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Abstract
We investigate how to characterize the kinetic parameters of an aminotransaminase
using a non-standard coupled (or auxiliary) enzyme assay, where the peculiarity arises
for two reasons. First, one of the products of the auxiliary enzyme is a substrate for
the primary enzyme and, second, we explicitly account for the reversibility of the aux-
iliary enzyme reaction. Using singular perturbation theory, we characterize the two
distinguished asymptotic limits in terms of the strength of the reverse reaction, which
allows us to determine how to deduce the kinetic parameters of the primary enzyme for
a characterized auxiliary enzyme. This establishes a parameter-estimation algorithm
that is applicable more generally to similar reaction networks. We demonstrate the
applicability of our theory by performing enzyme assays to characterize a novel puta-
tive aminotransaminase enzyme, CnAptA (UniProtKB Q0KEZ8) from Cupriavidus
necator H16, for two different omega-amino acid substrates.
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1 Introduction

Enzyme assays are an important tool for characterizing enzymes. In the classic assay,
a single reaction converts a substrate into a product, using an enzyme as a catalyst, and
the product is measured over time to estimate the initial reaction velocity (Bisswanger
2014). A mathematical analysis allows one to use this information to deduce the
kinetic properties of the enzyme in question (Murray 2002). When characterizing an
enzyme for which the reaction product is difficult to observe, an auxiliary enzyme can
be introduced to convert the product of the primary enzyme reaction into a chemical
that can more easily be measured (e.g. NADH) (Storer and Cornish-Bowden 1974;
Rudolph et al. 1979). This is called a coupled enzyme assay. However, the problem
is more complicated if the reaction catalysed by the auxiliary enzyme has a product
which is also a substrate for the primary enzyme.

In this paper, we are interested in understanding how to characterize a primary
enzyme in a non-standard coupled enzyme assay, where one of the products of the
auxiliary enzyme is a substrate for the primary enzyme andwherewe explicitly account
for the reversibility of the auxiliary enzyme reaction. This is motivated by the charac-
terization of the class of enzymes known as aminotransaminases, which catalyse the
transfer of keto and amine groups between organic compounds (Slabu et al. 2017),
and are an important class of biocatalysts in synthetic biology for reasons we discuss
below. In Fig. 1 we show a schematic of the reaction network we consider in this
paper. While we refer to the specific organic compounds pyruvate and alpha-L-alanine
in Fig. 1 and through the paper in order to be consistent with the experiments we
perform, we emphasize that our analysis is more general. In particular, the general
organic-group-transfer property of aminotransaminases means that ‘pyruvate’ can be
generalized to ‘keto acid’, and ‘alpha-L-alanine’ can be generalized to ‘amino acid’ for
an aminotransaminase primary enzyme. Since ammonia is produced when an amino
acid is dehydrogenated, the presence of ammonia is a consequence of using an amino-
transaminase as the primary enzyme. This means that the reaction network we show
in Fig. 1 is particularly applicable to coupled enzyme assays with the primary enzyme
being an aminotransaminase.

The technique to deal with a standard coupled enzyme assay with one primary
enzyme and one auxiliary enzyme was first outlined within a mathematical frame-
work in McClure (1969). We direct the interested reader to Rudolph et al. (1979) for a
history of the theoretical work on standard coupled enzyme assays, as well as a prac-
tical guide to performing these types of assays. In this paper, we investigate when the
standard approach identified in McClure (1969) is appropriate for the non-standard
assay we consider, and how to modify the approach when it is not. We then imple-
ment our theory by performing assays on a previously-uncharacterized enzyme for
two different substrates.

Calculating enzyme properties through enzyme assays is an inherently dynamic
process; the steady state is reached only when one of the substrates vanishes. In this
dynamic process, it is helpful to measure the indicator chemical during a regimewhere
the reaction velocity is approximately constant, corresponding to a linear increase of
the indicator chemical in time (we henceforth refer to this as a ‘linear growth’ regime).
Often this means estimating the reaction velocity through initial rate experiments,
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Pyruvate (s̃1) Substrate (s̃2)

Aldehyde (s̃3)Alpha-L-alanine (s̃4)NAD+ (s̃5)

NADH (s̃6)

Ammonia (s̃7)

ṽ1ṽ2 ṽ−2

Fig. 1 A diagram of the reaction network we investigate in this paper. Each box denotes a chemical
compound involved in the network, and each arrow denotes a reaction to and from the specified group
of products and substrates, respectively. Each reaction is catalysed by an enzyme; the primary enzyme
catalyses the reaction on the right, marked with velocity ṽ1, and the auxiliary (secondary) enzyme catalyses
both directions of the reversible reaction on the left, marked with forward velocity ṽ2 and backwards
velocity ṽ−2. Note that our model does not rely on pyruvate being converted into alpha-L-alanine, it being
valid for the primary enzyme being a general aminotransaminase. Hence, in this diagram ‘pyruvate’ can be
generalized to ‘keto acid’, and ‘alpha-L-alanine’ can be generalized to ‘amino acid’

with the goal of avoiding complications due to reversible reactions. Linear growth is
helpful as a sanity check that things are proceeding as they should (typically using the
‘eyeball norm’). Moreover, experimental noise can increase the error when attempting
to implement an accurate fit in nonlinear systems - restricting oneself to a linear growth
regime significantly reduces this issue.

For these reasons, we use singular perturbation theory (Bender and Orszag 2013;
Kevorkian and Cole 2013) to analyse the mathematical systems we derive, and to
understand how to determine the kinetic parameter values of the primary enzyme in
such a system. This provides a significant reduction of the complexity of the system,
and thus allows us to minimize issues associated with experimental noise, as we aim
to determine functional forms for the measurable reaction velocities. Moreover, as
exhibited in recent examples (Dalwadi et al. 2018a, b; Kumar and Josić 2011; Eilertsen
et al. 2018; Eilertsen and Schnell 2018), singular perturbation theory is particularly
well suited to understanding systems of chemical reactions exhibiting a significant
separation of timescales, so we will use a similar approach here.

In our analysis, we assume that the timescales of enzyme complex formation are
much shorter than the other reaction timescales in our problem, and that the effec-
tive reaction velocities are governed by Michaelis–Menten-type laws. The suitability
of the Michaelis–Menten equations in many scenarios, including but not limited to
standard coupled enzyme assays, has been investigated in recent work by Schnell and
colleagues, for example Stroberg and Schnell (2016); Eilertsen et al. (2018); Eilertsen
and Schnell (2018), using singular perturbation theory.

To demonstrate how our theoretical results can be used to characterize enzymes,
we perform several coupled enzyme assays to characterize a putative omega-
aminotransferase (also known as an aminotransaminase or an omega-amino-acid
amino transferase) enzyme, CnAptA, for two omega-amino acid substrates. Omega-
aminotransferases belong to class III aminotransferases; these catalyse the transami-
nation of omega-amino acids such as beta-alanine or gamma-aminobutyric acid by
transferring the amino group to a keto acid, using pyridoxal 5′-phosphate (PLP)
as a cofactor (Mehta et al. 1993). Aminotransferases are increasingly important

123



652 M. P. Dalwadi et al.

biocatalysts for the synthesis of industrially relevant chiral compounds and in the phar-
maceutical industry for the production of optically pure amines and amino alcohols
necessary for the synthesis of important drugs (Sayer et al. 2013). Moreover, amino-
transferases are particularly important in synthetic biology because they are the key to
creating biosustainable production routes to many important platform chemicals. That
is, carboxylic acids make up eight of the top twelve platform chemicals selected by
the US Department of Energy that can be derived from biomass (Werpy and Petersen
2004). As current industrial methods to produce these acids often involve fossil fuels,
biological production routes provide environmentally sustainable alternatives.

The outline of this paper is as follows. In Sect. 2, we briefly recap the mathematical
analysis of the standard enzyme assay, which allows us to put the main results of
this paper into an appropriate context. In Sect. 3, we derive a mathematical model
for the non-standard coupled enzyme assay of interest in this paper, which has the
reaction network shown in Fig. 1. We then explore how the non-standard assay differs
from the standard one and determine how the measured reaction velocity relates to the
kinetic parameters of the primary enzyme in the non-standard case. We do this using
an asymptotic analysis to systematically reduce the complexity of the system, and
we present the main distinguished limit (i.e. the dominant balance of most practical
relevance) of the system in Sect. 3.1. We present the remaining distinguished limit
in Sect. 3.2, where we find that the distinguished nature of this limit is apparent
only in a non-measurable chemical during the linear regime or during the depletion
regime, and that the measurable system behaviour in the linear regime is captured by a
sub-limit of the strong reverse reaction regime treated in Sect. 3.1. We summarise our
theoretical results in Sect. 4, outlining the procedure that should be implemented to use
experimental data to infer the kinetic parameters of the primary enzyme. In the same
section, we compare our proposed method with a naive nonlinear fit, verifying that our
method is preferable. In Sect. 5, we demonstrate that our results can be used effectively
in characterizing enzymes by performing the coupled enzyme assay modelled in this
paper and applying our theoretical results. Finally, in Sect. 6, we discuss our results in
the context of their significance for experimental approaches involving non-standard
coupled enzyme assays.

2 Standard coupled enzyme assay

We start by briefly recapping themathematical model for the standard coupled enzyme
assay, presented in broad dimensional terms in McClure (1969). In this section, we
present the relevant chemicals involved in abstract terms before relating them to the
chemicals labelled in Fig. 1 for the non-standard coupled enzyme assay we consider
in the next section. Our goal in this section is to recap how to determine the kinetic
parameters of the primary enzyme in the system shown in Fig. 2, where we assume
knowledge of the kinetic parameters of the auxiliary enzyme. Experimentally, we are
able to measure the concentration of s̃6, and so our overarching goal is to understand
how to use this measurement to infer the kinetic parameters that characterize the
primary enzyme.

123



Kinetic parameters in a non-standard coupled enzyme assay 653

Fig. 2 Abstract network diagram
for a standard enzyme assay. The
primary enzyme has reaction
velocity ṽ1 and the auxiliary
enzyme has reaction velocity ṽ2

s̃1

s̃2

s̃3

s̃4

s̃5

s̃6

s̃7

ṽ1

ṽ2

In general, the kinetic parameters used to characterize an enzyme are intrinsic
to the ordinary differential equations (ODEs) assumed to govern this system, using
Michaelis–Menten-type laws to quantify each reaction velocity (Menten andMichaelis
1913). The network in Fig. 2 implies the following seven dimensional ODEs

ds̃1
dt̃

= −ṽ1,
ds̃2
dt̃

= −ṽ1,
ds̃3
dt̃

= ṽ1,
ds̃4
dt̃

= ṽ1 − ṽ2,

ds̃5
dt̃

= − ṽ2,
ds̃6
dt̃

=ṽ2,
ds̃7
dt̃

= ṽ2. (1)

We use the convention that dimensional quantities are marked with a tilde, whereas
dimensionless quantities are not. The initial conditions are

s̃1(0) = α̃, s̃2(0) = β̃, s̃3(0) = 0, s̃4(0) = 0,

s̃5(0) = γ̃ , s̃6(0) = 0, s̃7(0) = 0, (2)

which corresponds to a system initially containing the minimal number of substrates
necessary for both reactions to take place: s̃1, s̃2, and s̃5, then instantaneously adding
the primary and auxiliary enzyme such that the entire system is well-mixed. We
assume that the affinity a given substrate has for an enzyme is independent of the
other substrates. Therefore, the reaction velocities follow Michaelis–Menten kinetics
generalized to multiple substrates (Alberty 1953)

ṽ1 = k̃(1)

(
s̃1

K̃ (1)
1 + s̃1

) (
s̃2

K̃ (1)
2 + s̃2

)
, ṽ2 = k̃(2)

(
s̃4

K̃ (2)
4 + s̃4

)(
s̃5

K̃ (2)
5 + s̃5

)
.

