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Abstract. Bacteria use intercellular signaling, or quorum sensing (QS), to share information and
respond collectively to aspects of their surroundings. The autoinducers that carry this information
are exposed to the external environment; consequently, they are affected by factors such as removal
through fluid flow, a ubiquitous feature of bacterial habitats ranging from the gut and lungs to lakes
and oceans. To understand how QS genetic architectures in cells promote appropriate population-
level phenotypes throughout the bacterial life cycle requires knowledge of how these architectures
determine the QS response in realistic spatiotemporally varying flow conditions. Here, we develop
and apply a general theory that identifies and quantifies the conditions required for QS activation
in fluid flow by systematically linking cell- and population-level genetic and physical processes. We
predict that, when a subset of the population meets these conditions, cell-level positive feedback
promotes a robust collective response by overcoming flow-induced autoinducer concentration gra-
dients. By accounting for a dynamic flow in our theory, we predict that positive feedback in cells
acts as a low-pass filter at the population level in oscillatory flow, allowing a population to respond
only to changes in flow that occur over slow enough timescales. Our theory is readily extendable,
and provides a framework for assessing the functional roles of diverse QS network architectures in
realistic flow conditions.

I. INTRODUCTION

Bacteria share and respond collectively to informa-
tion about their surrounding environment through the
production, release and detection of small diffusible
molecules called autoinducers, in a process termed quo-
rum sensing (QS). In QS systems, the individual bac-
terial expression of genes relevant to the community is
promoted when autoinducers accumulate to a threshold
concentration, typically associated with an increasing cell
density [1]. Population-level behaviors exhibited in QS-
activated states include bioluminescence [2, 3], virulence
factor production [4], modified mutation rates [5], biofilm
and aggregate formation [6, 7], and biofilm dispersal [8].
As autoinducers diffuse between cells, they are often sub-
ject to complex and fluctuating features of their environ-
ment, such as extracellular matrix components [9, 10],
interference by other bacterial species (or the host organ-
ism), and external fluid flow. Recent research has started
to show how such environmental factors are closely linked
to the QS response, building on foundational knowledge
gained from studying well-mixed laboratory cultures [11–
13]. However, improving our understanding of the func-
tional role of QS systems requires understanding how
these systems promote appropriate population-level phe-
notypes in realistic bacterial environments.

Fluid flow is ubiquitous in a diverse range of bacte-
rial habitats from rivers, lakes, and medical devices to
the host teeth, gut, lungs, and nasal cavity [14]. In ad-
dition to its mechanical effects on the structure of cell
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populations [15–19], external fluid flow has been found
to have a strong influence on the transport of relevant
chemicals including nutrients [8, 20], antibiotics during
host treatment [21, 22], and QS autoinducers [23–26].
Recent experimental [23–27] and numerical [28–34] stud-
ies suggest that flow-induced autoinducer transport can
affect population-level phenotypes by introducing chemi-
cal gradients within populations and, if the flow is strong
enough, suppressing QS altogether. These results raise
two important questions about QS genetic networks.
Firstly, how can QS networks ensure a robust population-
level response in order to avoid individual cells commit-
ting to a costly multicellular phenotype in isolation, while
also avoiding premature population-level QS activation in
a spatiotemporally complex environment? Secondly, how
can QS networks enable populations to sense cell den-
sity in flow environments that promote high mass trans-
fer [35–38]?

Here, we answer these questions by combining simula-
tions and a systematic asymptotic analysis of QS in a cell
layer subject to an external flow; we focus on the effect of
positive feedback in autoinducer production, a common
feature of QS genetic circuits [39]. First, we establish the
conditions required for the emergence of population-level
QS activation in steady flow. Our results illustrate how
the required conditions for activation depend on the ra-
tio of the timescale of the external flow to the timescale
of diffusion through the cell layer. If the required condi-
tions are met in a region of the cell layer, positive feed-
back causes autoinducers to flood the population, induc-
ing population-wide QS activation. Interestingly, by ac-
counting for a dynamic flow in our model we find that
an ability to avoid premature QS activation is built into
systems with positive feedback. We predict that positive
feedback acts as a low-pass filter to oscillations in the
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FIG. 1: We identify the required conditions for the onset of quorum sensing (QS) activation in a LuxIR-type system in steady
flow. a) We model a population of cells, and an external fluid flow above the population (left). Inside cells, we model a
LuxIR-type genetic circuit with positive feedback [12, 39] (right). b) In steady simulations for an imposed uniform shear flow,
if the density is below a critical value, the system remains inactivated (left). If the density rises just above this critical value,
positive feedback causes robust population-level QS activation (right). c) The maximum (green line) and minimum (red line)
autoinducer concentrations inside a population rise drastically around the critical density in steady simulations. Results are
shown for shear rates of 100 s−1 (top) and 10000 s−1(bottom); the population size was taken to be H = 5 µm. Dashed black
lines correspond to the activation threshold, and dashed green lines show the maximum concentration in the cell population
when no feedback is present (λ = 0); we note that setting the binding parameters k+ = 0 and k− = 0 does not have a
distinguishable effect in that case. d) The simulations show that the critical density is larger for a larger shear rate, and smaller
for a larger cell population (dots). Lines show the predicted critical density from Eqs. (6)-(8). All kinetic parameters in these
simulations are given the values listed in Table S1.

