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ABSTRACT
Maritime safety is an important issue for global shipping industries. Currently, most of collision ac-
cidents at sea are caused by the misjudgement of the ship’s operators. The deployment of maritime
autonomous surface ships (MASS) can greatly reduce ships’ reliance on human operators by using
an automated intelligent collision avoidance system to replace human decision-making. To success-
fully develop such a system, the capability of autonomously identifying other ships and evaluating
their associated encountering situation is of paramount importance. In this paper, we aim to identify
ships’ encounter situation modes using deep learning methods based upon the Automatic Identifica-
tion System (AIS) data. First, a segmentation process is developed to divide each ship’s AIS data into
different segments that contain only one encounter situation mode. This is different to the majority of
studies that have proposed encounter situation mode classification using hand-crafted features, which
may not reflect the actual ship’s movement states. Furthermore, a number of present classification
tasks are conducted using substantial labelled AIS data followed by a supervised training paradigm,
which is not applicable to our dataset as it contains a large number of unlabelled AIS data. There-
fore, a method called Semi-Supervised Convolutional Encoder-Decoder Network (SCEDN) for ship
encounter situation classification based on AIS data is proposed. The structure of the network is not
only able to automatically extract features from AIS segments but also share training parameters for
the unlabelled data. The SCEDN uses an encoder-decoder convolutional structure with four chan-
nels for each segment (distance, speed, Time to the Closed Point of Approach (TCPA) and Distance
to the Closed Point of Approach (DCPA)) been developed. The performance of the SCEDN model
are evaluated by comparing to several baselines with the experimental results demonstrating a higher
accuracy can be achieved by our proposed model.

1. Introduction
Safety is always a significant concern in maritime in-

dustry. Based on the survey from the Lloyd’s report (Has-
sel et al., 2011), 67% of waterborne transportation accidents
are caused by collisions between ships. Studies on acci-
dents show that the ship crew is the significant factor when
it comes to maritime safety since approximately 80-90% of
maritime accidents are caused by human errors (Berg et al.,
2013). Therefore, it is important to carry out research on
ship intelligence development to replace the human deci-
sion (Parsons et al., 2008). In recent years, academics and
industries have largely aimed at developing and building au-
tonomous ships by following the initiatives advocated in land-
based transportation (Ramos et al., 2019). The concept of
Maritime Autonomous Surface Ships (MASS) has been pro-
posed by the International Maritime Organisation in 2017
and one of the motivations for the MASS is to use a collec-
tion of sensors to replace the human decision-making and to
large extend avoid collision accidents. In order to realise a
MASS collision avoidance system, it is important to develop
an artificial intelligence system to help precept the relative
encounter situations between ships (Zhang et al., 2015).
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Recent developments of MASS bring a lot of require-
ments for the intelligence, especially each ship’s collision
avoidance. Traditional collision avoidance is based on the
operator’s decision with the help of sensor such as Radar
(Bovcon and Kristan, 2020). For the MASS, one of main
challenges is the timely detection and avoidance of close-
range obstacles. With the development of sensor technolo-
gies, it becomes promising to use the sensor fusion informa-
tion to replace the human operator’s subjective judgements.
Currently, there are many sensors on board to provide in-
formation and one of the widely used devices for collision
avoidance is the Automatic Identification System (AIS). The
AIS is an automatic tracking system that uses transceivers
on ships to broad each ship’s unique identification, position,
course, and speed. For human operator, these information
can be used to calculate the Close Point of Approach (CPA)
(shown in Figure 1) to help them make a collision avoidance
action.

Figure 1 illustrates one of representative scenarios for the
collision avoidance. Two ships denoted as V1 and V2 have adistance on the left side of Figure 1 at time t+1. If two ships
keep the directions and speed, they will eventually lead to a
collision after time t + 3. The red star in Figure 1 repre-
sents the closest point of approach, which is the latest point
to take action. If actions (changing course or reducing speed)
are taken later than CPA, the two ships will inevitably col-
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Figure 1: CPA Illustration: The two ships V1 and V2 keep the current directions in time from t + 1 to t + 3. If the two ships are
continuing the direction after t + 3, the two ships will collide. The latest decision-making point represented by the star is called
the Closest Point of Approach (CPA).

lide. The CPA can be calculated by the time or the distance
separately known as DCPA and TCPA.

As shown in Figure 2, there are four basic different types
of ship encounter situations prescribed by the International
Regulations for PreventingCollisions at sea 1972 (COLREGs)
(Mankabady, 1986). For crossing situation in Figure 2, if
ship V2 is on the right hand side of ship V1, ship V1 shouldgive way for ship V2 and vice versa for the crossing 2 sce-
nario. If ship V1 and ship V2 has the opposite direction, eachship has the same responsibility to make a way for safety rea-
sons. The last scenario is the overtaking situation, ship V1 isbehind ship V2 and plans to surpass ship V2 that is playinga give-way role in this scenario. Based on the COLREGs
rule, it needs to classify the ship encounter situation into
different types for the development of intelligent collision
avoidance system. When it comes to the development of the
learning-based collision avoidance model that is compliant
with COLREGs, it is evident that a sufficient amount of data
containing four encounter situations should be provided for
training purposes (Naeem et al., 2012).

However, a bulk of currently available AIS data are only
used for the normal navigation without explicitly revealing
more complex navigation details including the encountering
situations. Currently, there are lots of publications on the
collision avoidance based on various methods such as ve-
locity obstacle (Yuan et al., 2021), decision-making (Zheng
et al.; Mizythras et al., 2021; Gao and Shi, 2020). These

methods are mainly on the global situational awareness and
they do not contain any two ship’s encounter situation strat-
egy. In our previous publication in Chen et al. (2020), a su-
pervised learning technique has been proposed to classify
AIS data into three basic categories, i.e. normal navigation,
static state and manoeuvring state. The manoeuvring state
(equal to encounter situation) is the data that we require for
collision avoidance, but it does not indicate properly which
types of encounter situation a ship is dealing with. More-
over, the AIS data only records the ship movement state with
most of them incapable of specifying which category it be-
longs to. Therefore, it becomes necessary to design a new
model to classify the ship encounter situations based on the
AIS data. Under the foundation of the work in Schwenker
and Trentin (2014), Kostopoulos et al. (2018), Liu et al. (2018),
etc., in this paper we propose a new Semi-Supervised Con-
volutional Encoder Decoder Network for ship encounter sit-
uation classification. The main contributions of this work
can be summarised as follows:

• Designing an efficient representation for AIS data. In
order to make a good performance for the encounter
situation classification, a new method capable of aug-
menting conventional AIS segments to an efficient rep-
resentation that incorporates encounter situation has
been proposed. The new representation can enable the
use of a convolutional neural network (CNN) architec-
tures to extract high-level features from AIS.