(3)

This problem was recently investigated through a singular perturbation analysis in
Eilertsen and Schnell (2018) to determine when the Michaelis–Menten reaction-type
formulation of the problem is valid by considering the intermediate enzyme complexes
formed during each reaction. We will assume throughout this paper that we are in this
regime, essentially assuming the reactant-stationary assumption holds, i.e. that the
primary substrates are approximately constant as the primary intermediate complexes
form.

In (3), we use the convention that a subscript refers to a relationshipwith a particular
chemical, and a bracketed superscript refers to a particular reaction. For example, the
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parameter K̃ (2)
4 refers to the Michaelis constant for s̃4 in the reaction velocity ṽ2. In

general, α̃ and β̃ can be viewed as control parameters that can be varied between experi-
ments; all remaining parameters should remain constant between different experiments
(at fixed temperatures and pHs), such assumptions being appropriate to the experimen-
tal approach we describe in Sect. 5. Hence, we are interested in inferring the three
parameters with a bracketed superscript of 1, which are k̃(1), K̃ (1)

1 , and K̃ (1)
2 , from

measurements of s̃6.
It is apparent from the system (1)–(3), as well as from Fig. 2, that the concentrations

for s̃3, s̃6, and s̃7 decouple from the rest of the system. We include them here to keep
the same notation as for Sect. 3. Moreover, we are able to reduce the system to two
ODEs by noting the five following linearly independent conserved quantities:

s̃1 + s̃3 = α̃, s̃2 + s̃3 = β̃, s̃5 + s̃6 = γ̃ , s̃2 + s̃4 + s̃6 = β̃, s̃6 = s̃7. (4)

Wedelay the system reduction to discuss first the following standard assumptionsmade
when carrying out a coupled enzyme assay, as this will aid in deciding with which
ODEs to work. First, we assume that the maximum rate of reaction mediated by the
auxiliary enzyme is much faster than for the primary enzyme, so that k̃(2) � k̃(1).
As the maximum rate of each reaction is proportional to the concentration of the
corresponding enzyme, this can be ensured by using a high enough ratio of auxiliary
to primary enzyme. Second, we will initially saturate the system with large quantities
of s̃5, so that γ̃ � K̃ (2)

5 , thus reducing the complexity of ṽ2 in (3). Third, we will

initially saturate the system with either s̃1 or s̃2 (so that α̃ � K̃ (1)
1 or β̃ � K̃ (1)

2 ) if we

are interested in determining K̃ (1)
2 or K̃ (1)

1 , respectively. This reduces the complexity
of ṽ1 in (3). This final assumption is not required to facilitate a solution of the reduced
system, though it does reduce the number of fitting parameters. In Sect. 3, we only
make the first two assumptions in our analysis. Notmaking the third assumption allows
us to consider the separate cases of saturating s̃1 and s̃2 at the same time.

We will present the method for determining K̃ (1)
1 , essentially the case with a large

initial saturation of s̃2. The approach to determining K̃ (1)
2 is equivalent for the standard

coupled enzyme assay discussed in this section, but this will not be the case for the
non-standard assay we consider in Sect. 3. If we initially saturate the systemwith large
quantities of s̃2, it is convenient to use the following two ODEs to describe the system:

ds̃1
dt̃

= − k̃(1)s̃1

K̃ (1)
1 + s̃1

,
ds̃4
dt̃

= k̃(1)s̃1

K̃ (1)
1 + s̃1

− k̃(2)s̃4

K̃ (2)
4 + s̃4

, s̃1(0) = α̃, s̃4(0) = 0.

(5)

This is the standard system to consider when using coupled enzyme assays, inves-
tigated in the literature in McClure (1969), as discussed in Sect. 1.
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(a) (b)

Fig. 3 The measurable chemical s̃6 as the numerical solution to (1), the asymptotic solution (8) (prior to
the depletion dynamics), and the long-time asymptotic solution (9) (also prior to the depletion dynamics).
We use the parameter values in Table 2, choosing α̃ = 2.5 mM and using β̃ = γ̃ = 50 mM to focus on the
effect of a limiting initial concentration of s̃1, rather than s̃2 or s̃5

To implement our systematic asymptotic analysis, we form dimensionless variables
as in Table 1, and obtain the following system

ds1
dt

= −εa
s1

K (1)
1 + s1

,
ds4
dt

= s1

K (1)
1 + s1

− s4
1 + εs4

, s1(0) = 1, s4(0) = 0,

(6)

where typical values and definitions of the dimensional and dimensionless parameters
are given in Tables 2 and 3, respectively. The most important definition here is ε =
k̃(1)/k̃(2) which, as discussed above, is small in coupled enzyme assays.We also define
a = K̃ (2)

4 /α̃ and K (1)
1 = K̃ (1)

1 /α̃.
In the limit of ε → 0, with t = O(1), (6) has leading-order solution

s1 = 1, s4 = 1 − e−t

K (1)
1 + 1

, (7)

which corresponds to the dimensional solution

s̃6 = α̃k̃(1)

K̃ (1)
1 + α̃

(
t̃ + K̃ (2)

4

k̃(2)

[
exp

{
−k̃(2) t̃/K̃ (2)

4

}
− 1

])
, (8)

for our measurable chemical. The long-time limit of (8) is

s̃6 ∼ α̃k̃(1)

K̃ (1)
1 + α̃

(
t̃ − K̃ (2)

4

k̃(2)

)
as t̃ → ∞. (9)
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Therefore, the kinetic parameters k̃(1) and K̃ (1)
1 can be inferred by measuring the

long-term (by which we mean K̃ (2)
4 /k̃(2) � t̃ � α̃/k̃(1), for reasons noted below)

production rate of s̃6 for different values of α̃. A similar procedure, but with saturating
s̃1 instead of s̃2, allows the inference of k̃(1) (again) and K̃ (1)

2 . The solution (9) tells us

that the long-term production ratewill be α̃k̃(1)/(K̃ (1)
1 +α̃), as can be seen in Fig. 3, and

that we require t̃ � K̃ (2)
4 /k̃(2) before s̃6 production will appear to be at a constant rate

(K̃ (2)
4 /k̃(2) ≈ 200 s in Fig. 3). However, this constant rate will not occur indefinitely -

given that ds1/dt = O(aε), the production rate of s̃6 will start to deviate from constant
when t = O(1/aε), equivalent to t̃ = O(α̃/k̃(1)) = O(2.5 × 104 s) in Fig. 3. In the
language of matched asymptotic expansions, this corresponds to an outer scaling, a
timescale over which (what we term) the depletion dynamics occur. For brevity, we
do not consider the depletion dynamics further for the standard enzyme assay, but we
will for the non-standard enzyme assay.

3 Non-standard coupled enzyme assay

We now consider the main problem we are concerned with in this paper - the deter-
mination of the kinetic parameters k̃(1), K̃ (1)

1 , and K̃ (1)
2 of the primary enzyme in the

system shown in Fig. 1, where we assume knowledge of the kinetic parameters of the
auxiliary enzyme. Experimentally, we are able to measure the concentration of NADH
(i.e. s̃6) in the system, and so our overarching goal is to understand how to use this
measurement to infer the kinetic parameters that characterize the primary enzyme for
a range of different substrates. The differences between the standard coupled enzyme
assay in Sect. 2 and the problemwe consider in this section are that the latter involves a
reversible auxiliary reaction and that s̃1 is a product/substrate of the forward/backward
auxiliary reaction, rather than the auxiliary reaction being unidirectional and s̃1 being
decoupled from the auxiliary reaction in Sect. 2. The reaction network we consider is
particularly relevant to the class of enzymes known as aminotransferases,1 as discussed
in the Introduction.

The governing equations for the network shown in Fig. 1 consist of the following
seven ODEs

ds̃1
dt̃

= −ṽ1 + ṽ2 − ṽ−2,
ds̃2
dt̃

= −ṽ1,
ds̃3
dt̃

= ṽ1,

ds̃4
dt̃

= ṽ1 − ṽ2 + ṽ−2,
ds̃5
dt̃

= −ṽ2 + ṽ−2,
ds̃6
dt̃

= ṽ2 − ṽ−2,
ds̃7
dt̃

= ṽ2 − ṽ−2,

(10)

where we define each variable in Table 1. As in the previous section, we use the
convention that dimensional quantities are marked with a tilde, whereas dimensionless

1 Example KEGG classifications for this case would be EC 2.6.1.18 for the primary enzyme and EC 1.4.1.1
for the auxiliary enzyme.
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Table 1 Definitions of the dimensional and dimensionless variables in our system

Original variable Description Nondimensionalisation

s̃1 Pyruvate s̃1 = α̃s1

s̃2 Substrate s̃2 = β̃s2

s̃3 Aldehyde s̃3 = β̃s3

s̃4 Alpha-L-alanine s̃4 = (k̃(1) K̃ (2)
4 /k̃(2))s4

s̃5 NAD+ s̃5 = γ̃ s5

s̃6 NADH s̃6 = (k̃(1) K̃ (2)
4 /k̃(2))s6

t̃ Time t̃ = (K̃ (2)
4 /k̃(2))t

quantities are not. Here, the three reaction velocities are

ṽ1 = k̃(1)

(
s̃1

K̃ (1)
1 + s̃1

) (
s̃2

K̃ (1)
2 + s̃2

)
, (11a)

ṽ2 = k̃(2)

(
s̃4

K̃ (2)
4 + s̃4

)(
s̃5

K̃ (2)
5 + s̃5

)
, (11b)

ṽ−2 = k̃(−2)

(
s̃1

K̃ (−2)
1 + s̃1

) (
s̃6

K̃ (−2)
6 + s̃6

) (
s̃7

K̃ (−2)
7 + s̃7

)
, (11c)

each followingMichaelis–Menten kinetics generalized to multiple substrates (Alberty
1953), under the assumption that the affinity a given substrate has for an enzyme is
independent of the other substrates.