shear rate; if such oscillations occur over a time period
shorter than a critical time that we calculate, the QS
system is not activated, even if the required conditions
for activation are met during the oscillations. Further-
more, we find that by combining multiple QS signals, a
population can infer both cell density and external flow
conditions. Overall, our findings suggest that positive
feedback allows QS systems to act as spatiotemporally
non-local sensors of fluid flow.

II. RESULTS

Population-level theory for QS in flow

To understand how genetic circuits in individual cells
affect population-level bacterial signaling, we investi-
gated an archetypal quorum sensing (QS) circuit in
Gram-negative bacteria called a LuxIR system (Fig. 1a;
Methods). In this system, autoinducers (AI) in cells
bind to a cognate LuxR protein and the bound AI-LuxR
dimer promotes the transcription of downstream genes.
The system exhibits a positive feedback loop through the
presence of an AI synthase, LuxI, whose expression is pro-
moted by the bound dimer [12, 39]. Thus, to summarize,
as the concentration of AI in a cell increases, there is an
increase in the number of bound dimers. Consequently,
this promotes the production of LuxI, which further in-
creases the production of AI.

We modeled the concentration of AI (A), LuxR (R),
LuxI (I), and bound AI-LuxR dimers (C) in a pop-
ulation of cells through a locally-averaged set of gov-

erning equations [40, 41]. The important cell-scale in-
formation is captured through the local volume density
of cells ρ (Methods). We consider the scenario where
cells are embedded in extracellular matrix (matrix gen-
eration precedes QS activation in species including Vib-
rio cholerae [8] and Pseudomonas aeruginosa [25]) over
which a fluid flows. As such, the fluid flow imparts a
shear stress (which may vary in space and time) to the
upper boundary of the cell layer. We neglect growth-
induced flows inside the cell layer because their timescales
are typically much slower than those of diffusion and ex-
ternal flow [18, 42].

Thus, our problem consists of two coupled domains.
To obtain non-dimensional equations in each domain, we
scale lengths with the height of the cell layer H, fluid
velocities with γ̇H, where γ̇ is a typical shear rate, and
times with the diffusion timescale H2/Dc, where Dc is
the AI diffusion coefficient in the cell population (see
Methods). In the cell population region, a diffusion-
reaction equation holds for the AI concentration

∂A

∂t
= ∇2A+ ρ (q + λI − k+AR+ k−C)− κA, (1)

where ∇2A represents AI diffusion, q is the base produc-
tion rate of AI, λ is the synthesis rate of AI by LuxI, k+

is the binding rate of AI and LuxR proteins, k− is the
corresponding unbinding rate, and κ is the decay rate of
AI. Reaction equations hold for the concentrations of the
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proteins and dimers inside cells

∂I

∂t
= µC − αI,

∂R

∂t
= r − k+AR+ k−C − βR,

∂C

∂t
= k+AR− k−C − γC,

(2)

where µ is the activation rate of LuxI by AI-LuxR com-
plexes, r is the base production rate of LuxR, and α, β
and γ are decay rates. We combine the kinetic parame-
ters into two parameter groups,

K =
β(k− + γ)

k+γ
, Λ =

λµ

αγ
, (3)

where K represents an effective equilibrium constant
for AI-LuxR complex formation, and Λ represents the
strength of positive feedback in the system. In the exter-
nal flow region, with flow field u, an advection-diffusion
equation holds for the AI concentration

∇ · u = 0,
∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u,

∂A

∂t
= ∇ · (D∇A− PeuA)− κA,

(4)

where Re is the Reynolds number of the flow, and D is
the ratio of AI diffusivity in the flow to AI diffusivity
in the cell layer. The key control parameter that we
use to investigate how external flow affects QS in cell
populations is the Péclet number

Pe = γ̇H2/Dc, (5)

which quantifies the relative effects of advection in the
external flow to diffusion in the cell layer.