Xiang Chen et al.: Preprint submitted to Elsevier Page 2 of 18



Semi-Supervised Model for Ship Encounter Situations

Figure 2: Encounter situations: Based on the COLREGS rule from IMO, the ship-ship encounters are categorised into three types
(crossing, head-on and overtaking). Using the different relative position for the ship V1 and ship V2, the crossing situation can
be simplified into two groups (’give-way’ or ’stand-on’).

• Developing a novel semi-supervised convolutional en-
coder decoder architecture. A deep semi-supervised
model has been proposed to balance unlabelled and la-
belled AIS data for classifying encounter situations. A
CNN classifier dealing with supervised training using
labelled is embeddedwith a encoder-decoder structure
which is responsible for unlabelled data training.

• Building an efficient training scheme for finding opti-
mal hyperparameters. At present, most of AIS data
are unlabelled making the labelled AIS data for en-
counter situation only account for a small proportion.
We therefore propose a new small-sample training strat-
egy, where a new training scheme first uses a small
amount of labelled AIS data as a warm-up and then
shares the training weights for unlabelled AIS data for
large-scale training. A joint training is then employed
for boosting the accuracy and reducing thewhole train-
ing loss.

• Conducting a series of extensive experiments for per-
formance evaluation. To compare the results of the
proposed model, classic methods including the super-
vised decision tree, support vectormachine and k-nearest
neighbour classification methods are used and imple-
mented.

The rest of this paper is organised as follows. Section 2
provides the related work on trajectories classification and
deep semi-supervised learning. After that, Section 3 pro-
vides the preliminaries for the encounter situation classifi-
cation task and Section 4 shows the details of our model
framework. The experiment and results are shown in Sec-
tion 5. Finally, the conclusion is presented in Section 6.

2. Related Work
Until now, a number of studies have employed various

data sources (e.g., AIS, GPS or sonar data) to classify ships’
movements (Pallotta et al., 2013;Wijaya andNakamura, 2013;
Yuan et al., 2019; ElMekkaoui et al., 2020; Gao et al., 2021).
In this section, we specifically review the studies that have
used the AIS data for collision avoidance model develop-
ment. In order to expand the vision, we also review the re-
search on the movement trajectories classification in other
transportation sectors such as road transport. After review-
ing the movement classification, we will also discuss var-
ious semi-supervised deep learning architectures that have
been used in different applications related to the transporta-
tion studies.
2.1. Ship Movement Classification based on AIS

data
Feature extraction and classification are two main tasks

for the studies on ships AIS data (Sheng et al., 2018). A
lot of classification tasks are often conducted by using tradi-
tional supervised learning algorithms such as support vector
machines (Lang et al., 2018), decision tree (Krüger, 2018;
Chen et al., 2018), k-nearest neighbour algorithm (Damas-
tuti et al., 2019), random forest (Zhang et al., 2020a) etc. and
the feature extraction is a significant research question due
to various application aims.

There are two mainstream studies for the feature extrac-
tion using the AIS data with one of them being the fish-
ing movement activity detection (Jiang et al., 2016; Yang
et al., 2019). De Souza et al. (2016). These works use the
satellite AIS data to research the fishing fleets activities by
employing a hidden Markov model to train a model in a
large Satellite AIS data. Jiang et al. (2016) uses the au-
toencoder network to detect the fishing activities and in their
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model, a fine-tune feed forward network is introduced. The
results show that the algorithm is able to detect 46427 AIS
data points with 77.96% of them classified for fishing move-
ment AIS squeeze. Compared to SVM and decision tree,
the deep neural network has a better performance than the
traditional classification methods. Sánchez Pedroche et al.
(2020) studies the AIS data features and it extracts 5 general
features (speed, distance, course variation, speed variation
and time gaps) to build a binary classification (fishing and
non-fishing) model. The experiment shows that the accu-
racy reaches to 82% after 10-folds cross validation. Based
on above studies, the feature extraction methods could be
summarised into two categories:

• Using the hand-crafted features for different fishing
movements detection, such as speed, duration, course
variation and distance;

• Using a neural network such as auto-encoder archi-
tecture or the hidden Markov model for automatically
detecting fishing activities.

The results from the studies show that the hand-crafted
features may lose a large number of hidden high-level fea-
tures. Also, with the increasing of hand-crafted features, the
computing complexity also grows exponentially. In addi-
tion, one drawback for the hand-crafted feature building is
the difficulty in labelling (Svanberg et al., 2019). Therefore,
a completely hand-crafted classification method is difficult
for a large scale AIS dataset.

Another study for the feature extraction using AIS data is
the intelligent maritime application developments (Tu et al.,
2017), especially the ship automatic collision avoidance de-
cision making system. The AIS brings an enriched kine-
matic information and the collectedAIS data contain awealth
of useful information for maritime safety (Tu et al., 2017).
Liu et al. (2020) proposes a data-driven method to estimate
the navigable capacity of busywaterways for ship’s encounter.
They use the K-means clustering algorithm to classify the
structural characteristics of the traffic flow and then based
on the filed study to verify the results. Sheng et al. (2018)
supposes that the historical AIS trajectory data could help to
boost the maritime efficiency and help classify the unknown
types of ships. It first classifies the ship movement into three
basic types and continues to classify the ship into fishing
or cargo ship types and the work mainly aims at behaviour
pattern mining and outlier behaviour detection. Also, Chen
et al. (2020) uses the convolutional neural network to clas-
sify the ship movement into three basic types (static, normal
navigation and manoeuvring) and they use the CNN capa-
bility for image classification to transfer the AIS movement
data into different types of movement images for different
types of ships. Gao et al. (2018) develops an online real-
time ship behaviour prediction model based on bidirectional
long short-term memory recurrent neural network for real-
time AIS data. It helps ships to achieve an intelligent col-
lision avoidance and ship route planning. Similar studies
based on the long short-term memory recurrent neural net-

work are anomaly detection (Ginoulhac et al., 2019) and col-
lision avoidance (Ginoulhac et al., 2019; Shi and Liu, 2020).
The above researches for ship collision avoidance are on the
single ship response. However, there are a number of appli-
cations such asmulti-ASVs sailing at sea, where the collision
avoidance is different from the single ship scenario. For ex-
ample, Ma et al. (2021) resolved the collision avoidance is-
sues for multiple ships according to ships’ manoeuvrability
and encounter situation division. An ad-hoc networkwas de-
veloped to construct a negotiation communication between
vessels, which ensures an effective and reliable avoidance
coordination for swarm vessels.