In conjunction with the governing equations (10), we use initial conditions

s̃1(0) = α̃, s̃2(0) = β̃, s̃3(0) = 0, s̃4(0) = 0,

s̃5(0) = γ̃ , s̃6(0) = 0, s̃7(0) = 0, (12)

where α̃, β̃, γ̃ > 0. This corresponds to a system initially containing pyruvate (s̃1), an
omega-amino acid substrate (s̃2), and NAD+ (s̃5), with no other substrates present in
the reaction network, then instantaneously adding the primary and auxiliary enzyme
such that the entire system iswell-mixed. Hence, there are thirteen dimensional param-
eters.We reiterate that our goal is to infer the three parameters k̃(1), K̃ (1)

1 , and K̃ (1)
2 that

correspond to the primary enzyme, assuming that we know the remaining ten parame-
ters, which correspond to the auxiliary enzyme and the initial chemical concentrations.
We provide typical parameter values in Table 2.

Aswould be expected on physical grounds, the inclusion of a reverse reaction for the
auxiliary enzyme causes less NADH to be made over a given time (Fig. 4a). Moreover,
the reverse reaction can result in a linear phase that is very short (Fig. 4b), making
the standard approach of calculating a steady production rate difficult to implement
in practice. To this end, we will characterize the different possible types of NADH
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Table 2 Dimensional
parameters and their typical size
if known

Typical parameter size Notes

k̃(1) ≈ 0.1µMs−1 To be determined

K̃ (1)
1 ≈ 1mM To be determined

K̃ (1)
2 ≈ 1mM To be determined

k̃(2) = 10µMs−1 Experimental choice

K̃ (2)
4 = 2mM From Bacillus subtilis (Yoshida and

Freese 1965), though 0.45–14mM
from other organisms (Tolxdorff-
Neutzling andKlemme 1982; Chowd-
hury et al. 1998; Sawa et al. 1994;
Hutter and Singh 1999)

K̃ (2)
5 = 0.2mM From Bacillus subtilis (Yoshida and

Freese 1965), though 0.04–0.3mM
from other organisms (Tolxdorff-
Neutzling andKlemme 1982; Chowd-
hury et al. 1998; Sawa et al. 1994;
Hutter and Singh 1999)

k̃(−2) = 0–2mMs−1 Value determined by choice of k̃(2)

and assay environment.

For the auxiliary enzyme, we use values taken from Yoshida and
Freese (1965) in our numerical simulations. We give an idea of the
range of these parameter values by also providing data from four
other organisms: Enterobacter aerogenes (Chowdhury et al. 1998),
Mycobacterium tuberculosis (Hutter and Singh 1999), Phormidium
lapideum (Sawa et al. 1994), and Rhodopseudomonas capsulata (Hut-
ter and Singh 1999)

production through a systematic asymptotic analysis—see Bender and Orszag 2013;
Kevorkian and Cole 2013 for general descriptions of the approach.

Before we nondimensionalize the system, we note from (10) and (12) the five
following linearly independent conserved quantities:

s̃1 + s̃4 = α̃, s̃2 + s̃3 = β̃, s̃5 + s̃6 = γ̃ , s̃2 + s̃4 + s̃6 = β̃, s̃6 = s̃7. (13)

Thus, we may immediately reduce the number of ODEs from seven to two. However,
the asymptotic analysiswewill carry out ismore intuitive if we keepmost of theODEs;
the only ones we disregard are those for ds̃3/dt̃ and ds̃7/dt̃ in (10). For the former, we
do this since the aldehyde produced from the primary enzyme (s̃3) decouples from the
rest of the system, so we are able ignore this ODE henceforth, noting that s̃3 can be
determined from (13). For the latter, the concentration of ammonia is always equivalent
to the concentration of NADH (s̃7 ≡ s̃6), so we will replace s̃7 by s̃6 henceforth.

We form the following dimensionless variables

t̃ =(K̃ (2)
4 /k̃(2))t, s̃1 = α̃s1, s̃2 = β̃s2,

(s̃4, s̃6) = (k̃(1) K̃ (2)
4 /k̃(2))(s4, s6), s̃5 = γ̃ s5, (14)
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Table 2 continued Typical parameter size Notes

K̃ (−2)
1 = 0.5mM From Bacillus subtilis (Yoshida and

Freese 1965), though 0.22–1.45mM
from other organisms (Tolxdorff-
Neutzling andKlemme 1982; Chowd-
hury et al. 1998; Sawa et al. 1994;
Hutter and Singh 1999)

K̃ (−2)
6 = 0.02mM From Bacillus subtilis (Yoshida and

Freese 1965), though 0.02–0.1mM
from other organisms (Tolxdorff-
Neutzling andKlemme 1982; Chowd-
hury et al. 1998; Sawa et al. 1994;
Hutter and Singh 1999)

K̃ (−2)
7 = 40mM From Bacillus subtilis (Yoshida and

Freese 1965), though 28–67mM from
other organisms (Tolxdorff-Neutzling
and Klemme 1982; Chowdhury et al.
1998; Sawa et al. 1994; Hutter and
Singh 1999)

α̃ = 1–5mM Control parameter

β̃ = 1–5mM Control parameter

γ̃ = 5mM Experimental choice

For the auxiliary enzyme, we use values taken from Yoshida and
Freese (1965) in our numerical simulations. We give an idea of the
range of these parameter values by also providing data from four
other organisms: Enterobacter aerogenes (Chowdhury et al. 1998),
Mycobacterium tuberculosis (Hutter and Singh 1999), Phormidium
lapideum (Sawa et al. 1994), and Rhodopseudomonas capsulata (Hut-
ter and Singh 1999)

(a) (b)

Fig. 4 The measurable chemical s̃6 as the numerical solution to (10) in a a linear plot and b a log-log plot.
We use the parameter values in Table 2, with k̃(−2) = 0.5 mM s−1, α̃ = 2.5 mM, and β̃ = 2.5 mM
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which we also summarize in Table 2. The timescale here (i.e. K̃ (2)
4 /k̃(2)) is that of

initial alpha-L-alanine (s4) and NADH (s6) formation, and is 200 s for the parameters
in Table 2. For the substrate dimensionless variables we scale pyruvate, beta-alanine,
and NAD+ with their initial conditions and alpha-L-alanine and NADHwith the order
of magnitude of alpha-L-alanine present during the regime of linear NADH growth,
which our analysis will show to be approximately 50µM. From (14), we obtain the
dimensionless governing equations

ds1
dt

= −εa (v1 − v2 + v−2) , (15a)

ds2
dt

= −εbv1, (15b)

ds4
dt

= v1 − v2 + v−2, (15c)

ds5
dt

= −εc (v2 − v−2) , (15d)

ds6
dt

= v2 − v−2, (15e)

where the three dimensionless reaction velocities are defined as

v1 =
(

s1

K (1)
1 + s1

)(
s2

K (1)
2 + s2

)
, (16a)

v2 =
(

s4
1 + εs4

) (
s5

δ + s5

)
, (16b)

v−2 = k(−2)K

(
s1

K (−2)
1 + s1

) (
s6

K (−2)
6 + s6

)(
s6

1 + εKs6

)
. (16c)

The initial conditions of the dimensionless system are

s1(0) = 1, s2(0) = 1, s4(0) = 0, s5(0) = 1, s6(0) = 0. (17)

We provide the definitions of the dimensionless parameters in Table 3, from which
we note that ε, δ, and K are all much smaller than 1. Additionally, we note that the
value of k(−2), representing the ratio of the backward to forward rates controlled by
the auxiliary enzyme, can vary across many orders of magnitude.

We reiterate that our goal is to understand how to relate the measurement of NADH
(s̃6) in the linear production regime to the values of the kinetic parameters governing
the primary enzyme. Our approach is to comprehensively investigate how the system
behaves for different magnitudes of k(−2), with a focus on understanding when a
linear regime for NADH production is appropriate and what the measurement of
NADH in this regime will tell us about the primary enzyme. To this end, we perform
an asymptotic analysis that exploits the small parameters ε, δ, and K (noting that
the three limits all commute), with a focus on analysing how the asymptotic size of
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Kinetic parameters in a non-standard coupled enzyme assay 661

Table 3 The dimensionless parameters in our system, obtained using the data in Table 2

ε = k̃(1)

k̃(2)
≈ 0.01 b = K̃ (2)

4

β̃
= 0.4 – 2 K (−2)

6 = K̃ (−2)
6 k̃(2)

K̃ (2)
4 k̃(1)

≈ 1

K (1)
1 = K̃ (1)

1
α̃

≈ 0.2 – 1 c = K̃ (2)
4
γ̃

= 0.8 k(−2) = k̃(−2)

k̃(2)
= 0 – 103

K (1)
2 = K̃ (1)

2

β̃
≈ 0.2 – 1 δ = K̃ (2)

5
γ̃

= 0.04 K = K̃ (2)
4

K̃ (−2)
7

= 0.05

a = K̃ (2)
4
α̃

= 0.4 – 2 K (−2)
1 = K̃ (−2)

1
α̃

≈ 0.1 - 0.5

The ‘approximately equals to’ signs arise from uncertainty in the kinetic parameters of the primary enzyme

k(−2) affects the system behaviour. We emphasize that the parameter ε can always
be made to be small by suitable choices of the relative concentrations of the primary
and auxiliary enzyme, which scale with k̃(1) and k̃(2), respectively, and likewise for
δ by choosing γ̃ , the initial concentration of s̃5, to be significantly larger than K̃ (2)

5 ,
the Michaelis constant for s̃5 in the forward auxiliary reaction. Since the smallness of
these parameters reduces the complexity of the system, it is experimentally favourable
to choose the relative enzyme concentrations and initial conditions to make ε and δ

small. We note that the smallness of K is slightly different, however. While the typical
parameter values we give in Table 2 unanimously result in small values of K , there
seems no fundamental reason why it should be small. To ensure the generality of our
analysis, we therefore also present results for K = O(1) in “Appendix C”.

It turns out that there are two distinguished asymptotic limits in this system (so that
all other regimes with ε, δ, and K each small are sub-cases of these two), whereby
k(−2) = O(1/K ) � 1 and k(−2) = O(εK ) � 1, respectively. We investigate the
former in the next section, discussing its relevance to our inference problem, and we
investigate the latter in Sect. 3.2, where we show that it can be considered a sub-limit
of the former case in terms of experimental measurements. Moreover, we show that
the latter regime exhibits the same constant ‘long-time’ production rate of NADH as
the standard coupled enzyme assay case we summarized in Sect. 2. In Table 4, we
provide a summary of the results we derive in the remainder of this section.

3.1 Strong reverse reaction: k(−2) = O(1/K)

When k(−2) = O(1/K ), the auxiliary-enzyme-controlled reaction in the forward
direction is much stronger than for the reverse direction. This scaling results in a
distinguished limit where the nonlinearity of the reverse reaction is important when
t = O(1), which is where the linear growth regime occurs for the standard coupled
enzyme assay. We now exploit the limits ε, δ, K � 1 with k(−2)K = O(1). We
note that while small values of ε would result in large values of K (−2)

6 , we will treat

K (−2)
6 = O(1) (as we do with the remaining dimensionless parameters in the system)
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as this choice keeps more terms at leading order (i.e. constitutes a distinguished limit)
and is the case we expect from experimental parameters.