QS activation in steady flow

First, we performed numerical simulations of the gov-
erning equations in the finite-element computational soft-
ware COMSOL Multiphysics for an imposed spatially
uniform shear flow, which we assumed to be free of AI
far upstream (see Fig. S1 for a full description of the nu-
merical procedure). This incorporates a very wide range
of laminar flows in simple geometries owing to the large
Schmidt number (Sc = ν/De > 1000, where ν is the
kinematic viscosity and De is the diffusion coefficient in
the flow) of AI in water, so that the flow profile can be
linearized in the mass-transfer boundary layer. We per-
formed steady simulations to understand the conditions
in which it is possible for a population to enter a QS-
activated state for typical kinetic and physical parameter
values (summarized in Table S1). The results show that a
strong flow can entirely suppress QS activation by remov-
ing AI from the population boundary (Fig. 1b). However,
above a critical cell density ρc, the cell population is able

to exhibit QS activation through the positive feedback
present in the system. At steady state in this regime, the
domain becomes flooded with AI, which increase in con-
centration by several orders of magnitude throughout the
population (Fig. 1b); the large increase does not occur in
systems without positive feedback (Fig. 1c). This change
occurs over very small changes in cell density (Fig. 1c).
In larger cell populations, populations with restricted or
reduced AI diffusion, and weaker external flows, the crit-
ical density is smaller owing to the reduced mass transfer
of AI out of the population (Fig. 1d, Fig. S5).

To understand the general principles that guide how
the various kinetic, physical and geometric parameters
determine ρc, we analyzed the system of equations for
a thin cell layer, where diffusion through the cell layer
in the direction of flow is much less important than dif-
fusion in the direction normal to the surface of the cell
layer [43]. In this systematically reduced model, the en-
tire effect of the external flow region on the AI concentra-
tion A within the cell population is reduced to an effec-
tive Robin boundary condition on the surface of the cell
layer. To derive this condition, we constructed a similar-
ity solution for A in the mass-transfer boundary layer [44]
in the external fluid (see Supporting Information). This
yielded an effective Péclet number, Peeff, which quantifies
the local ratio of advective to diffusive transport at the
position x (where the x-axis is directed with the flow and
x = 0 corresponds to the upstream edge of the popula-
tion). Our analysis predicts the effective Péclet number
to be

Peeff =
Γ(2/3)Pe1/3D2/3

32/3x1/3
≈ 0.65

Pe1/3D2/3

x1/3
, (6)

where D is the ratio of the diffusion coefficient in the ex-
ternal flow to the diffusion coefficient in the cell layer (see
Eq. 16). Our Peeff prediction agrees well with simulation
results (Fig. 2a) outside a small diffusive boundary layer

of thickness O(Pe−1/2) at the downstream end of the cell
population (see Fig. S3).

The steady thin-film governing equations admit a solu-
tion for A that satisfies an ordinary differential equation,
which we analyze through the method of matched asymp-
totic expansions (see Supporting Information). Based on
the expected orders of magnitude of the parameter val-
ues (see Table S1), we exploit the physiologically rele-
vant limits K � 1 and Λ � 1, corresponding to a rel-
atively large equilibrium constant for AI-LuxR complex
formation, and strong positive feedback, respectively (see
Eq. 3). Our analysis demonstrates that, for a fixed Peeff,
the system exhibits an imperfect transcritical bifurcation
at a critical density, which marks an orders of magni-
tude increase in A owing to a drastic increase in positive
feedback. We identify this point as the critical density
ρc above which the population exhibits QS activation,
which reveals the algebraic relationship

ω tanω = Peeff at ρ = ρc (7)
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FIG. 2: We identify and analyze an algebraic relationship
linking flow, biomass and kinetics at the onset of quorum
sensing (QS) activation. a) For the simulations in Fig. 1d,
when the calculated effective Péclet number at the cell popu-
lation boundary, Ay/A, is scaled by Pe1/3, the simulation data

collapse onto the curve 0.65/x1/3 (dashed line), as predicted
in Eq. (6). Here A is the autoinducer (AI) concentration, x is
the co-ordinate parallel to the flow, and y is the co-ordinate
perpendicular to the flow. b) When plotted against the ap-
propriate non-dimensional variables identified in Eqs. (6)-(7),
the simulations from Fig. 1d collapse onto the curve defined
by Eq. (7) (see also Fig. S4). c,d) Illustrative examples of
how cells can measure density and flow by measuring acti-
vation (Eq. 7) of two different AI, splitting parameter space
into four regions A, B, C and D. c) Cell population of height
10 µm; one AI has kinetic parameters from Table S1 (blue
line), and the second AI also has a factor of 10 reduction in
diffusivity in the cell layer and factor of 5 reduction in LuxR
production rate (red line) compared to the other AI. d) Cell
population of height 100 µm; one AI has kinetic parameters
from Table S1, but with factor of 10 increase in LuxI and
LuxR decay rates (blue line), and the second AI also has a
factor of 500 increase in AI decay rate and factor of 2 increase
in LuxR production rate (red line) compared to the other AI.

where

ω :=

√
ρrΛ

K
− κ. (8)

Here r and κ represent LuxR production and AI decay,
respectively (see Eqs. 1-2). In Eq. (7), the effect of flow
is captured in Peeff and the effect of the kinetic param-
eters at the population level is captured in the single
non-dimensional parameter group ω.