Based on above reviews for ship movement detection us-
ing AIS data, we can summarise main research gaps as:

• A number of AIS data classification algorithms are re-
lying on the hand-crafted features, which require a lot
of features to be labelled by human;

• Using the neural network automatically to study the
AIS data distribution and features is becoming a re-
search trend due to the capacity imposed by the end-
to-end study learning. However, it also requires a large
amount of accurate labelled data to train neural net-
works. If the training dataset is relatively small or the
labelled data is not sufficient, the classification abil-
ity is impaired and the performance is degraded com-
pared to the hand-crafted methods.

2.2. Semi-Supervised Deep Learning
Architectures

The definition of semi-supervised learning is a learning
paradigm concerned with the study of both labelled and un-
labelled data (Zhu and Goldberg, 2009). Semi-supervised
learning architectures based on deep learning algorithms have
been used in many tasks, mainly in computer vision and nat-
ural language processing (Dabiri et al., 2019). Currently,
the semi-supervised learning methods are widely used in the
road transportation for the origin-destination prediction (Bachir
et al., 2019), pedestrian behaviour prediction (Radu et al.,
2014) and transportation mode classification based on GPS
data (Leodolter et al., 2017; Dabiri et al., 2019). Due to
increased human activities and an extensive use of mobile
phone today, a lot of GPS and sensor data can be generated.
However, most of the data are not well labelled or detailed,
as well as cannot be directly used to train a supervised deep
learning model. Therefore, one of the common characteris-
tics for these studies is to use the semi-supervised learning
architecture. The training paradigm on the semi-supervised
architecture falls into two research directions:

• Two-step training process, inwhich the semi-supervised
network is first trained in the unsupervised learning
method as a warm-up step, after that the supervised
learning process is a fine tuning process using the la-
belled data.

• Joint training process, in which both the supervised
and unsupervised learning process are simultaneously
trained.
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However, the semi-supervised learning architecture has
one drawback which is the unsupervised data are commonly
in a larger proportion as opposed to the supervised data. If
the weight trained from the unlabelled data cannot be fitted
with the supervised data, the fine tuning may not work, and
the final classification accuracy can be worse than the hand-
crafted features and the loss value cannot converge. Hence,
there are many effective methods introduced to solve the
problem such as using balancing hyperparameters, hybrid
loss function to achieve a balance between the supervised
and unsupervised objective functions (Socher et al., 2011).

Based upon above discussions, a new semi-supervised
deep learning model (or the SCEDN), has been proposed to
specifically address the ship encounter situation classifica-
tion. The proposed model adopts the semi-supervised learn-
ing architecture and is trained using a novel schedule for tun-
ing a set of balanced hyperparameters to solve the imbalance
label problem, which is also common to AIS data. Unlike
the methods in the literature, the proposed training scheme
addresses the issue by introducing two new balancing hyper-
parameters integrated in training process.

Note that although the semi-supervised learning archi-
tecture is widely used in the image semantic segmentation
and image classification, a common feature for these tasks is
that the input data is uniformly distributed with salient fea-
tures. However, the AIS segments are all in one dimension
rather than two, and contain no explicit information for ships
encounter situation classification. The existingmethodsmay
not be well suited to the special requirement imposed by AIS
segments. Therefore, this paper has proposed a new data
augmentation method to make AIS data suitable for deep
learning based encounter situation classification. The details
of this method will be introduced in next section.

3. AIS Data Augmentation and Preprocessing
The raw AIS data is made up by a series of chronolog-

ical ordered points but without an explicit indication on the
ship encounter situations. When ships are in operation in
open sea areas, three main encounter situations (head-on,
overtaking and crossing) may occur, and a reliable predic-
tion of encounter situation is critical to ensure the subse-
quent evasive actions taken by ships. In this paper, a ded-
icated AIS based data augmentation method has been pro-
posed to incorporate temporal ship encounter situation in-
formation into AIS. More specifically, in order to facilitate
an AIS data based training processes and avoid any train-
ing ambiguity, the encounter situation should be integrated
into AIS in a way that each sub-divided segment AIS only
contains one encounter situation. At the same time, the ship
encounter situation is highly relevant to the ship movement
characteristics. Therefore, the ship movement characteris-
tics are needed to be considered. In this section, the defini-
tion and problem statements are firstly presented.
3.1. Definitions and Problem Statements

Definition 1 (Ship encounter situation data). A ship’s
AIS data X is defined as a sequence of time-stamped points

p ∈ X and X = {p1, p2, ..., pn} and the encounter situation
data can be labelled as X′ , X′ ∈ X. Each ship encounter
situation point p is a tuple of latitude, longitude, course,
speed and time, p = {lat, lng, c, s, t}.

Definition 2 (Ship encounter situation segment). A
ship’s segment is a sub-division of a ship’s encounter sit-
uation which is only contains one encounter situation mode
y ∈ Y , where Y is a set of encounter situation modes (cross-
ing, overtaking and head-on) and y is one encounter situa-
tion mode in each se segment. A ship’s encounter situation
segment represents as se = {p1, p2, ..., pm}, where m is the
total number of ship’s encounter situation AIS points.

Based on above definitions, the ship encounter situation
classification problem is defined as follows:

ProblemDescription for ShipEncounter Situation data
Classification Given the training data {(X′

i, yi)}
n
i=1, for n

training data of sei, the encounter situation classification
problem is defined as training an optimal classifier for di-
viding the ship encounter situation into three parts (cross-
ing, overtaking and head-on) based on its features X′ .