3.1.1 Linear-phase regime

We first consider the linear-phase regime, which occurs over the timescale t = O(1).
By ‘linear-phase’, we mean that s6 will exhibit linear growth for some time period
which we can approximate. In the language of matched asymptotic expansions,
this corresponds to linear growth in the intermediate matching region between this
timescale and the longer depletion timescale (which we will show corresponds to
t = O(1/ε)).

In the limits set out in Sect. 3.1, the leading-order version of (15) for t = O(1) is

ds1
dt

= 0, (18a)

ds2
dt

= 0, (18b)

ds4
dt

=
(

s1

K (1)
1 +s1

)(
s2

K (1)
2 +s2

)
−s4+k(−2)K

(
s1

K (−2)
1 + s1

)(
s6

K (−2)
6 + s6

)
s6,

(18c)

ds5
dt

= 0, (18d)

ds6
dt

= s4 − k(−2)K

(
s1

K (−2)
1 + s1

) (
s6

K (−2)
6 + s6

)
s6, (18e)

with initial conditions (17). We may immediately deduce that, over this timescale,

s1 = 1, s2 = 1, s5 = 1, s4 + s6 = V t, (19)

where we define

V := 1(
K (1)
1 + 1

) (
K (1)
2 + 1

) . (20)

We can therefore reduce the system (17)–(18) to the following single ODE

ds6
dt

= V t − s6 − γ s26
K (−2)
6 + s6

, s6(0) = 0, (21)

where we define

γ := k(−2)K

K (−2)
1 + 1

. (22)
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Fig. 5 A comparison of the numerical solution to the ODE (21) with the early- and late-time asymptotic

solutions (23) and (24), respectively. We use parameter values V = 0.5, γ = 1, K (−2)
6 = 1

Although we cannot solve (21) explicitly, we may deduce from (21) that the early-
time behaviour is

s6 ∼ V t2

2
as t → 0+. (23)

and the long-time behaviour is

s6 ∼ V t

1 + γ
+ γ K (−2)

6 (1 + γ ) − V

(1 + γ )2
as t → ∞. (24)

These asymptotic solutions are good approximations of the numerical solution to (21)
in their regions of validity (Fig. 5).

It will also be helpful to note that

s4 ∼ γ V t

1 + γ
as t → ∞. (25)

Hence when measuring s6 experimentally, we will not observe linear growth in time
immediately (rather, (23) implies that we will observe a t2 relationship), but this
linear relationship will start to develop after a lag period. To help understand further
the solution of the ODE (21), we first note that we can reduce its dependence from
three parameters to two bymaking the scaling s6 = K (−2)

6 Y . This results in the system

dY

dt
= V̄ t − Y − γY 2

1 + Y
, Y (0) = 0, (26a)

123



Kinetic parameters in a non-standard coupled enzyme assay 665

(a) (b)

(c) (d)

Fig. 6 A comparison of numerical and asymptotic solutions of the reduced ODE (26) for a V̄ = 10−2,
γ = 100, b V̄ = 10−2, γ = 102 c V̄ = 104, γ = 102, d V̄ = 102, γ = 100. The onset of the linear regime
is set as 2.5 times the right-hand side of (30), and is denoted by a cross/asterisk when the first/second term
on the right-hand side is maximal

where we define

V̄ = V /K (−2)
6 . (26b)

Solutions to (26) generally exhibit a transient region before settling to linear growth
for a wide range of parameter values (Fig. 6). The long-time linear growth exhibited
by the ODE (26) is

Y ∼ V̄ t

1 + γ
as t → ∞, (27)

and it is of interest to understand when this linear growth becomes apparent. One
way to do this is to examine the menagerie of distinguished asymptotic limits of the
ODE (26), which are interesting in their own right. Moreover, the analytic solutions
afforded by an asymptotic analysis can be used to fit time-series data fromexperimental
results more easily than numerical solutions of a system of ODEs. We investigate the
subsidiary distinguished asymptotic limits in terms of the two parameters V̄ and γ in
“Appendix A”, and we show a comparison of numerical and asymptotic solutions to
(26) in Fig. 6.We illustrate the four distinguished limits thatweobtain from the analysis
of “Appendix A” in Fig. 7. A result from this analysis with particular importance for
accurately interpreting the data is that there are two distinct linear regimes in the
distinguished limit I.
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log γ

log V̄I

II

III

IV

A

B

C

D

Fig. 7 The distinguished asymptotic limits of the reduced ODE (26) for asymptotically large or small values
of V̄ and γ , denoted by dark solid lines and labelled using Roman numerals contained within a circle. Note
that the distinguished limit I corresponds to V̄ � 1 and γ = O(1), the distinguished limit II corresponds
to V̄ γ = O(1) with V̄ � 1 and γ � 1, the distinguished limit III corresponds to V̄ /γ 2 = O(1) with
V̄ � 1 and γ � 1, and the distinguished limit IV corresponds to V̄ � 1 and γ = O(1). The sublimits of
the distinguished asymptotic limits are noted using letters contained within a square

While the duration of this transient region can be calculated numerically for given
parameter values or approximated analytically from the asymptotic results we derive
in “Appendix A”, it is helpful to obtain an approximate analytic estimate for when we
expect to see a linear relationship for the general case. To this end, we first note that
Y ≥ 0, Ẏ ≥ 0, and Y/(1+ Y ) ∈ [0, 1), so we may obtain the bounds f1(t) ≤ Y (t) ≤
f2(t) where f1 and f2 satisfy the following ODEs

d f1
dt

= V̄ t − (1 + γ ) f1,
d f2
dt

= V̄ t − f2, f1(0) = f2(0) = 0, (28)

which yield the following bounds

V̄

(1 + γ )2

[
(1 + γ ) t − 1 + e−(1+γ )t

]
≤ Y (t) < V̄

(
t − 1 + e−t) . (29)

We note that the long-time limit of the lower bound in (29) is the long-time limit
(27) of the ODE (26) since the nonlinear term in the ODE becomes negligible when
Y � 1. Mathematically, the lower bound of (29) appears linear when (1 + γ )t � 1.
Combining these two constraints, we expect the NADH concentration to grow linearly
in time when

t � max

(
1

1 + γ
,
(1 + γ )

V̄

)
. (30)

As 1/(1 + γ ) is bounded above by 1, it is the second of these constraints that can
lead to very large times before the linear regime is encountered. This problem is
exacerbated when γ � 1 and V̄ = V /K (−2)

6 � 1, as can be seen by the significantly
large times until linearity for Fig. 6b. Moreover, we note that the two constraints in
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(30) approximately balance when V̄ = O(γ 2) for large γ (essentially Regime III in
Fig. 7), and where V̄ = O(1) for small γ . This represents a boundary between the
two different constraints, where the large-V̄ case (on the right of Fig. 7) corresponds
to t � 1/(1 + γ ). When we denote the onset of the linear regime in Fig. 6, we use
an asterisk when (1+ γ )/V̄ > 1/(1+ γ ) and a cross when (1+ γ )/V̄ < 1/(1+ γ ).
In each case, we take for definiteness the onset to occur at 2.5 times the value of the
right-hand side of (30).

3.1.2 Physical interpretation

To understand the physical implications of our analysis from the linear-phase regime,
it is helpful to reframe our results in terms of dimensional quantities. Hence, the
long-time dimensional linear behaviour of NADH, given in (24) for the dimensionless
problem, is

s̃6 ∼ Ṽωt̃ as t̃ → ∞, (31)

at leading order, where

ω = 1

1 + k̃(−2) K̃ (2)
4

k̃(2) K̃ (−2)
7

α̃

K̃ (−2)
1 + α̃

∈ (0, 1), (32a)

Ṽ = k̃(1) α̃

K̃ (1)
1 + α̃

β̃

K̃ (1)
2 + β̃

. (32b)

Here, ω can be thought of as a measure of the relative strengths of the forward and
backward auxiliary reactions: ω → 0+ when the backward reaction is much stronger,
but ω → 1− when the forward reaction is much stronger. Additionally, Ṽ can be
thought of as the ‘natural’ observed strength of the reaction, as this is the reaction
strength when the backward auxiliary reaction is unimportant, as we show in Sect. 3.2.
Moreover, ω can be calculated from the experimental setup, so the standard practice
of inferring the unknown parameters for a single enzyme can be used, as long as the
observed reaction velocity is modified by a factor of 1/ω. Thus, we have determined
the reaction velocity in the linear-phase regime in terms of the system parameters.

Our remaining task is to understand when we expect to observe this regime. The
dimensional version of the lower constraint for the linear regime, given in (30) for the
dimensionless problem, is

t̃ � max

(
ωK̃ (2)

4

k̃(2)
,
K̃ (−2)
6

Ṽω

)
. (33)

Hence, this gives us the approximate time we expect to wait before observing a lin-
ear relationship between time and NADH production. The constraint (33) provides a
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warning against particularly low initial concentrations of the primary enzyme, pyru-
vate, or the substrate, as this will cause a very large lag time. One can use (33) to
specify a required lag time, and determine constraints for the initial concentrations
discussed above.

However, while we have identified and characterized the linear regime of NADH
production, this regime is unfortunately transient; it can only last until substrate deple-
tion starts to affect the system at leading order, which occurs when t becomes of
O(1/ε). We investigate this regime in the next subsection.