To compare the predictions from our systematically re-
duced model to the simulation results, we note that the
onset of QS activation will occur at the lowest effective
Péclet number at the boundary of the cell population.
Because Peeff decreases in x (see Eq. 6), we ignore the
small downstream boundary layer for simplicity and as-
sume that Peeff is minimized at the downstream end of a

cell population of length L. Therefore, we insert x = L
into Eq. (6) to predict Peeff for a general population of
cells in a uniform shear flow. Plotting our simulation re-
sults against the non-dimensional parameter groups Peeff

and ω (defined in Eqs. 6 and 8, respectively) demon-
strates a remarkable collapse onto the predicted curve
Eq. (7) for a wide range of typical kinetic, geometric
and physical parameters (Fig. 2b, Fig. S4), despite the
assumptions in our thin-film reduction. We note that
we slightly underestimate Peeff (and therefore ρc) due to
the thin diffusive region at the downstream end of the
population; an improvement would require a full spatial
asymptotic analysis of the problem. This collapse onto
Eq. (7) can be ‘unwrapped’ to calculate the critical con-
ditions for activation for a QS network with a given set
of kinetic parameters.

For example, we found that, by combining two differ-
ent AI signals, a bacterial population can respond sep-
arately to the cell density and the external shear rate,
by measuring the activation state of both signals. The
key tunable parameters for sensing this difference are the
diffusion coefficients of each AI within the cell layer, the
decay rates of each AI, and the kinetics of each QS net-
work through the strength of the positive feedback (or,
more specifically, the ratio rΛ/K in Eq. 7). We found
that two of these parameters must be different between
the two AI signals to separate parameter space into four
regions that correspond to low and high values of both
cell density and shear rate (Fig. 2c,d). In thin cell lay-
ers, where the overall decay of AI within the cell layer
is very small for typical parameters (see Table S1), pop-
ulations can combine two signals with different diffusion
coefficients and different strengths of positive feedback
(Fig. 2c). In larger cell layers, populations can also in-
corporate information from two AI with different decay
rates (Fig. 2d). We note that in very large populations,
our model may need to be modified to account for nutri-
ent limitations (see Fig. S10). This ability to measure cell
density and shear rate separately is possible because the
three tunable parameters affect QS activation conditions
in distinct ways: AI diffusivity within the cell layer has
a larger effect at larger shear rates, AI decay has a con-
sistent effect across shear rates, and the effect of positive
feedback is strongly dependent on the cell density.

QS activation in complex geometries

In complex geometries there will be regions of low
shear on the cell layer surface, on which the local ef-
fective Péclet number Eq. (6) will be reduced. Eq. (7)
predicts that the global ρc will be lowered in such cell
populations, in agreement with a recent experimental
study in which QS activation was found to be promoted
in crevices or pores [26]. To further understand the lo-
cal and global effects of complex geometries on QS, we
performed simulations of the 3D governing equations in
channels which mimic typical host environments such as
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FIG. 3: In complex geometries, positive feedback causes ro-
bust QS activation based on the region with the lowest effec-
tive Péclet number. a) We simulated steady flow in a channel
with crevices in its sidewall; a cell population coats the chan-
nel floor. Top: The shear rate applied by the flow to the
top of the cell population is lower in the crevices (no shear
is applied to the sides of the cell population). Bottom: The
autoinducer concentration in the cell population is higher in
the crevices and downstream. Kinetic parameters correspond
to those in Table S1, with ρ = 0.168 and a crevice depth
of 10 µm, which is twice the height of the population (see
Fig. S1 for further details of the simulation geometry and
boundary conditions). b) Steady simulations show that QS
is activated at lower densities in populations in channels with
deeper crevices. The maximum autoinducer concentration in
the population, which occurs in the most downstream crevice
(see panel a), is plotted. c) Steady simulations show that for
a larger density, a larger region of the population is activated.
The density is plotted against the QS-activated distance along
the line transverse to the center of each of the four crevices;
the downstream distance of each crevice from the upstream
edge of the population is labeled. The QS-activated region
is defined as the region for which A > 5 nM, which we take
to be the activation threshold. All kinetic parameters were
given the values listed in Table S1.