Since the ship encounter situation data has the homoge-
neous feature and each data contains an irrelevant context
information characteristics, the trained model weight can be
used to classify the unlabelled ship encounter situation data
(Gao et al., 2018).
3.2. AIS Augmentation by Incorporating Ship

Movement Features
AISmessages contain a ship’s dynamic navigational data

and is reasonably accurate as it transmits absolute naviga-
tional information of a ship from its on-board sensors such
as the GPS and electronic compass (Robson and Qj, 2006).
The message commonly contain static, dynamic and voy-
age information along with ship safety alert. Static infor-
mation, such as the ship’s call sign, name and its Maritime
Mobile Service Identity (MMSI) is permanently stored in
the on-board AIS transponder. Dynamic information con-
tains the ship’s absolute position, speed and course, along
with the target ship’s. Voyage related information includes
ship’s destination, hazardous cargo type, etc. is set up at the
beginning of the voyage (Harati-Mokhtari et al., 2007).

The raw AIS data sequence is composed by a series of
shipmovement points. In order to incorporate ship encounter
situation, processes including encounter situation calcula-
tion and AIS augmentation need to be carried out. First,
in order to incorporate the ship encounter situation states
into each AIS data sequence, it is necessary to divide each
AIS movement data into different segments according to the
change of ship movement states (relative distance, relative
speed, TCPA or DCPA). These features can be computed
based on theAIS data geographic coordinates and time stamps.
The relative distance between two consecutive AIS points
in a sequence is computed using Equation 1, in which the
lat and lng is the abbreviation of latitude and longitude, re-
spectively. The time interval can be simply computed using
Equation 2. Based upon the relative distance and time inter-
val, the kinematic parameter, i.e. the relative speed, can be
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Figure 3: Dcpa and Tcpa calculation illustration

further obtained from Equation 3.

RDp1,2 =
√

(latp2 − latp1 )
2 + (lngp2 − lngp1 )

2 (1)

Δtp1,2 = p2{t} − p1{t} (2)

RSp1,2 =
RDp1,2

Δtp1,2
(3)

In order to make a clear collision avoidance warning, the
Tcpa and Dcpa are introduced. Figure 3 is an illustration to
help understand the concepts of Tcpa andDcpa, where Sp1andSp2 denote the speeds from p,Cp1 andCp2 are the courseof the ships. When we need to calculate the Tcpa, it firstlyneeds the relative speed from the x, y coordinate (RSxp1,2 ,
RSyp1,2 respectively in Equation 4 and Equation 5) and the
relative speed from Equation 3. The Dcpa could be easily
obtained based on Tcpa result, shown in Equation 7.

RSxp1,2 = Sp1 ∗ sinCp1 − Sp2 ∗ sinCp2 (4)

RSyp1,2 = Sp1 ∗ cosCp1 − Sp2 ∗ cosCp2 (5)

Tcpa =
(lngp2 − lngp1) ∗ RSxp1,2 + (latp2 − latp1) ∗ RS

y
p1,2

RS2p1,2
(6)

Dcpa =
√

RD2p1,2 − (RS
2
p1,2

∗ |Tcpa|2) (7)

3.3. AIS Data Preprocessing
Apart from incorporating relevant encounter information

into AIS, in order to train a ship encounter situation model,
further data preprocessing is also required. Unlike the con-
ventional image classifications, where the input information
normally has uniform format, the augmented AIS sample
processed by a neural network can potentially be different in
sizes, i.e. a longer voyage will inevitably contains more AIS
segments points. Therefore, before feeding the encounter
situation segments into the training network, a further step
needs to be undertaken to divide or fill each segment into the
same size.

In this paper, a newAIS preprocessing method including
a data filling and a division procedures has been proposed.
The method and its overall process is shown in Figure 4.
First, all AIS data based within one hour should be collected
and counted together with the split time t and the total num-
ber of AIS points pm for each ship in one hour. Based on the
split time t, the number of split time interval can be calcu-
lated. Then, all the AIS points in each time interval are gath-
ered by the MMSI. For each time interval AIS data, based
on the equations described in Section 3.2, all ship’s RD, RS,
TCPA and DCPA are calculated and sorted according to the
corresponding MMSI. In terms of data preprocessing, the
method for dividing is based on the dataset size and spe-
cific navigational information, whereas for filling, the zero-
padding method has been used. It should be noted that dif-
ferent AIS dataset can follow the same paradigm but may
require different configurations to process the data.

With regards to the detailed data filling and division pro-
cedures, as shown in Figure 4, after calculating the fourmove-
ment characteristics for each ship, the AIS points for every
ship in the time interval are counted and if the current ship’s
number of AIS points is larger than a threshold pm, a data
division is needed to reduce the AIS points dimension into
(p1, ..., pm), as shown in the right side bottom of Figure 4
highlighted in green. On the contrary, if the current ship’s
number of AIS points is less than the threshold pm, a data
filling is required to increase the AIS points dimension into
(p1, ..., pm). The zero-padding method is shown in the right
side upper of Figure 4 in red. Finally, the training data are
collected and prepared for the next training.

After obtaining cleaned and cleared ship encounter situ-
ation segments, four features can be stacked into a tensor for
each segment to enable a learning process. In the next sec-
tion, a semi-supervised CNN based ship encounter learning
process will be introduced.

4. Semi-Supervised Convolutional
Encoder-Decoder Network
In this section, an efficient representation for each ship

encounter situation from AIS segments is introduced with
the whole architecture of our semi-supervised deep learn-
ing framework explained. Within the learning framework, a
small sized supervisedConvolutional Neural Network (CNN)
is firstly introduced as a warm-up to learn the weights of neu-

Xiang Chen et al.: Preprint submitted to Elsevier Page 6 of 18



Semi-Supervised Model for Ship Encounter Situations

Figure 4: Data preprocessing and augmentation. The left side of the figure shows the overall work flow for the data preprocessing.
The data augmentation is split into data filling and data division as shown in the right side of the figure.

ral networks. And then, a large amount of unsupervised data
will be trained based on the shared weights. Finally, the joint
training combining the labelled data and unlabelled data will
play a significant fine-tuning role to improve the precision of
the proposed classification algorithm.
4.1. Ship Encounter Situation Representation for

each Segment
Since themain part of the proposed network is a convolu-

tional network, it first needs to convert a ship encounter situ-
ation AIS data into a format that is not only compatible with
CNN but also easy to represent a ship’s movement character-
istics. As discussed in Section 3, a ship encounter situation
could be represented by the relative distance (RD), relative
speed (RS), Time to Closest Point of Approach (Tcpa) andDistance to Closest Point of Approach (Dcpa). For each AISsegment, a sequence can be expressed by placing the corre-
sponding value in a chronological order, in which the feature
values are computed by the Equation 1, 2, 6 and 7. The se-
quence is regarded as one-dimensional channel. Stacking
the four calculated features leads to a 4-channel representa-
tion and it is compatible to a CNN architecture. All AIS seg-
ments are represented into a 4-channel tensor with the shape
of (1xMx4), whereM is the total size of all AIS segments.