3.1.3 Depletion regime

To investigate the depletion regime, we introduce T = εt and analyse the limit ε → 0
with T = O(1). Moreover, from (24) and (25), we see that we must also make the
scalings S4 = s4/ε, and S6 = s6/ε, resulting in the system

ε
ds1
dT

= −a (εv1 − V2 + V−2) , (34a)

ds2
dT

= −bv1, (34b)

ε
dS4
dT

= εv1 − V2 + V−2, (34c)

ε
ds5
dT

= −c (V2 − V−2) , (34d)

ε
dS6
dT

= V2 − V−2, (34e)

where the three reaction velocities are now defined as

v1 =
(

s1

K (1)
1 + s1

)(
s2

K (1)
2 + s2

)
, (35a)

V2 =
(

S4
1 + S4

) (
s5

δ + s5

)
, (35b)

V−2 = k(−2)K

(
s1

K (−2)
1 + s1

)(
S6

εK (−2)
6 + S6

) (
S6

1 + K S6

)
. (35c)

The matching conditions from the earlier timescale yield the following ‘initial condi-
tions’

s1(0) = 1, s2(0) = 1, S4(0) = 0, s5(0) = 1, S6(0) = 0. (36)

Naively taking the limits of ε, δ, K → 0 in (34) to obtain a leading-order system
would yield a duplication of information. To avoid this, we must form appropriate
linear combinations of the governing equations in order to obtain enough information
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for a leading-order system.Using this approach, exploiting conserved quantities where
possible, we obtain the following differential-algebraic system at leading-order

ds2
dT

= −b

(
s1

K (1)
1 + s1

)(
s2

K (1)
2 + s2

)
, (37a)

S4
1 + S4

= k(−2)K

(
s1

K (−2)
1 + s1

)
S6, (37b)

s1 + aS4 = 1, (37c)

s2 + bS4 + bS6 = 1, (37d)

s5 + cS6 = 1. (37e)

Thus, we have reduced the problem to that of one ODE with four additional algebraic
relationships, and the initial conditions (36). To further simplify this system, it is
convenient to use (37b–d) to write

s2 = f (s1) := 1 − b

a

[
1 − s1 + a

k(−2)K

(
s1 + K (−2)

1

s1

) (
1 − s1

a + 1 − s1

)]
, (38)

then to transform (37a) into a separable ODE for s1, obtaining

ds1
dT

= − b

f ′(s1)

(
s1

K (1)
1 + s1

)(
f (s1)

K (1)
2 + f (s1)

)
, s1(0) = 1. (39)

Solving (39) allows the remaining variables to be deduced algebraically from (37b–e),
(38). We are able to integrate (39) to obtain the following implicit solution

−bT = f (s1) − 1 + K (1)
2 log f (s1) + bK (1)

1

(
log s1
a

+ g(s1)

k(−2)K (a + 1)2

)

+ K (1)
1 K (1)

2

∫ s1

1

f ′(u)

u f (u)
du, (40a)

where

g(s1) := K (−2)
1 (a + 1)

2

s21 − 1

s21

+ a(a + 1 + K (−2)
1 )

a + 1
log

as1
a + 1 − s1

− (a + 1 + K (−2)
1 )

1 − s1
a + 1 − s1

. (40b)

The term with coefficient bK (1)
1 on the right-hand side of (40a) arises from direct

term-by-term integration of the ratio of the derivative of f (s1) (defined in (38)) and
s1.
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(a) (b)

(c) (d)

Fig. 8 A comparison of numerical solutions of the full system (15) to the asymptotic or reduced solutions
in the linear-phase regime from the previous section and in the depletion regime (40)–(41). We use the
parameter values in Tables 2 and 3, with α̃ = β̃ = 2.5 mM, and varying k(−2) in each sub-figure such that
a k(−2)K = 0.1, b k(−2)K = 0.5, c k(−2)K = 2, and d k(−2)K = 10

Thus, we have characterized the depletion regime. One can use (37c–d), and (40) to
obtain the following functional forms for the chemical concentrations in the depletion
regime

s2 = f (s1), S4 = 1 − s1
a

, s5 = 1 − c

(
1 − f (s1)

b
− 1 − s1

a

)
,

S6 = 1 − f (s1)

b
− 1 − s1

a
. (41)

The asymptotic solution for S6 in (41) agrees well with the numerical results for a
range of values of k(−2) in both the linear-phase regime of the previous section and
the depletion regime of this section (Fig. 8).

While the transient-linear regime of the previous section ismuch easier to fit and has
the benefit of being easier to identify from time data, this linear behaviour may only be
exhibited for a short duration. Given experimental data on the NADH concentration,
we can therefore estimate the three unknown parameters k(1), K (1)

1 , and K (1)
2 via a

nonlinear parameter fitting of (41). In practice, it is likely that either s1 or s2 will be
saturating, corresponding to either K (1)

1 or K (1)
2 being small, thus reducing the number
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of parameters that need to be fitted at any one time. It is worth noting that, unlike in the
standard assay considered in Sect. 2, the form of S6 is not symmetric in the parameters
K (1)
1 and K (1)

2 . This is to be expected, since the symmetry in the reaction network is
broken in the non-standard assay.

To identify when we may be able to use the transient-linear regime to fit data, we
now estimate an upper bound for this regime. While it is possible to determine this
by obtaining an early-time solution to the system (37) to calculate a correction to
the long-time solution from the earlier time regime (24), the resultant expression is
cumbersome and not particularly insightful. Instead, we use the following more crude
approximation for an upper limit to the linear regime:

t � 1/aε, (42)

obtained from the requirement to stray from linearity in this depletion regime. In terms
of dimensional quantities, (42) is

t̃ � α̃

k̃(1)
. (43)

Over the timescale t = O(1/aε), the levels of S6 increase and the levels of s2 and s5
decrease. From (41), we see that themaximum amount of NADHproduced is bounded
above by an O(1) quantity. Hence, we see from (34)–(35) that there will be additional
depletion dynamics if s5 = O(δ). This condition is not guaranteed to occur, and will
depend on the values of the kinetic parameters, as well as on the initial conditions of
the system. We do not consider this depletion possibility further, as it has no bearing
on our main goal of characterizing the primary enzyme. We consider the remaining
distinguished limit in the system, that of a weak reverse reaction, in the next section.

3.2 Weak reverse reaction: k(−2) = O(�K)

3.2.1 Linear-phase regime

The distinguished limit where the reverse reaction is weak occurs when k(−2) =
O(εK ), and it will be helpful to introduce ρ := k(−2)/(εK ) = O(1) for notational
purposes. This scaling results in a distinguished limit in which the nonlinearities of the
primary reaction and the reverse auxiliary reaction are important when t = O(1/ε).
This causes the limit to be distinguished for s4 over a timescale of t = O(1/ε).

In this case, the leading-order version of (15) for t = O(1) is

ds1
dt

=0,
ds2
dt

=0,
ds4
dt

=
(

s1

K (1)
1 + s1

) (
s2

K (1)
2 + s2

)
− s4,

ds5
dt

= 0,
ds6
dt

=s4,

(44)
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with initial conditions (17). The solution to (44) is

s1 = 1, s2 = 1, s4 = V
(
1 − e−t) , s5 = 1, s6 = V

(
t − 1 + e−t) , (45)

where V is defined in (20). Hence, s6 initially scales with t2 before eventually scaling
with t . Thus, when t = O(1) for a weak reverse reaction, the observed NADH produc-
tion is essentially equivalent to that of Sect. 2, even though pyruvate is both a substrate
of the primary reaction and a product of the auxiliary reaction. This is because there is
not enough alpha-L-alanine being created to produce a large enough amount of pyru-
vate to affect the NADH production, and the reverse reaction is too weak to siphon
away the NADH that is produced by a significant amount. In dimensional terms, the
observed long-time concentration of NADH in this regime is

s̃6 ∼ Ṽ t̃ as t̃ → ∞, (46)

essentially the sub-limit of (31) asω → 1, with Ṽ andω defined in (32). Additionally,
we are able to obtain a lower bound for this linear regime from (45), namely that t � 1
for the linear regime to hold. In dimensional terms, this corresponds to

t̃ � K̃ (2)
4

k̃(2)
. (47)

3.2.2 Depletion regime

As t increases further, the substrate depletion and the reversible reaction from NADH
to NAD+ start to affect the problem at leading order. To investigate this, we make the
scalings t = T /ε and S6 = s6/ε. Then, the leading-order version of (15) is

ds1
dT

= −a

((
s1

K (1)
1 + s1

) (
s2

K (1)
2 + s2

)
− s4 + ρ

(
s1

K (−2)
1 + s1

)
S6

)
, (48a)

ds2
dT

= −b

(
s1

K (1)
1 + s1

) (
s2

K (1)
2 + s2

)
, (48b)

0 =
(

s1

K (1)
1 + s1

)(
s2

K (1)
2 + s2

)
− s4 + ρ

(
s1

K (−2)
1 + s1

)
S6, (48c)

ds5
dT

= −c

(
s4 − ρ

(
s1

K (−2)
1 + s1

)
S6

)
, (48d)

dS6
dT

= s4 − ρ

(
s1

K (−2)
1 + s1

)
S6. (48e)

While (48) may appear complicated at first glance, it reduces readily to allow an
implicit analytic solution for the system. To see this, we first use (48c) to reduce (48a)
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and deduce that

s1 = 1 (49a)

at leading order over this timescale. Using (49a) in (48b) yields a separable ODE for
s2, with implicit solution

s2 − 1 + K (1)
2 log s2 = − bT

K (1)
1 + 1

, (49b)

which can also be written in terms of the Lambert W function. This tells us that the
leading-order substrate concentrationwill start to decrease before the pyruvate (Fig. 9),
even if the substrate is saturating i.e. K (1)

2 → 0. Finally, forming linear combinations
of (48b)–(48e) to yield conserved quantities allows us to deduce that

s4 =
(

1

K (1)
1 + 1

) (
s2

K (1)
2 + s2

)
+ ρ

(
1

K (−2)
1 + 1

) (
1 − s2

b

)
, (49c)

s5 = 1 − c

b
(1 − s2) , (49d)

S6 = 1 − s2
b

. (49e)

From our analytic solutions, we are able to infer that the weak reverse reaction only
affects the amount of s4 in the system over this timescale; the other chemicals are
independent of the reverse reaction despite it appearing at leading order. This change
of scaling affects the asymptotic analysis of the depletion dynamics between the strong
and weak reverse reaction cases; care is needed in scaling appropriately if taking
k(−2) → 0 in (37)–(41).

We are able to deduce the long-time dynamics in terms of the implicit solution for
s2 given in (49b). As the experimental calculation for the reaction velocity is taken
when the growth of NADH is linear, it is helpful to note when and how this breaks
down in this long-time limit. To do this, we expand (49b) for small time to note that

s6 ∼ VT

⎛
⎝1 − bK (1)

2 V

2
(
1 + K (1)

2

)T
⎞
⎠ as T → 0+. (50)

Moving back to dimensional quantities, we find that

s̃6 ∼ k̃(1) α̃

K̃ (1)
1 + α̃

β̃

K̃ (1)
2 + β̃

t̃

⎛
⎜⎝1 − k̃(1)

2

α̃

K̃ (1)
1 + α̃

K̃ (1)
2(

K̃ (1)
2 + β̃

)2 t̃
⎞
⎟⎠ , (51)
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Fig. 9 A comparison of the substrate depletion between the strong and weak reverse reactions, obtained
from numerical solutions to the full system (15). We use the parameter values in Table 3, with α̃ = β̃ = 2.5
mM, k(−2) = εK = 5× 10−4 for the weak reverse reaction and k(−2) = 1/K = 20 for the strong reverse
reaction

for

K (2)
4

k̃(2)
� t̃ � (K̃ (1)

1 + α̃)(K̃ (1)
2 + β̃)2

αk̃(1) K̃ (1)
2

. (52)

The simplest way to make this constraint less limiting is to have as small a value of
ε = k̃(1)/k̃(2) as possible. Another way is to increase β̃, though we note that this also
has the effect of making it difficult to determine K̃ (1)

2 . Therefore, to minimize the
correction term (and hence increase the duration of time at which the NADH growth
is linear, thus reducing experimental error), we should decrease α̃ and increase β̃. The
former of these is perhaps a little surprising, though we note that we must also ensure
that pyruvate depletion does not affect anything at leading order, so α̃ � ε K̃ (2)

4 ≈ 0.05
mM must also hold.