intestinal crypts and tooth cavities. The channels contain
crevices that extend in the horizontal direction transverse
to a pressure-induced flow over a cell population that
coats the channel floor (Fig. 3a; Fig. S1). We found that
ρc is reduced in channels with crevices, by an amount
that depends on the crevice depth (Fig. 3b) and the num-
ber of crevices (Fig. S6), in agreement with experimental
findings [26]. Furthermore, we found that once QS is
activated in the crevices, diffusion of autoinducers acti-
vates further regions of the cell population outside the
crevices, particularly downstream (Fig. 3c). This acti-
vation region can extend for lengths far beyond the size
of the crevices themselves, even in conditions for which
QS activation would be precluded completely in a simple

channel (Fig. 3b,c). This demonstrates that local geo-
metric complexities can have highly non-local effects on
QS activation through positive feedback.

QS activation in unsteady flow

To understand the transient process of QS activation
in unsteady flows, which are common in bacterial habi-
tats such as the lungs and medical devices, we performed
simulations of the dynamic governing equations for spa-
tially uniform flows with a sinusoidally oscillating shear
rate. Each oscillating flow is characterized by the time
tact during an oscillation period for which the system is
in the ‘QS activation region’ of parameter space,

tact =

∫
V

dt, (9)

where V is the set of times such that Peeff(t) < Peeff(tc)
over one oscillation, and tc is the time at which the ef-
fective Péclet number Peeff falls below its critical value
identified in Eq. (7) (see inset of Fig. 4a). For the range of
shear rates spanned by the oscillations, the steady solu-
tion for AI concentration varies over orders of magnitude
as the system passes through the critical Peeff (Fig. 4a).
However, in the dynamic simulations, for a fixed mean
and amplitude of oscillation, this range is only achieved
for long enough oscillation periods (i.e. larger tact). Sur-
prisingly, for shorter oscillation periods (i.e. smaller tact),
the AI concentration remains below the QS-activation
threshold; we note that throughout these simulations,
tact remains well above the diffusive timescale. We found
that there is a critical oscillation period (i.e. a criti-
cal tact), and that as the period increases over this crit-
ical value, the mean (and maximum) concentration of
AI increases over several orders of magnitude (Fig. 4b,
Movie S1). We did not observe such a critical oscillation
period for a system without feedback (λ = 0), suggesting
that this effect is caused by positive feedback (Fig. S8).

To explore how this observation depends on the LuxIR
system kinetics, and to determine whether it is a general
property of the system, we performed a dynamic analysis
of the thin-film equations as Peeff passes below its critical
value at t = tc and the system enters the ‘QS activation
region’ of parameter space. We found that there is a crit-
ical slowing down due to the imperfect transcritical bifur-
cation which marks the onset of QS activation (see Sup-
porting Information); these dynamics are reminiscent of
the effects of ‘ghosts’ of saddle-node bifurcations [45–47].
This slower timescale introduces a ‘delay time’, tdelay,
which determines the time t = tc + tdelay at which dy-
namic QS activation occurs if the effective Péclet number
remains below its critical value, i.e. if Peeff(t) < Peeff(tc)
for t > tc. The delay time depends on the system ki-
netics through two non-dimensional parameter groups ν1

and ν2, (defined in Eq. 17; see Methods), and on the im-
posed external flow through the time-derivative Pe′eff(tc)
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in an oscillating flow. a) In steady simulations with fixed den-
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cally when the shear rate is below its critical value. In the fol-
lowing simulations we oscillate the shear rate across this criti-
cal value with a fixed mean and amplitude; the oscillations are
defined by the activation time tact for which the system is in
the QS activated region of parameter space (inset). b) Simu-
lations were performed with oscillations in the shear rate with
mean γ̇ = 10000 s−1 and amplitude γ̇ = 9000 s−1. For oscil-
lation time periods slower than a critical time, corresponding
to a critical tact, the mean (green line) and range (grey area)
of the maximum autoinducer concentration throughout each
oscillation rise drastically (see also Fig. S7 and Movie S1). Os-
cillations in the autoinducer concentration are filtered out for
t < tact, but not for t > tact (inset). c) Over a range of oscil-
lation periods, for each oscillation we calculate the activation
time using Eq. (9) and the delay time using Eq. (10). Thus,
we predict a critical oscillation period by finding the oscilla-
tion at which the activation time is equal to the delay time. If
the activation time is below the delay time, the oscillation is
in the filtered region of parameter space, and the QS system
is predicted to remain inactivated. d) To confirm the validity
of our prediction of the critical oscillation period, we per-
formed 1D simulations of the thin-film equations, where the
Péclet number is directly controllable. We defined the criti-
cal oscillation as the one at which the maximum autoinducer
concentration first rose above the threshold value of 5 nM;
then, we calculated the critical activation time using Eq. (9).
We found that, when plotted against the predicted critical de-
lay time (Eq. 10), this critical activation time collapses onto
Eq. (11). All kinetic parameters in these simulations were
given the parameter values in Table S1.