Figure 5 demonstrates the 4 channel components for each
AIS segment. Finally, all channel values are processed by a
min-max normalisation method to have a 0-1 distribution for
model training purposes.
4.2. Semi-Supervised Convolutional

Encoder-Decoder Network (SCEDN)
The AIS dataset records lots of ship movement informa-

tion, but unlike the image classification dataset ImageNet
(Deng et al., 2009), the AIS dataset does not have a large
amount of accurate manual labelling data for training. At
the same time, compared to the image classification, the ship
encounter situations contain only three categories. If we
use a small portion of labelled ship encounter situation data
for training a high accuracy network, it becomes easier to
transfer the weight into the large ship encounter situation
dataset than the image classification. The model generali-
sation ability can also be guaranteed because the AIS data is
non-heterogeneous.

As shown in Figure 6, the SCEDN architecture includes
two parts: (1) a supervised CNN classifier on the left side
of Figure 6, which is used to train the labelled AIS data,
denoted as Xl, and (2) a Encoder-Decoder structure com-
bining the left side except the last part of Softmax in Figure
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Figure 5: A 4-Channel representation for AIS segments: The relative distance and relative speed are directly derived from the
AIS data. The TCPA and DCPA are calculated based on Equation 6 and Equation 7.

Figure 6: The overall architecture of SCEDN: It includes three basic networks (supervised CNN, encoder part and decoder part).
In the left side of this figure, the supervised CNN combines the encoder part and Softmax layer. The different colour indicates
various functions, shown in the left-bottom of this figure.

6 trains both labelled and unlabelled AIS data, denoted as
Xcomb = Xl + Xr. The Xl and Xr represent the labelled
and unlabelled AIS data for 4-channel tensors, which is de-
scribed in previous subsection.

4.2.1. Supervised CNN classifier
In the left part of Figure 6, the CNN classifier contains

a stack of convolutional layers, Maxpooling layers and Soft-
max layer. The convolutional layers are the same as the en-
coder function derived from Dabiri et al. (2019) architecture
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but with two main differences:
• There is no pre-training step and no decoder compo-

nent in the network proposed in Dabiri et al. (2019).
This is because the AIS dataset in this paper contains a
number of unlabelled data with only a small portion of
manual labelled data. In order to train a highly accu-
rate and robust classifier, it needs to use the manual la-
belled data as a warm-up role. Different to GPS which
is made of heterogeneous features, the AIS data has
a homogeneous feature, which facilitates to include a
small pre-trained model in the whole training process
to improve the semi-supervised classification ability.
Hence, one of innovations in this paper is that we de-
signed a sharedweight representation layer to store the
pre-trainedweights to help the decoder sub-network to
train the unlabelled AIS data.

• The second difference between this paper and thework
in Dabiri et al. (2019) is the differences in the rep-
resentation of the input data. In this paper, in order
to properly classify the ship encounter situations, an
unique 4-channel representation for AIS has been de-
signed, as shown in Figure 5. The relative distance,
relative speed, TCPA and DCPA have been embed-
ded in the encoder-decoder network. On the contrary,
in Dabiri et al. (2019), the movement features are con-
sisting of the relative distance, time interval, speed,
acceleration and jerk, with the aim to identify the peo-
ple’s commuteways and themovement features, which
is quite different from the work in this paper.

The shared weight representation m means that it saves
all weights and bias values to provide the decoder part to
use. The Softmax layer is used to classify the labelled AIS
segments to generate a probability distribution. The cross
entropy loss function is used for the supervised CNN. The
loss function for the labelled AIS segments can be expressed
as:

Loss1S−CNN = −
k
∑

i=1
yl,ilog(pl,i) (8)

whereLoss1S−CNN denotes the supervised CNN loss, yl,i isa binary value. If value is 1, it means the true ship encounter
situation for the sample xl else 0.
4.2.2. Encoder-Decoder classifier

The encoder-decoder classifier is used widely in the im-
age segmentation to help extract the deep features. Based
on these deep features, the decoder parts use a upsampling
strategy to recover the image to help identification process
(Socher et al., 2011). The encoder-decoder architecture com-
monly contains two parts: (1) an encoder part to map the in-
put data into a latent representation, denoted as m = f (X),
and (2) a decoder part used to reconstruct the original data
from a latent representation X′ = g(m). Functions f and g
are downsampling and upsampling operations, respectively.

The latent representation ℎ called deep feature representa-
tion containsmore high-level extraction information than the
input data (Dabiri et al., 2019). As shown in Figure 6, the
encoder part f includes four convolutional layers. In each
convolutional layer, the batch normalisation and activation
function ReLU are contained to help accelerate the conver-
gence speed. After thoroughgoing each convolutional layer,
the max-pooling layer are used to help finish the downsam-
pling to reduce the computation complexity.

