year along
with the results obtained using the GA. Each day has its own
optimal consumption value and the proposed RL strategy is
able to track this effectively. Both strategies for virtual tariff
generation are able to save energy consumption significantly
and the results are close to the global optimization policy
when time-delay is not considered. Using the RL with DM
strategy for generating the virtual tariff can reduce the use
of diesel consumption by 8.91% (6.675kW) compared to
controlling the EWHs by traditional hysteresis control. If the
virtual tariff is generated by the prediction strategy, diesel
consumption is reduced by 8.85%, only 0.06% increase
compared to DM strategy. This difference, caused by the
prediction error, is quite minimal. The advantages for using
the ANN are the avoidance of hourly communication with
EWH units, and providing customers with the virtual tariff
profile in advance.

The proposed DR scheme is applied to the seven RES
scenarios shown in Table 1. The total generation and diesel
consumption are presented in Fig. 6 with 150 EWH units
being controlled by hysteresis, GA, and direct measurement
strategy based RL controllers. It can be noticed that both
the RL algorithm and GA algorithm can save diesel cost
significantly compared with the traditional hysteresis con-
trol, especially in scenario 7. However, the GA requires
pre-knowledge of all information in advance and spends a
lot of computing resources to get the optimal results. The
annual energy consumption when using the RL strategy is

FIGURE 6. Annual energy consumption and generation for seven scenarios in
2016.

FIGURE 7. Diesel consumption cost for different storage size in scenario 3.

very close to that of GA-based strategy in all scenarios.
However, the proposed RL algorithm can achieve near op-
timal results in real-time control with no previous knowledge
of EWH models. Furthermore, the yearly summary of the
seven different scenarios indicates that RL strategy can cover
enough energy demands in scenario 7 and reduce diesel
generator consumption significantly. Compared to the other
six scenarios, scenario 3 generates up to more than 150 MWh
renewable energy generation. However, the total diesel cost
in case of hysteresis controlled EWHs shows that there is
a substantial surplus of renewable energy not being utilised
due to the limitation of the battery size. The results in Fig. 7
for scenario 3 show the diesel consumption cost considering
different sizes of batteries. The larger the battery capacity, the
more diesel energy is saved. However, considering the battery
cost and service life, and the energy consumption of the entire
island, the 2WMh capacity energy storage is chosen.

Fig. 8 shows the energy consumption performance of an
EWH based on a typical virtual tariff profile (a) when it is
controlled by the proposed RL using DM strategy (b) and a
simple hysteresis thermostat (c). The virtual price in Fig. 8(a)
represents three different prices under three different states
(renewable energy only, renewable energy and storage energy
only, and diesel consumption only) according to the different
electricity prices of different utility companies. It can be seen
that the temperatures in both strategies are controlled within
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FIGURE 8. Performance comparison of the EWH controller: (a) Example of
Virtual Tariff, (b) Proposed RL-based EWH controller, (c) Traditional EWH
controller.

the required temperature range (55◦C and 70◦C). However,
the Fig. 8(b) shows that the RL based strategy can shift the
ON commands to periods when the tariff is low. It means
that RL agent tends to store energy in the water when there is
surplus in energy by keeping the temperature near its maxi-
mum. Meanwhile, it can also keep the water temperature just
above the minimum during shortage of energy. Furthermore,
RL resulted in less total energy consumption compared to
that of the hysteresis control approach.

In summary, all the results verify the performance of the
proposed DR strategy based on the RL algorithms. It is capa-
ble of learning a cost-effective way for EWH management
under different conditions, without requiring information
about the model in advance.

VI. CONCLUSION
An intelligent distributed real-time DR based on RL has been
proposed to manage the demand of 150 EHWs in isolated
islands. To overcome the problem of fixed electricity price,
an adaptive virtual tariff that reflects the status of the battery
and the diesel generator has been generated and used in
the reward function of the RL algorithm.Two methods for
generating the virtual tariff have been proposed: DM strategy
and prediction strategy. Simulation results shows that the
prediction strategy is suitable to achieve good performance
compared to the DM strategy and it makes the algorithm
less dependent on communication time-delay. The prediction
strategy can also be used to encourage customers to arrange
the use of other electrical equipment in advance to reduce
total energy consumption.The performance of the proposed
distributed controllers is assessed by simulation which shows
the ability of RL to learn the optimal control policy. It is
shown that employing the proposed RL algorithm results in
an average 8.91%(6.675kW) reduction in the usage of diesel
generators for each electric water heater.

However, Q-learning can provide near-optimal solutions.
In future, we seek to consider state-of-the-art reinforcement
learning algorithms, such as deep reinforcement learning
algorithm and Bayesian reinforcement learning algorithm, to
generate better exploration strategy and minimize the objec-

tive function [46], [47]. In addition, the hyper-parameters
adjustment has a significant impact on the performance of
the RL algorithm and hence we plan to further optimize
the parameters by using the state-of-the-art algorithms, e.g.,
Bayesian optimization method and Monte Carlo method [48].
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