of the effective Péclet number as it passes below its crit-
ical value:

tdelay = ν1

√
log ν2Pe′eff(tc)

Pe′eff(tc)
. (10)

Thus, the delay time depends on whether the shear rate

changes slowly or quickly through the critical value that
marks the onset of QS activation.

Interestingly, this result suggests that in a dynamic
flow, even if the shear rate falls below its critical value
into the QS activation region, the onset of QS activa-
tion would not be triggered if the shear rate increases
back above its critical value after a time shorter than the
delay time of the system. Therefore, for an oscillating
flow that enters the QS activation region of parameter
space for an activation time tact during each oscillation,
we identify the oscillation period as the critical period if
the activation and delay times are equal (Fig. 4c):

tact = tdelay. (11)

Eqs. (10)-(11) predict that for a flow oscillating over a
long enough time period, such that tact > tdelay, the QS
system passes through cycles of dynamic activation and
deactivation. Conversely, for a flow oscillating over a
short enough time period, such that tact < tdelay, the sys-
tem is predicted to remain in the QS-inactivated state.
We confirmed the validity of our prediction of the critical
oscillation period by performing simulations of the gov-
erning thin-film equations, in which the Péclet number
and its derivatives are directly controllable. The results
show that for a wide range of oscillating Péclet numbers,
the calculated properties for the onset of dynamic QS ac-
tivation collapse onto the curve defined by Eqs. (10)-(11)
(Fig. 4d).

In experiments, and in our simulations of the govern-
ing equations with an imposed flow, it is not possible to
control the effective Péclet number and its derivatives di-
rectly. However, we can make an order of magnitude esti-
mate of the required conditions for the onset of dynamic
QS activation for a sinusoidally oscillating flow with a
time period Tp as follows. At onset, Pe′eff(tc) = O(1/Tp)
and tact = O(Tp). Combining Eq. (10) and (11) and
neglecting the effect of the logarithmic term in Eq. (10)
(which we expect to have a lesser effect than the algebraic
terms) yields an estimate of Tp = O(ν2

1) at the onset of
dynamic QS activation. For the typical kinetic parame-
ters used in our simulations (see Table S1), this suggests
a critical oscillation period of approximately 10 hours,
which is in agreement with our simulation results for a
wide range of oscillating flows (Fig. 4b,d; Fig. S7).

III. DISCUSSION

This study demonstrates how positive feedback in the
LuxIR system, an archetypal bacterial quorum sensing
(QS) genetic circuit, promotes a robust population-level
response in spatiotemporally varying flow conditions. Be-
cause QS systems measure the concentration of passively
transported autoinducers (AI), even simple fluid flows
generate concentration gradients which can cause pheno-
typic gradients within a population. Our results show
that positive feedback in QS genetic architectures allows
bacteria to overcome flow-induced AI gradients at the
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population level for a wide range of conditions that rep-
resent flows encountered in bacterial habitats such as
lakes, rivers, and hosts (Figs. 1, 3). The key physical
determinant of the onset of QS activation in a popula-
tion is the minimum value of the effective Péclet num-
ber Peeff (see Eq. 6), which quantifies the local advective
to diffusive transport at the surface where the popula-
tion meets the external fluid. Furthermore, a system-
atic reduction of the governing equations via a thin-film
model reveals that for a given Peeff, the critical popu-
lation density (or size) for the onset of QS activation is
determined by a single dimensionless kinetic parameter
group ω (see Eq. 8). A compact relationship between
these two parameter groups, Eq. (7), links the physical,
geometric and kinetic parameters at the onset of QS ac-
tivation (Fig. 2). Through their transparent dependence
on these system parameters, Eqs. (6)-(8) explain how QS
activation is promoted in bacteria with QS architectures
with stronger positive feedback or with smaller AI-LuxR
dissociation constants [48]; in conditions of restricted AI
diffusion inside the population, which can be caused by
interactions with the extracellular matrix [9] (Fig. S5);
in larger or denser populations; and in populations sub-
ject to weaker external flow, in agreement with recent
experimental results [25, 26].