After each convolutional layer, the max-pooling layers
are used to help finish the downsampling to reduce the com-
putation complexity. We test different layer number com-
binations in the warm-up training phase and find that set-
ting the filter size to 32 is the best option for our work in
the first convolutional layer filters setting. It also should be
noted that the layer design of neural networks is rather em-
pirical with no clear theory for the design of deep neural
networks been established. Many models including Incep-
tion (Szegedy et al., 2017), VGG (Simonyan and Zisserman,
2014), ResNet (He et al., 2016) are built under a larger num-
ber of experiments. Based on these models, there are some
deep neural network designing principles for specific appli-
cations. For example, Krizhevsky et al. (2012) suggests that
the filter numbers should increased with the deeper layer in-
creasing. In addition, Szegedy et al. (2016) argues that bal-
ancing the width and depth of the deep network can get a
higher quality and the filter numbers should be increased ex-
ponentially. In our model designing, the aim is to classify
the ship encounter situations. The input AIS data dimen-
sion is (1x 284 x4), with the second dimension being the
length of AIS and the third dimension being the ship move-
ment characteristics which are consisting of the four param-
eters (relative distance, relative speed, TCPA and DCPA).
Because the four ship movement parameters are the most
important features to distinguish different types of ship en-
counters, we should increase the spatial features of the di-
mensions of the four parameters, while reducing the com-
puting complexity of the second dimension to accelerate the
convergence speed. Therefore, we set the filter size of the
second convolutional layers as 64. The stride for each layer
is configured to be 1 because the AIS segments have a con-
tinuous property. The max-pooling layer is (1 ∗ 2) with the
stride of 2 to decrease the dimensional complexity.

The decoder part g has the same number of layers as
the encoder and make the inverse operations. The tensor is
firstly passed from the shared weight representation m to the
upsampling generating a tensor with size (1 ∗ 124 ∗ 64).
After that, the output features from the upsampling layer is
passed to a deconvolutional layer, in which the tensor shape
is the same with the upsampling layer. After finishing a se-
ries of deconvolutional and upsampling operations, the out-
put shape X′ is the same with the input shape X. For the
encoder-decoder architecture, the loss function here uses the
Enclidean distance to measure. The equation is:

Loss2U−EDN =
∑

i
(X

′

i −Xi)2 (9)

where, the Loss2U−EDN means the loss function for the
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encoder-decoder network. X′

i and Xi are output and input
elements.
4.3. Training Scheme for SCEDN

The training scheme for SCEDN is to first train a Su-
pervised CNN followed by training a Encoder-Decoder net-
work. In order to realise a joint training, we firstly need to
extract useful information from the labelled ship encounter
situation data, and the converted AIS segments in Section
4.1 belong to homologous data and do not contain any con-
text information, which makes the training weights easy to
be reused. Therefore, in this paper, we can first use a small
portion of labelled AIS data to train a high accurate super-
vised CNN classifier. The trained learning weights and bias
values from CNN can be saved as initial weights for further
encoder-decoder network training when unlabelled data is
used.

More specifically, as shown in Figure 7, the input X, y
represents the labelled data and is used to train a supervised
CNN classifier. The training weights are then saved in a
shared weight representation m which can be reused by the
Encoder-Decoder network. Then, when the unlabelled data
(Unlabelled data ∶ x′ ) is inputted, it is firstly fed through
the CNN layer, which now acts as the encoder, using the
shared weight to learn the distribution and then the decoder
network is used to recover the original data representation.
The difference between the raw data and the recovered data
through the decoder network is calculated by the metric of
Euclidean distance, as a loss value for the unlabelled data.

However, the proportion of unlabelled data in the AIS
dataset is usually large and the training process through the
supervised CNN and the encoder-decoder network can eas-
ily result in a label imbalance problem which reduces the
model generalisation ability. Many studies have discussed
such a problem (Cao et al., 2019; Cheng et al., 2020; Zhang
et al., 2020b) with the common methods to deal with the
label imbalance being: (1) increasing the sample data; (2)
introducing hyperparameters. In this research, because the
proportion of the labelled ship encounter situation data is
relatively small and can not be increased in an easy way, the
second paradigm that is to introduce the hyperparameters
has been adopted. More specifically, two hyperparameters
�, � are introduced in this paper in Equation 10 as:

Lossjoint = � ∗ Loss2U−END+� ∗ Loss1S−CNN (10)
where, �, � are the joint training loss function hyperparam-
eters to solve the label imbalance problem combining Equa-
tion 8 and Equation 9. The range of the �, � is from 0 to 1.
When � = 0, the network is purely on the S-CNN; whereas,
when � = 1, the training process relies on the U-END. In
general, in order to get a high generalisation performance,
we use the S-CNN in the initial training stage to get a higher
proportion of shared weights by configuring � larger than
�. In the later training process, � value will be configured
to be larger than � to enable a better performance for the
unlabelled data using the U-END. Note that varying hyper-
parameters will undoubtedly affect the final training results,

and a detailed study revealing how this is resolved together
with training details will be explained in Section 5.

5. Experiments and Results
In this section, the performance of SCEDN algorithm

will be evaluated and the relevant comparisons will be pre-
sented. The cleaning and preprocessing of dataset will be
firstly discussed. Then, various supervised and semi-supervised
models are described to compare with the proposed SCEDN
model. The analysis and discussion will be presented in the
final part of this section.
5.1. Experimental Setup
5.1.1. Dataset Description and Data Preprocessing

The training data in this paper uses a historical AIS data
obtained from the Tianjin seaport and the open AIS dataset
from Danish Maritime Authority. Note that at the moment,
using the designed network, two conditions including ships’
draft and water depth have not been considered due to fol-
lowing reasons: 1) our training data is collected from two
locations, i.e. the Tianjin sea port (outside the seaport op-
erational area) and Danish open sea area. Both of them be-
long to open sea areas, of which the depth satisfies the ship’s
safety restriction; 2) the proposed semi-supervised classifi-
cation model has been designed to use AIS as the primary
data input, which may not necessarily contain water depth
or draft information for certain ships. Also, by using the
most common navigational information within AIS, such as
speed, distance, position and course, accurate identification
results can be well obtained. In addition, this research is
mainly focused on analysing ships’ movement within mid-
dle or long range (5 or 10 nautical miles), where the draft is
not a main factor affecting the proposed classificationmodel.
Before each AIS segments are fed to the SCEDN, a prepos-
sessing for AIS segments is conducted to remove errors and
anomaly data. Each AIS segment is filtered by following
principles:

• Each AIS segment time stamp over the 20 minutes
thresholds is splitted to two different segments.

• For labelled AIS segments, the speed or course do not
exceed a certain and realistic range of movement char-
acteristics.

• For unlabelled AIS segments, any speed over 30 knots
or course over 20 degree should be identified and re-
moved.