There will be further asymptotic regions and depletion dynamics at play here at
longer timescales, such as if s5 becomes of O(δ). However, these additional regions
are of limited relevance to our analysis here.

4 Guide to using our theoretical results

We now summarize the main results from Sects. 3.1 and 3.2, and give a step-by-step
guide of how to use these to characterize enzymes. We have found that a linear-growth
regime for NADH is possible for a strong reverse reaction, but this regime can be
quite short and is sandwiched between two nonlinear-growth regimes. The NADH
concentration in the linear regime is given in (31) in terms of dimensional quantities.
Although the linear-growth regime in theweak reverse reaction case is also sandwiched
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Fig. 10 A flow chart summarising how to use the main results of this paper. Further details of each step are
provided in the main text of Sect. 4

between two nonlinear-growth regimes, it lasts for a much longer duration in this case
and so results from the linear regime are easier to use in practice.

Due to our analytic asymptotic results, we are able to deduce upper and lower
time constraints for the linear regimes, which we give in (33) and (43) in terms of
dimensional quantities for the strong reverse reaction case and in (52) for the weak
reverse reaction case.We are also able to obtain an implicit closed-form solution for the
NADH concentration away from this linear regime, which would allow the unknown
quantities to be inferred through a nonlinear parameter fitting, if the linear regime was
too short for accurate measurements to be obtained. We now provide a step-by-step
guide to using our results with time data for the concentration of the indicator chemical
in each case, using different values of the initial substrate concentrations α̃ and β̃. We
also present a summary of these guidelines as a flow chart in Fig. 10, and note that a
summary of the solutions we derive in this paper in provided in Table 4.

Step 1 Characterize the auxiliary enzyme.
Step 2 Determine k̃(−2), the maximum velocity of the reverse reaction for the aux-

iliary enzyme. If k̃(−2) is significantly smaller than k̃(2) K̃ (−2)
7 /K̃ (2)

4 (say, two-to-three
orders of magnitude), proceed to Sect. 4.1. If not, proceed to Sect. 4.2.

4.1 Using the weak reverse reaction results

In this case, the NADH concentration should exhibit linear growth for a significant
period of time, with the relevant bounds given in (52). We are able to reduce the lower
bound in (52) by addingmore of the auxiliary enzyme, thereby reducing the lag period.
Additionally, although the upper bound in (52) contains the parameters we are trying
to infer, we can see that adding less of the primary enzyme will increase it, extending
the length of time until the depletion dynamics kick in.
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From the experimental data in the linear growth regime, the procedure is to calculate
the average slope of NADH concentration. This slope is equal to Ṽ , defined in (32).
The kinetic parameters of the primary enzyme can be inferred by fitting the average
slope obtained from the experimental data to the expression we give for Ṽ in (32),
using nonlinear data-fitting to minimize the sum of the difference between the data
and functional form.

4.2 Using the strong reverse reaction results

In this case, the NADH concentration should exhibit linear growth for some period of
time, with the relevant bounds given in (33) and (43). While the upper bound of (43)
can be extended by adding less of the primary enzyme, it is not necessarily true in this
case that adding more of the auxiliary enzyme will decrease the lower bound of (33).
If the linear regime is able to be observed for an appropriate length of time, then the
appropriate approach is to calculate the average slope of NADH concentration from
the experimental data in the linear growth regime. This slope is equal to Ṽω, defined
in (31). Here, ω is a function of the kinetic parameters of the auxiliary enzyme and the
initial chemical concentrations, whereas Ṽ depends on the kinetic parameters of the
primary enzyme and the initial chemical concentrations. Hence, the kinetic parameters
of the primary enzyme can be inferred by fitting the average slope obtained from the
experimental data to the expressionwe give for Ṽω in (32), using nonlinear data-fitting
to minimize the distance between the data and functional form.

If the linear regime is not able to be observed for an appropriate length of time, there
are two options, depending on whether better data is available for t̃ = O(K̃ (2)

4 /k̃(2)) or
for t̃ = O(α̃/k̃(1)). In the former case, one should use the results from Sect. 3.1, where
the data-fitting has been reduced to the single ODE (21). In terms of dimensional
quantities, the ODE (21) can be re-written as

ds̃6
dt̃

=
(
Ṽ k̃(2)

K̃ (2)
4

)
t̃ −

(
k̃(2)

K̃ (2)
4

)
s̃6 −

(
k̃(−2)

K̃ (−2)
7

α̃

K̃ (−2)
1 + α̃

)
s̃26

K̃ (−2)
6 + s̃6

, s̃6(0) = 0.

(53)

While there are four different parameter groupings in (53), the kinetic parameters of
the primary enzyme are all contained within Ṽ , as described in (32). Therefore, the
data fitting to this ODE is likely to be significantly simpler than data-fitting to the
initial system of ODEs (1). If better data is instead available for t̃ = O(α̃/k̃(1)), then
the results of Sect. 3.1.3 should be used. Here, the functional form for the NADH
concentration is given by (38), (40), and (41). In this case, the data-fitting should
involve minimizing the sum of the difference between the time data and the functional
form.
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Fig. 11 An example of the ‘true’ time courses generated from the system (10)–(11), with added Gaussian
noise of mean 0 µM and standard deviation 1µM. The data without noise is indicated by the dashed
lines. We use the parameter values from Table 2, as well as k̃(1) = 0.02µM s−1, k̃(2) = 10µM s−1,

k̃(−2) = 10µM s−1, K̃ (1)
1 = 1.5 mM, K̃ (1)

2 = 1 mM, β̃ = 50 mM, and γ̃ = 50 mM. The four different
curves correspond to α̃ = 0.5, 1, 2.5, 5 mM

4.3 Comparison with a naive nonlinear solver

We now compare the asymptotic method we describe in this paper with a naive nonlin-
ear parameter fitting. To do this, we first generate ‘true’ time courses for NADH from
the system (10)–(11) for four different values of α̃, then add Gaussian noise with mean
0µM and standard deviation σ µM, and we use σ as a control parameter. An example
of these time courses with σ = 1 is given in Fig. 11. The asymptotic parameter fitting
is carried out by fitting the asymptotic solution (31) to the true time courses using the
MATLAB function ‘lsqcurvefit’ for the parameters k̃(1) and K̃ (1)

1 . The naive nonlinear
parameter fitting is carried out using the same MATLAB function ‘lsqcurvefit’ on the
ODE system (10)–(11), fitting the parameter values k̃(1), K̃ (1)

1 , and K̃ (1)
2 . However, as

we generate the true time courses using a large value of β̃ in order to focus on K̃ (1)
1

rather than K̃ (1)
2 , we ignore the value of K̃ (1)

2 generated from this.
In general, the naive nonlinear fit is worse than the asymptotic fit in determining

k̃(1) and better than the asymptotic fit in determining K̃ (1)
1 (Fig. 12). However, the

asymptotic fit appears to be more consistent in its predictions than the naive nonlinear
fit, as the naive nonlinear fit can predict wildly incorrect values of k̃(1) even for small
noise. Moreover, we note that the computational time required for the naive nonlinear
fit is around 1000 times larger than for the asymptotic method.

5 Application to experimental data

The above concludes our mathematical analysis of the problem. To showcase how
these results can be used in practice, we performed enzyme assays to characterize an
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(a) (b)

Fig. 12 A comparison between the asymptotic method presented in this paper, and a naive nonlinear fit
of the system (10)–(11). We show the root mean squared error (RMSE) for both methods in estimating

the parameters a k̃(1) and b K̃ (1)
1 . The dashed line shows the value of the parameter being estimated, so a

RMSE well below this line signifies good accuracy whereas a RMSE near or above the line signifies poor
accuracy. We generate the ‘true’ data from the system (10)–(11), then add Gaussian noise with mean 0µM
and standard deviation indicated on the x-axis. Each marker represents the RMSE calculated from 100 total
realisations. We use the parameter values from Table 2, as well as k̃(1) = 0.02µM s−1, k̃(2) = 10µM s−1,

k̃(−2) = 10µM s−1 K̃ (1)
1 = 1.5 mM, K̃ (1)

2 = 1 mM, β̃ = 50 mM, and γ̃ = 50 mM. We also use α̃ = 0.5,
1, 2.5, 5 mM to generate four different ‘true’ time course curves for each different standard deviation of
noise

enzyme for twodifferent substrates using apreviously uncharacterizedputative omega-
aminotransferase, cloned and purified in a heterologous Escherichia coli host. The
aminotransferase is CnAptA (UniProtKB Q0KEZ8), named here for the first time in
the literature and identified in the genome ofCupriavidus necator H16, an industrially
relevant, facultative chemolithoautotrophic chassis microorganism of the Synthetic
BiologyResearchCentre (SBRC-Nottingham).We describe the experimental protocol
used to purify this enzyme in “Appendix B”.

5.1 Enzyme assay protocol

For these assays, the corresponding reaction network is shown in Fig. 1. The primary
enzyme is CnAptA, which converts pyruvate and an additional omega-amino acid
substrate into a corresponding aldehyde and alpha-L-alanine. Our assay solution also
included beta-nicotinamide adenine dinucleotide sodium salt (NAD+) as an electron
acceptor for the auxiliary enzyme reaction, and we monitored the formation of NADH
over time, produced from the auxiliary reaction. We used a commercially available
alanine dehydrogenase (A-DH) from Bacillus cereus (alanine dehydrogenase, recom-
binant; CAS-No 9029-06-5, Sigma-Aldrich Company Ltd.) as the auxiliary enzyme,
and we performed the experiment at pH 10, the pH condition recommended by the
supplier of this auxiliary enzyme, this condition resulting in an undetectable reverse
reaction. Our analysis suggests that the primary enzyme will be easier to character-
ize, since the bounds on the validity of the linear regime are less severe. Hence, we
can either use the sub-limit as ω → 1 of the results in the distinguished limit (31),
or we can use the sub-limit directly deduced in Sect. 3.2. The approach for this is
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(a) (b)

Fig. 13 a The time course data for NADH production with the enzyme CnAptA and substrate 3-
aminobutanoic acid, using different concentrations of the latter. b The average reaction velocity at different
substrate concentrations, and the predicted reaction velocity using our nonlinear data fitting to obtain values

of k̃(1) = 0.026µM s−1 and K̃ (1)
2 = 1.3 mM, each to two significant figures. The error bars on the figures

correspond to one standard deviation of the data

(a) (b)

Fig. 14 a The time course data for NADH production with the enzyme CnAptA and substrate 5-
aminovalerate, using different concentrations of the latter. b The average reaction velocity at different
substrate concentrations, and the predicted reaction velocity using our nonlinear data fitting to obtain values

of k̃(1) = 0.021µM s−1 and K̃ (1)
2 = 0.93 mM. The error bars on the figures correspond to one standard

deviation of the data

summarised in Sects. 4 and 4.1. Performing these assays at different acidities, which
may be more relevant for certain bacterial cell environments, would result in a strong
reverse reaction, which could be dealt with using the analytic representation for the
distinguished limit given in (31). The approach for these cases is summarised in Sects.
4 and 4.2.