The dependence of the critical density on the flow con-
ditions raises the question of whether bacterial QS sys-
tems in fluid flow respond to increasing cell density, de-
creasing mass transfer, or a combination of these fac-
tors [37]. By calculating the QS activation conditions for
AI with different sets of physical and kinetic parameters
using Eqs. (6)-(8), we suggest that a bacterial population
can integrate information from multiple signals to mea-
sure cell density and shear rate separately (Fig. 2c,d).
Our results are in qualitative agreement with previous
work which considered a well-mixed population subject
to spatially uniform AI removal by mass transfer and
AI decay [37]. However, our results also suggest that in
smaller populations subject to external flow, the over-
all decay of AI may be too small to separate parameter
space into distinct regions; in such populations, physi-
cal differences between AI diffusivities (which could be
caused by different interactions with surrounding matrix
proteins [9]) may provide more information. These re-
sults suggest that by combining multiple AI signals with
different physical and kinetic properties, bacterial popu-
lations in complex environments can add fidelity to mea-
surements of their surrounding conditions, and promote
the appropriate phenotypic response to these conditions.

An individual bacterium committing to a QS-activated
phenotype can incur significant individual costs, such as
the generation or abandonment of important extracellu-
lar material. It is therefore often beneficial for such a
commitment to be shared by the rest of the bacterial
population [49]. As we have shown, positive feedback
promotes a robust, population-scale QS response if ap-
propriate conditions are met in only a local region of a
cell population. While this feature of positive feedback

is very useful for population-wide commitment, it has
the potential downside of triggering premature QS acti-
vation in noisy or intermittent flow conditions. However,
our analysis of the LuxIR system in dynamic flow con-
ditions suggests that the positive feedback mechanism
actually reduces the potential for such a premature re-
sponse because the feedback itself acts as a low-pass fil-
ter at the population level. That is, in a flow oscillating
with period smaller than a critical value that we cal-
culate (but still slower than the diffusion timescale), a
population responds to the mean effective Péclet num-
ber, rather than exhibiting quasi-steady oscillations in
QS activation and inactivation (Fig. 4). In such condi-
tions, a growing population’s QS system would be ex-
pected to activate eventually through its increasing den-
sity (growth is also associated with an activation delay
time but for typical parameters it is of the same order
of magnitude as the doubling time; see Fig. S9). The
critical time period depends on the nature of the flow
oscillation and the system parameters through Eq. (10),
which manifests due to a bottleneck induced by an imper-
fect transcritical bifurcation in the system; such critical
slowing down is a universal feature of dynamical systems
near critical points [45–47]. Overall, this result suggests
that population-level low-pass filtering via positive feed-
back complements other previously identified sources of
noise-filtering, or time-averaging [50], in QS systems such
as slow AI-LuxR unbinding [51] and diffusional dissipa-
tion [52, 53].

Our findings allow us to interpret typical QS network
features in a manner that accounts for their expected re-
sponse to spatiotemporal variations in flow. Our analysis
suggests that bacterial species with positive feedback in
their QS network, such as P. aeruginosa, use QS as a
spatiotemporally non-local sensor of flow conditions and
cell density. In these systems, positive feedback causes
AI to flood the population if the required conditions are
met in a local region, inducing QS activation in a large
proportion of the population. Built into this mechanism
is an ability to avoid premature population-wide activa-
tion in unsteady flow through the delay time that we
have identified; the required conditions must persist for
long enough for activation to occur. Our predictions of
the effects of flow on AI concentration in species in which
feedback does not link back to AI production, such as V.
cholerae and V. fischeri [39, 54], are shown in Fig. 1c
and Fig. S8. In these systems, AI concentration is much
less sensitive to cell density and shear rate, and if the
required conditions for QS activation are met in a local
region of the population, this does not cause other re-
gions of the population to be activated. Furthermore, in
unsteady flows, such systems will exhibit repeated varia-
tions in AI concentration, and these variations will occur
over diffusive timescales, which are usually faster than
timescales of flow variation. Therefore, we expect these
species to use QS as a spatiotemporally local sensor of
flow conditions and cell density.

To conclude, we have identified the required conditions
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for the emergence of robust, population-level QS activa-
tion in a spatiotemporally varying fluid flow, for systems
that exhibit positive feedback in their QS network archi-
tecture. We have demonstrated that positive feedback al-
lows cells to avoid an isolated or premature commitment
to costly multicellular phenotypes. Furthermore, we have
found that populations can integrate multiple signals to
sense cell density and flow conditions separately. Our
theory demonstrates how QS genetic architectures play
a key role in determining the population-level functional
response of bacterial intercellular signaling systems in
complex environments.