After removing and cleaning the impractical AIS seg-
ments, the cleaned data features are shown in Table 1. The
size of total labelled data is 15,653 segments in which cross-
ing situation is 8,238 segments, overtaking is 3,802 and head-
on situation is 3,613. The size of unlabelled data is 53,260
for training and the numberAIS segments for testing is 6,745.
Our ship encounter situation mode list is:

y = {crossing, overtaking, ℎead − on}

Xiang Chen et al.: Preprint submitted to Elsevier Page 10 of 18



Semi-Supervised Model for Ship Encounter Situations

Figure 7: Training scheme for the SCEDN: The training scheme contains two different parts. The labelled input data through
the supervised training scheme as a warm-up role, which the data flow in figure is shown as red colour. After getting the shared
weighted representation from the labelled data, the unlabelled data training is carried out and the data flow is denoted as black
colour in figure. The shared training layers can save the weights for the unlabelled data using. After that, the joint training is
deployed for fine tuning.

Table 1
The details for training and testing data: ship encounter types are labelled manually and
total number for training and testing are 15,653 and 8,456 respectively.

Ship Encounter type
Number of segments

Training Dataset Test Dataset

Crossing 8238 5230
Overtaking 3802 1356
Head-on 3613 1870

Total labelled 15653 8456
Total unlabelled 53260 6745

and time-interval threshold for each AIS segment is set to be
20 minutes and each AIS segment size is 248.
5.1.2. Baseline Models

In order to get a realistic performance of our model, two
baseline models are set: (1) supervised algorithms and (2)
semi-supervised algorithms, for comparison. In the com-
parison experiments, K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), Decision Tree (DT) and Supervised
Convolutional Neural Network (S-CNN) are selected as the
role of supervised algorithms to evaluate the algorithm per-
formance compared to proposed SCEDN model.

For semi-supervised algorithms, the semi-two-stepsmethod
is used to compare with the proposed SCEND model where
the joint training schemes are used. The semi-two-stepsmethod
is firstly trained on both labelled and unlabelled AIS seg-
ments. The labelled AIS segments are transferred to the
shared weights layer using the encoder architecture f . Then,
the transferred data are trained using the supervised CNN
algorithm which is a logistic regression to evaluate the per-
formance. The difference between the semi-two-steps with
proposed SCEDN is that SCEDN is firstly trained by the la-
belled data using the supervised CNN as a warm-up. And
then, the shared training weights are used for the unlabelled

data using.
5.1.3. Performance Evaluation Metrics

In order to evaluate the performance of SCEDN, a confu-
sion matrix, as shown in Table 2, is introduced to help with
the assessment. The precision indicating the ratio of cor-
rectly predicted positive classes to the total predicted posi-
tive classes, is firt calculated using Eq.11. The recall, also
called sensitivity, denoting the ratio of correctly predicted
positive classes to the all actual labelled classes, is then cal-
culated using Eq.12. Based upon precision and recall values,
the accuracy, which is the most intuitive performance mea-
surement and simply a ratio of correctly predicted classes to
the total classes can be evaluated using Eq.13). TheF1 score,which can be calculated using Eq.14, is also evaluated to as-
sess the weighted average of precision and recall to evaluate
the comprehensive classification ability of the model.

Precision = TP
TP + FP

(11)

Recall = TP
TP + FN

(12)
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Table 2
Confusion Matrix for Classification

Encounter Type Predicted as class i Predicted as other class

Class i True Positive (TP) False Negative (FN)
other class False Positive (FP) True Negative (TN)

Accuracy = TP + TN
TP + TN + FP + FN

(13)

F1 =
2 ∗ Precision ∗ Recall
P recision + Recall

(14)

5.2. Performance Evaluations
In all conducted experiments, models are trained and eval-

uated using 5-fold validation and getting average value for
comparison, where 5-fold validation is only used on the la-
belled AIS segments. The data processing and models are
implemented under Python programming environment with
Tensorflow used for deep learning models building and the
package of scikit-learn package in Python is integrated in the
environment for proposed supervised baseline models im-
plementation. These experiments are trained on a High Per-
formance Computing (HPC) facility at UCL with one GPU
node.
5.2.1. SCEDN Evaluation

Figure 8 and 9 are the performance results of SCEDN
model and baseline models under the metrics of accuracy
and F1 score. Each model is trained using different propor-
tions of labelled AIS segments (10%, 25%, 50%, 75%, 100%)
to reveal the model effectiveness.

In Figure 8, it shows the advantage of proposed SCEDN
model and its training strategy in comparisonwith other base-
line models. The result can be concluded that DT has a bet-
ter performance in the 10% labelled AIS segments scenario.
Under the other proportion groups, it shows that SCEDN
model has a better classification ability than other baseline
models. From the perspective of supervised algorithms, the
S-CNN and DT are more competitive because the accuracy
for the other models are relatively low.

With regards to the comparison between the supervised
and semi-supervised algorithms, the results of semi-two-steps
and our proposedmodel (SCEDN) show that the semi-supervised
classification ability is better than the supervised algorithms
in most cases. More specifically, by comparing with the su-
pervised algorithms, it shows that using the semi-supervised
strategy under different proportions of labelledAIS segments
can help improve the algorithm classification ability for the
unlabelled AIS segments. This is due to the warm-up strat-
egy provided by the labelled data during the training process.

Furthermore, if we evaluate the SCEDN accuracy in Fig-
ure 8with the semi-two-steps, the adopted joint training strat-
egy in SCEDN can significantly improve the accuracy per-
formance. Such results show that with the help of initiali-

sation, training a semi-supervised model combined with la-
belled data can get a better performance than the semi-two-
steps method. Also, The SCEDN could improve around 6.0
percent accuracy than the other baseline models and even
more for the S-CNNmodel, which has theworst performance.

The accuracy is only one of important metrics for eval-
uating the training performance for a complex classification
task. Another effective and explicit method for evaluating
the performance of SCEDN is to use the F1 score based on
Equations 11, 12 and 14. The F1 score result is shown in
Figure 9, which also well demonstrates that the proposed
SCEDN model provides a better result compared to all the
other baseline models, especially in the scenarios where la-
belled AIS data accounts for 25%, 50%, 75% and 100% of
the whole dataset, respectively.