We performed the enzyme assays in 96well microtiter flat bottom transparent plates
(Costar® Sigma-Aldrich). The reaction mixture contained different concentrations of
the substrate, 2.5 mM NAD+, 5 mM pyruvate, 5 µl A-DH [0.28 mg/ml], 5 µM of
pyridoxal 5′-phosphate (PLP), and 5 µl of CnAptA [0.0245 mg/ml]. We then used an
appropriate amount of sodium carbonate buffer to obtain a final volume of 200 µl.
The two different substrates we usedwere 3-aminobutanoic acid (Sigma-Aldrich 97%,
CASNo 541-46-6) and 5-aminovalerate (ACROSOrganics, 97%. CASNo 660-88-8).
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Todetect theNADHpresent in the solution,wemeasured the light absorbance at 340
nm using a TECAN Infinite® M1000 PRO plate reader, at 30 ◦C, the absorbance being
linearly proportional to the concentration of NADH in the solution. We monitored the
light absorbance at 340 nm at 60 s intervals for 1 h. After subtracting off the base level
of absorbance at the start of each experiment and the absorbance increase monitored
in the control experiment with no substrate, we converted these clean absorbance
data into an NADH concentration, shown for each substrate in Figs. 13a and 14a. We
expect our TECANdata to be accurate towithin a fewµM, and this errormargin iswhy
there sometimes appears to be ‘negative’ concentrations for early time. As our analysis
predicts, there is a clear linear regime after a lag period.Weobtained a constant reaction
velocity from this linear regime, using the average slope between 1800 and 3600 s.
From this constant reaction velocity, we used a nonlinear data fit to the functional form
of the solution (31)–(32) with ω → 1 (as discussed in Sects. 4 and 4.1) by minimizing
the sum of the difference between the data and functional form squared, using the in-
built function fminsearch in MATLAB, a simplex search method for finding minima
(Lagarias et al. 1998). From Figs. 13b and 14b, we see that our nonlinear fits generally
provide accurate representations of the data. For the enzyme CnAptA, our nonlinear
fit predicts values of k̃(1) = 0.026µM s−1 and K̃ (1)

2 = 1.3 mM for the substrate 3-

aminobutanoic acid and values of k̃(1) = 0.021µM s−1 and K̃ (1)
2 = 0.93 mM for the

substrate 5-aminovalerate, assuming that the levels of pyruvate we use are saturating.
In terms of the catalytic efficiencies, we see that k̃(1)/K̃ (1)

2 = 2.0 × 10−5 s−1 for 3-

aminobutanoic acid and k̃(1)/K̃ (1)
2 = 2.3 × 10−5 s−1 for 5-aminovalerate. Therefore,

we note that while 5-aminovalerate has a higher affinity (a lower K̃ (1)
2 ) to and catalytic

efficiency for CnAptA than 3-aminobutanoic acid, the maximum reaction velocity is
higher for 3-aminobutanoic acid than for 5-aminovalerate. However, these differences
are fairly small - there is not a large difference in enzyme behaviour between the two
substrates.

6 Discussion

Wehave used singular perturbation theory to determine how to infer the kinetic param-
eters of the primary enzyme from the measured NADH concentration in a coupled
enzyme assay, with reaction network shown in Fig. 1. In particular, this will allow
putative aminotransferases to be quickly characterized using coupled enzyme assays.
Our analysis also allows us to obtain estimates for when we expect to see a linear
growth in NADH concentration, the typical regime measured in enzyme assays since
it allows a quick sanity check of experimental results and is much easier to fit to data.
We have outlined how to use our theoretical results to infer the kinetic parameters of
the primary enzyme from experimental data in Sect. 4, where we also compared our
method with a a naive nonlinear fit. Moreover, we have used our results to characterize
a novel putative aminotransferase for two different substrates in Sect. 5.

Our analysis shows that there are two distinguished asymptotic limits in the system:
the important one for NADH (the measurable chemical) being the strong reverse
reaction case, considered in Sect. 3.1; the other is the weak reverse reaction case,
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considered in Sect. 3.2. We demonstrate that all the information that can be inferred
from the NADH concentration in the weak reverse reaction case is a sub-limit of the
strong reaction case, even though there are differences in the concentrations of alpha-
L-alanine, an intermediate chemical, between these two cases. In our analysis, we
exploit the smallness of three dimensionless parameters: ε, δ, and K , with a focus on
analysing how the asymptotic size of k(−2) affects the system behaviour and treating
all other parameters in the system as O(1) to retain their generality. As the parameters
ε and δ can always be made to be small through experimental choice, and we also
present results for K = O(1) in “Appendix C” (which shows a slight change in the
depletion regimes), our work represents a comprehensive asymptotic analysis of the
possible behaviours of the non-standard coupled enzyme assay we consider in this
paper.

Additionally, we note that our results suggest that one cannot deduce whether the
strong reaction case pertains simply by looking for a change in reaction velocity when
the amount of auxiliary enzyme is varied. This can be seen by (31), where we see that
the only two variables that involve the experimentally controlled auxiliary enzyme
concentration, k̃(2) and k̃(−2), appear as a ratio, thus removing any dependence on
this enzyme concentration. Thus, it is not always immediately clear from observations
whether one is in the weak or strong reverse reaction regime, unless the auxiliary reac-
tion has previously been completely characterized. Due to the weak reverse reaction
being a sub-limit of the strong for the experimentally measurable NADH concentra-
tion, as discussed above, we advise working with the results derived in the strong
reverse reaction regime in Sect. 3.1.

In the derivation of our model, we assume that the kinetic parameters of the putative
enzyme are unchanging over time. This may not be valid for enzymes that are unstable
or suffer a loss of activity over time, for example through incubation in a nonoptimal
buffer at certain temperatures. Accounting for this change in enzyme activity would
require additional information about the type and effect of the degradation occurring.

Although it would be possible to perform a brute force fitting of the kinetic param-
eters of the primary enzyme using the governing equations (10), such an approach
would be time-consuming and would not provide the general analytic expressions we
derive through our asymptotic analysis. Moreover, we are able to use our analytic
expressions to estimate when we will be in the linear growth regime, and for how long
we expect this regime to last, in terms of the experimental parameters. This provides
a useful sanity check when it comes to interpreting the data.

Historically, the measured reaction velocity is often converted into kinetic param-
eters for the enzyme using a Lineweaver–Burke plot (Lineweaver and Burk 1934).
However, this procedure is generally not the best way to calculate these values as it
amplifies noise in the measurements (Fell 1997). Nonlinear data fitting is orders of
magnitude better than it was at the time of Lineweaver and Burk, so it is much more
accurate nowadays to fit the data to analytic forms such as those we have deduced
using singular perturbation theory. For the case we consider in this paper, measure-
ments with varying initial substrate concentrations give us a two-dimensional array of
data from which to fit three variables. Additionally, choosing one of these substrate
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concentrations to be much larger than the estimated Michaelis constant K̃ (1)
1 or K̃ (1)

2
reduces the problem to a one-dimensional array of data fromwhich to fit two variables.

While we have considered a specific type of non-standard coupled enzyme assay
here, the asymptotic techniques we use are far from restricted to this system. We hope
that the techniques used in this paper will be applied to different reaction networks, to
help characterize enzymes that can only be assayed in non-standard reaction network
topologies.
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A Distinguished asymptotic limits of equation (26)

In this Appendix, we investigate the distinguished asymptotic limits of (26), thus
allowing us to characterize the possible behaviours of its solution.

A.1 Case I

The first distinguished limit we discuss (Region I in Fig. 7) occurs when V̄ � 1 and
γ = O(1) for the ODE (26). Here, there are two different timescales in the problem:
t = O(1) and t = O(1/V̄ ), for which Y = O(V̄ ) and Y = O(1), respectively; the
limit is distinguished only over the latter. Therefore, our brief analysis of the earlier
timescale consists simply of the asymptotic solution

Y ∼ V̄
(
t − 1 + e−t) . (54)

For the later timescale, the leading-order governing equation is

0 = V̄ t − Y − γ
Y 2

1 + Y
(55)

and hence we are in the full quasi-steady case. The equation (55) has solution

Y = V̄ t − 1 +
√

(V̄ t + 1)2 + 4V̄ γ t

2(γ + 1)
, (56)
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which matches appropriately to the earlier-time solution. We note that the large-time
limit of (56) is Y ∼ V̄ t/(γ +1). This is different to the large-time limit of (54) (when
t = O(1)), which is Y ∼ V̄ t . Therefore, there are two different linear regimes here,
and one should take great care in this distinguished limit to ensure that one is aware of
in which linear regime the measurements are being taken: failure to do so could result
in a significant error of interpretation.

When γ → ∞ in this distinguished limit, we move into sub-limit A (Fig. 7).
Here, the earliest timescale is the same as (54), but the later timescale splits into two,
the earlier with t = O(1/(V̄ γ )) and Y = O(1/γ ), the later with t = O(γ /V̄ ) and
Y = O(1), as could be inferred from the large-γ limit of (56). On the timescale
t = O(1/(V̄ γ )), the solution is

Y =
√
1 + 4V̄ γ t − 1

2γ
, (57)

and on the timescale t = O(γ /V̄ )

Y = V̄ t +
√

(V̄ t)2 + 4V̄ γ t

2γ
. (58)

When γ → 0 in this distinguished limit, we move into sub-limit D (Fig. 7). Here,
the full leading-order solution in the later timescale is simply the large-time limit of
the earlier timescale. Hence, the leading-order solution is simply (54), uniformly valid
for all time.

A.2 Case II

The next distinguished limit (Region II in Fig. 7) occurs when V̄ � 1 and γ � 1, with
V̄ γ = O(1), in the ODE (26). Here, there are two different timescales in the problem:
t = O(1) and t = O(γ 2), for which Y = O(1/γ ) and Y = O(1), respectively; the
limit is distinguished only over the earlier of these. Taking Y = Ȳ/γ , the leading-order
equation for the earlier timescale is

dȲ

dt
= V̄ γ t − Ȳ − Ȳ 2, Ȳ (0) = 0. (59)

The Riccati equation (59) has solution

Ȳ = (
V̄ γ

)1/3 Bi′[T (t)] + αAi′[T (t)]
Bi[T (t)] + αAi[T (t)] − 1

2
, (60a)

α = 2
(
V̄ γ

)1/3
Bi′[T (0)] − Bi[T (0)]

Ai[T (0)] − 2
(
V̄ γ

)1/3
Ai′[T (0)]

, (60b)

T (t) = 1

4
(
V̄ γ

)2/3 + (
V̄ γ

)1/3
t, (60c)
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where Ai(z) and Bi(z) are the standard Airy functions. The solution (60a) exhibits
the following large-t behaviour

Ȳ ∼
√
V̄ γ t as t → ∞. (61)

The later timescale in this problemoccurswhen t = O(γ 2) = O(1/V̄ 2) andY = O(1).
From (26), this timescale yields the following leading-order equation

V̄ t = γ
Y 2

1 + Y
, (62)

with solution

Y = V̄ t +
√

(V̄ t)2 + 4V̄ γ t

2γ
. (63)

This exhibits the large-t behaviour

Y ∼ V̄ t/γ as t̄ → ∞. (64)

Hence, we may deduce that in this regime the variable Y initially behaves as Y ∼
V̄ t2/2, then as Y ∼

√
V̄ t/γ , then finally as Y ∼ V̄ t/γ , and therefore exhibits at least

two points of inflection, as well as three distinct power laws.
The solutions of the distinguished limit in Case II tend to those of the sub-limit A

(Fig. 7) as V̄ γ → 0. The early timescale, when t = O(1) with solution (60a), splits
into two, with solutions (54) and (57). The late timescale solution (63) is the same as
in sub-limit A, as given in (58).