IV. METHODS

A. Governing equations

Inside the cell population, the governing equations are

∂Ã

∂t̃
= ∇̃ ·

(
D̃c∇̃Ã

)
+ ρf̃A(Ã, Ĩ, R̃, C̃)− κ̃Ã,

∂Ĩ

∂t̃
= f̃I(Ĩ , C̃),

∂R̃

∂t̃
= f̃R(Ã, R̃, C̃),

∂C̃

∂t̃
= f̃C(Ã, R̃, C̃),

(12)

where ρ is the volume fraction of cells, Ã is the concen-
tration of autoinducers, Ĩ is the concentration of LuxI, R̃
is the concentration of LuxR, and C̃ is the concentration
of autoinducer-LuxR dimers. The reaction terms in the
system (Fig. 1a) are

f̃A(Ã, Ĩ, R̃, C̃) = q̃ + λ̃Ĩ − k̃+ÃR̃+ k̃−C̃,

f̃I(Ĩ , C̃) = µ̃C̃ − α̃Ĩ,
f̃R(Ã, R̃, C̃) = r̃ − k̃+ÃR̃+ k̃−C̃ − β̃R̃,

f̃C(Ã, R̃, C̃) = k̃+ÃR̃− k̃−C̃ − γ̃C̃.

(13)

The meanings and typical orders of magnitude of each
dimensional parameter are listed in Table S1. Here, for
simplicity we have assumed that mRNA concentrations
are quasi-steady, and have linearized the activation of
LuxI by the autoinducer-LuxR dimers [55] (see Fig. S2
for a discussion of how saturation in promoter occupancy
of the transcription factor affects QS activation in flow).
We assume that all cells in the population have access
to nutrients and are physiologically active, so that base
autoinducer production q̃ is uniform throughout the pop-
ulation. This assumption is based on the observation that
hemispherical biofilms with radius around 10 µm remain
uniformly growth-active even in shear rates a hundred-
fold smaller than the smallest shear rates used here [17]
(where a smaller shear rate implies reduced access to
nutrients). This assumption may need to be relaxed in
nutrient-limited conditions (see Fig. S10). Note also that
we do not consider the basal expression of LuxI, which

is expected to be small [56], because its only effect is to
slightly change the concentration of autoinducers before
activation. Outside the cell population, the governing
equations are

∇̃ · ũ = 0,
∂ũ

∂t̃
+ ũ · ∇̃ũ = − 1

ρw
∇̃p̃+ ν∇̃2ũ, (14)

∂Ã

∂t̃
= ∇̃ ·

(
D̃e∇̃Ã− ũÃ

)
− κ̃Ã, (15)

where ũ is the velocity field of the fluid, and ρw and ν
are the fluid density and kinematic viscosity, respectively,
which we take to be those of water. We assume that the
flow is free of autoinducers far upstream, and apply con-
tinuity of autoinducer concentration and concentration
flux at the interface between the cell population and the
flow. Full technical details of the boundary conditions,
the non-dimensionalisation of the problem, and the pro-
cedures for the asymptotic and numerical solution of the
governing equations are given in the Supporting Infor-
mation. All code required to generate the simulation re-
sults is available on Github at https://github.com/philip-
pearce/quorum-flow (requires Comsol 5.5 license, Matlab
license, and Comsol LiveLink with Matlab License).

B. Non-dimensional parameters

The non-dimensional parameters, defined in terms of
the dimensional parameters in Eqs. (12)-(13), are

q =
q̃H̃2

Ã0D̃c

, r =
r̃H̃2

Ã0D̃c

, λ =
λ̃H̃2

D̃c

,

µ =
µ̃H̃2

D̃c

, k+ =
k̃+Ã0H̃

2

D̃c

, k− =
k̃−H̃

2

D̃c

,

α =
α̃H̃2

D̃c

, β =
β̃H̃2

D̃c

, γ =
γ̃H̃2

D̃c

,

κ =
κ̃H̃2

D̃c

, Re =
γ̇H2

ν
, D =

D̃e

D̃c

(16)

where H̃ is the height of the cell population and Ã0 is
the threshold concentration of autoinducers for QS ac-
tivation. These parameters can be combined into the
parameter groups

ν1 =

√
2I2ξ

cosω
, ν2 =

I2ξK
2 cos2 ω

ρ2
cqrI1I3Λ

,

ξ = 1 +
rρcΛ

K

(
1

α
+

1

γ + k−

)
,

(17)

where

I1 =
sinω

ω
, I2 =

1

2
+

sin 2ω

4ω
, I3 =

sinω

ω
− sin3 ω

3ω
,

and ω is defined in Eq. (8).
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