UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Ultra-Dense Mobile Networks: Optimal Design and Communications Strategies

Gruppi, Emanuele; (2021) Ultra-Dense Mobile Networks: Optimal Design and Communications Strategies. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Emanuele_Gruppi_PhD_Thesis_final_submission.pdf]
Emanuele_Gruppi_PhD_Thesis_final_submission.pdf - Accepted Version

Download (4MB) | Preview


This thesis conducts an extensive analysis within the mobile telecommunications sub-field of the ultra-dense mobile networks, in which a massive deployment of network’s pieces of equipment is assumed. Future cache-enabled mobile networks are expected to meet most of the generated content demands directly at the edge, where each node has the availability to proactively store a set of contents in a local memory. This thesis makes several important contributions. The research being presented in this thesis proposes new analytical expressions to modeling the performance associated to the network’s edge. Base-stations’ idling technologies are also investigated to temporarily turn off some network nodes, saving energy and, in some circumstances, improving the overall performance by contributing less interference at the network’s edge. On the other hand, making use of fewer base-stations however reduces the amount of available resources at the network’s edge. A trade-off is investigated, which balances among interference saturation and available resources to increase the average user’s quality of experience. In this work, we treat the edge node density as a variable of the problem. This greatly increases the difficulty of obtaining analytical expressions, but also offers a direct access for optimizing the users’ average performance and network’s energy consumptions. An energy-focused performance metric is subsequently proposed, with the intention to highlight an interesting duality within the same network’s tier, which can transition from a better efficient to a more performing state, according to the energy expenses from the operators. Nonetheless, under an ultra-dense scenario, line-of-sight wireless links between the user and the nodes become more likely. The introduction of a main component of the multi-path propagated copies of a signal involves analytical complications. A feasible approximation is proposed and validated through a set of computer simulations. The scalability of the proposed technique allows to generalise existing results in the literature.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Ultra-Dense Mobile Networks: Optimal Design and Communications Strategies
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10135071
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item