As V̄ γ → ∞, wemove into sub-limit B (Fig. 7). There are two different timescales
in this sub-limit: t = O(1/(V̄ γ )1/3) and t = O(γ /V̄ ), for which Y = O((V̄ /γ 2)1/3)

and Y = O(1), respectively. For the first, t = O(1/(V̄ γ )1/3), the solution (60a)
reduces to

Y =
(
V̄

γ 2

)1/3 Bi′
[(

γ V̄
)1/3

t
]

+ √
3Ai′

[(
γ V̄

)1/3
t
]

Bi
[(

γ V̄
)1/3

t
]

+ √
3Ai

[(
γ V̄

)1/3
t
] , (65)

For the second, t = O(γ /V̄ ), the leading-order solution is the same as for Case II,
given by (63).

A.3 Case III

The next distinguished limit (Region III in Fig. 7) occurs when V̄ � 1 and γ � 1,
with V̄ /γ 2 = O(1), in the ODE (26). Here, the important timescale has t = O(1/γ ) =
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O(1/V̄ 1/2), for which Y = O(1). To investigate this, we make the substitution t =
τ/γ , resulting in the leading-order behaviour being described by

dY

dτ
= V̄

γ 2 τ − Y 2

1 + Y
, Y (0) = 0. (66)

While we cannot solve (66) analytically, we note that the large-τ behaviour of (66)
is Y ∼ V̄ τ/γ 2 = V̄ t/γ , and that this behaviour will dominate when t = O(1).
Moreover, we can show that this case reduces to the sub-limits B and C (Fig. 7) as
V̄ /γ 2 → 0 and V̄ /γ 2 → ∞, respectively.

In the former sub-limit, with V̄ /γ 2 → 0, there are two timescales. For the earlier
timescale scaling Y ∼ (V̄ /γ 2)1/3 and τ ∼ (γ 2/V̄ )1/3 (equivalent to t ∼ 1/(γ V̄ )1/3)
results in the reduction of (66) to a Riccati equation with solution (65). The problem
for the later timescale can be obtained by scaling τ ∼ γ 2/V̄ (equivalent to t ∼ γ /V̄ ),
and this has solution (63).

For the latter sub-limit, with V̄ /γ 2 → ∞, the important balance occurs when
τ = O(1) (equivalent to t ∼ 1/γ ) and Y = O(V̄ /γ 2), resulting in the leading-order
system

dY

dτ
= V̄

γ 2 τ − Y , Y (0) = 0, (67)

which has solution

Y = V̄

γ 2

(
τ − 1 + e−τ

) = V̄

γ 2

(
γ t − 1 + e−γ t) . (68)

A.4 Case IV

The final distinguished limit (Region IV in Fig. 7) occurs when V̄ � 1 and γ = O(1)
in the ODE (26). Here, the main balance occurs when t = O(1) and Y = O(V̄ ). In
this case, the leading-order version of the ODE (26) is

dY

dt
= V̄ t − Y − γY , Y (0) = 0, (69)

which has solution

Y = V̄

(1 + γ )2

[
(1 + γ )t − 1 + e−(1+γ )t

]
. (70)

In the limit of γ → ∞, the solution (70) reduces to that in sub-limit C (Fig. 7),
given by (68), with the important timescale t = O(1/γ ). In the limit of γ → 0, the
solution (70) reduces to that of sub-limit D (Fig. 7), given by (54). This completes our
comprehensive asymptotic analysis of the distinguished limits of the ODE (26).

123



686 M. P. Dalwadi et al.

B Experimental protocol

B.1 Bacterial strains and cultivation conditions

Wepurchased the bacterial strains used in this study fromNewEnglandBiolabs (E. coli
ER2566) and DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen
GmbHDSMZ(C.necatorH16).Lysogenybroth (LB)mediumwasused for cultivation
of both strains. We cultivated strains carrying the pTXB1 plasmid (supplied with the
IMPACTTM KIT (NEB#E6901)) in the same media supplemented with ampicillin, at
a final concentration of 100 μg/ml.

B.2 Cloning of the putative aminotransferase CnAptA

Weamplified the coding region of CnAptA by PCR from the genomicDNAofC. neca-
tor H16 using 0.5 µM of FwaptA (5′ taccatatggacgccgccaagaccgt 3′) and RvaptA (5′
tgcaggaagagcccttgatgtcctgcagcgccttct 3’) primer pairs, using the Q5® High-fidelity
2XMaster Mix (NEB, #M0492S) with the following PCR conditions: 3 min of denat-
uration at 98 ◦C, followed by 25 cycles of 10 s denaturation at 98 ◦C, 30 s of an
annealing temperature at 72 ◦C, and 1 min extension of at 72 ◦C. We also added 5%
DMSO to the PCR mixture due to the high GC content of the amplicon.

We digested the resulting PCR products with theNdeI and SapI restriction enzymes
and ligated into the pTXB1 expression vector supplied with the IMPACTTM KIT,
which we digested with the same restriction enzymes. We introduced the resulting
plasmid, pTXB1-CnAptA, into the E. coli ER2566 strain. The pTXB1 vector allows
for the fusion of the target protein at its C-terminus to the affinity tag (chitin binding
domain or CBD) via a protein splicing element. This system is suitable for the purifi-
cation of the native recombinant protein in a single chromatographic step, without the
use of a protease. The expression of the fusion gene is controlled by an isopropyl-
beta-D-1-tiogalactopyranoside (IPTG)-inducible T7 promoter.

To overexpress the putative transaminase CnAptA, we grew the recombinant E. coli
ER2566 strains carrying the plasmid pTXB1-CnAptA on LB medium in the presence
of ampicillin (100μg/ml), at 37 ◦C until the optical density at 600 nm (OD600) for the
culture reached 0.5–0.6, at which point 0.4 mM IPTG was added. We then incubated
this culture at 22 ◦C for another 10 h and harvested it by centrifugation at 2800×g, at
4 ◦C.

B.3 Purification of chitin-tagged CnAptA transaminase

We re-suspended the cell pellets from the previous centrifugation step in Tris-HCl
buffer (20mMTris-HCl, 0.5MNaCl [pH7.4]) anddisrupted themusing aSoniprep 150
MSESANYO sonicator, at 4 ◦C, at 30 s intervals for 30min.We removed the insoluble
fraction by centrifugation at 8400 × g for 30 min. Then, we loaded the supernatant
onto the chromatography column packed with the chitin resin (Poly-Prep® prepacked
columns, AG® 1-X8, chloride form #731-1550), equilibrated with the same buffer at
pH 8.4, according to the suppliers protocol. We induced the on-column cleavage of
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Fig. 15 The ColorPlusTM

pre-stained protein ladder
(10–230 kDa, Lane 1), the
concentrated CnAptA protein
after on column cleavage (Lane
2, 47 kDa) and 10 µl of the resin
removed after washing and
cleavage of the target protein
(Lane 3) was loaded onto a
NuPAGE® Novex 4–12%
Bis-Tris SDS-PAGE Gel and run
for 2 h at 150 V in NuPAGE®
MES SDS Running Buffer.
Protein bands were visualised
using Coomassie Blue staining.
BD+P: intein tagged CnAptA,
P:CnAPTA after intein tag
cleavage, BD: cleaved intein tag

the CnAptA purified enzyme by adding Tris-HCl buffer containing 1,4-Dithiothreitol
(DDT) (20 mM Tris-HCl, 0.5 M NaCl [pH 8.4]), 50 mM DTT). We then performed
an elution of the un-tagged enzyme by adding 12 ml of Tris-HCl buffer (20 mM Tris-
HCl, 0.5 M NaCl [pH 8.4]). Finally, we concentrated the eluted protein fraction and
exchanged the elution buffer to a buffer containing 20 mM Tris-HCl, 0.05 MNaCl pH
8.4, using an Aminco Ultra-15 centrifugal filter unit (molecular mass cutoff, 50 kDa;
Millipore). Hence, the target protein (CnAptA) was eluted from the column in a pure
form (Fig. 15).

C Case in which K = O(1)

In this Appendix, we provide the governing system in the depletion regime for the case
with a strong reverse reaction when K = O(1), as the t = O(1) case proceeds in the
same manner as when K is small. Here, substrate depletion starts to affect the system
at leading order when t becomes of O(1/ε). To investigate this, we introduce T = εt ,
and we must also make the scalings S4 = s4/ε, and S6 = s6/ε. These scalings result
in the system

ε
ds1
dT

= −a (εv1 − V2 + V−2) , (71a)

ds2
dT

= −bv1, (71b)
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ε
dS4
dT

= εv1 − V2 + V−2, (71c)

ε
ds5
dT

= −c (V2 − V−2) , (71d)

ε
dS6
dT

= V2 − V−2, (71e)

where the three reaction velocities are now defined as

v1 =
(

s1

K (1)
1 + s1

)(
s2

K (1)
2 + s2

)
, (72a)

V2 =
(

S4
1 + S4

) (
s5

δ + s5

)
, (72b)

V−2 = k(−2)K

(
s1

K (−2)
1 + s1

)(
S6

εK (−2)
6 + S6

) (
S6

1 + K S6

)
. (72c)

The matching conditions from the earlier timescale yield the following ‘initial condi-
tions’

s1(0) = 1, s2(0) = 1, S4(0) = 0, s5(0) = 1, S6(0) = 0. (73)

Naively taking the limit as ε → 0 in (34) to obtain a leading-order system would
yield a duplication of information. To avoid this, we must form appropriate linear
combinations of the governing equations in order to obtain enough information for
a leading-order system. Using conserved quantities where possible, we obtain the
following differential-algebraic system at leading-order

ds2
dT

= −b

(
s1

K (1)
1 + s1

) (
s2

K (1)
2 + s2

)
, (74a)

S4
1 + S4

= k(−2)K

(
s1

K (−2)
1 + s1

)(
S6

1 + K S6

)
, (74b)

s1 + aS4 = 1, (74c)

s2 + bS4 + bS6 = 1, (74d)

s5 + cS6 = 1. (74e)

It is still possible to follow the analysis of Sect. 3.1 and rearrange this system into a
single ODE, though this is too cumbersome to be particularly enlightening.
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