The proposed SCEDN in this paper has been well trained
off-line and the inference time for the model is validated
in the test dataset. Although the training phase may take a
relatively long time depending upon specific computing re-
sources, the inference time for our model is efficiently fast.
In Figure 10, the results for the SCEDN under different pro-
portions of labelled AIS segments are provided. It has been
well demonstrated that highest inference speed could be achieved
when a 100% proportion of labelled AIS segments is used
because all the data is labelled and the model (S-CNN in this
case) does not contain any decoder component. When data
is not 100% labelled, our SCEDN model will be used to en-
able a semi-supervised learning process, where the decoder
is adopted to deal with the unlabelled AIS data. It is evident
that a highly efficient inference speed can also be achieved
by the proposed SCEDN with the longest time less than 30
ms when 75% of data is labelled.
5.2.2. Overall Performance Evaluation

Table 3 shows the accuracy and F1 score of SCEDN
model under three different segments:

• True Labelled AIS Segments: The different kinds of
encounter situations are segmented by the true labelled
data.

• Normalised AIS Segments: The ship encounter situ-
ations are partitioned into different segments and 20
minutes for each segment is set in our dataset. This
can make sure that each AIS segment just only have
one encounter situation in every 20 minutes.

• SCEDN: The ship encounter situations are divided based
on the proposed SCEDN method.

FromTable 3, the overall accuracy and F1 score of SCEDN
model is only 4% lower than the true labelled group, which
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Figure 8: Accuracy for different models with various proportion of labelled data

Table 3
Comparison of accuracy and F1 score for our SCEDN model with different proportion of
labelled AIS segments

Segmentation methods

Proportion of labelled AIS segments in the training phrase

10% 25% 50% 75% 100%

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

True labelled AIS 0.635 0.623 0.697 0.674 0.74 0.732 0.756 0.753 0.769 0.763
Normalisaed 0.54 0.512 0.587 0.58 0.625 0.621 0.648 0.64 0.674 0.668
Two-step 0.603 0.594 0.652 0.645 0.683 0.675 0.71 0.694 0.724 0.714

indicates that our SCEDN model classification ability is ac-
ceptable. However, if we use the normalised AIS segments
method, the accuracy and F1 score will be compromised
compared with the other two groups. The performance of
the second method is 10% lower than the first actual labelled
AIS segments method and 6% less than our proposed two-
step segments.
5.3. Further Analysis and Discussion

In this subsection, we evaluate our SCEDNmodel based
on the label imbalance problem, the SCEDNmodel architec-
ture analysis and the prediction ability for the ship encounter
situations.

5.3.1. Label Imbalance Problem
In Section 4.3, a series of training scheme methods to

alleviate the label imbalance problem are set. The hyper-
parameters � and � are introduced in the proposed SCEDN
model. Figure 11 shows test accuracy based on several train-
ing schemes for the fine tuning hyperparameters in the loss
function.

In order to find optimal parameters for � and �, 6 train-
ing schemes are designed in SCEDN model. The hyper-
parameter fine-tuning schemes are divided into two group:
Group1: #1 - #3; Group2: #4 - #6, as shown in Figure 11.
In scheme #1, the parameter � decreases gradually from 1
to 0.1 and the parameter � keeps the value of 1 to compare
to the scheme #2. The training scheme #1 gradually trans-
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Figure 9: F1 scores for different models with various proportion of labelled data

forms the training attention from the unsupervised learning
into the supervised CNN. Scheme #2 is similar to scheme #1
by keeping the training attention on the unsupervised learn-
ing compared with scheme #1. Scheme #3 keeps � and � to
1 during the whole training to compare with scheme #1 and
#2. The scheme from #1 to #3 only include one training stage
and the training process will stop when no improvements can
be made after 3 epochs. From Figure 11, the hyperparame-
ters � and � has not obvious improvements for the accuracy
in different proportion of labelled AIS segments.

Scheme #4 and #5 have two training stages to compare
with the one-stage training strategy from Group 1 training
schemes. For the two training stages, parameter � and � are
used with different values. In the first training stage, � and �
are set separately (� = 1, � = 0) and (� = 0, � = 1). In the
second training stage, the parameters are set into (� = 1, � =
1) and (� = 1, � = 1). The reason for such a training scheme
setting is that it needs to findwhich part of the training hyper-
parameters could be fitted with the data distribution under
different proportions of AIS segments. The stopping condi-
tion in the second stage is that no further improvement of the
loss value can be generated. From the training results shown
in Figure 11, it can be concluded that the training scheme
#6 provides a better model performance than the other train-

ing schemes under different proportions of labelled AIS seg-
ments. Therefore, during the joint training, the hyperparam-
eters � and � should be set to (� = 1, � = 1) in first the
training stage. When the loss values are converged by using
the supervised CNN, the hyperparameters � and � should be
readjust to (� = 1, � = 0.1). It can therefore be summarised
that the label imbalance issue for the ship encounter situa-
tion data can be solved through finding the different combi-
nations for the hyperparameters.
5.3.2. SCEDN Model Architecture Analysis

With the increase of convolutional layers, the network
feature extraction ability can be potentially improved as well
(Simonyan and Zisserman, 2014). However, there is no rele-
vant proof for how deep a neural network should be making
the depth of the CNN a key hyperparameter to be investi-
gated. Therefore, a series of experiments to find the optimal
depth for our SCEDN model are designed, and the results
are shown in Table 4. The test are conducted in a way that
the number of layers in a neural network is initially set to
be 2 and gradually increased towards 8 with an incremental
step of 2. Training results are assessed by mainly consider-
ing the accuracy under different proportions of labelled AIS
data with the average accuracy value for different number
of layers summarised in Table 4. It is clear that increasing

Xiang Chen et al.: Preprint submitted to Elsevier Page 14 of 18



Semi-Supervised Model for Ship Encounter Situations

Figure 10: Inference time comparison for the SCEDN and Supervised Convolutional Neural Network (S-CNN). The unit for
inference time is millisecond. In the x-axis, the meaning is the proportion of labelled AIS segments for testing, e.g. 10% means
the labelled AIS segments are in proportion of 10 percent and the rest of unlabelled AIS segments are 90%. If the proportion of
labelled AIS segments is 100%, it means all the AIS data is labelled and it is a supervised-CNN (S-CNN). The inference speed
for the S-CNN is the fastest, because the S-CNN does not necessarily do the decoder part.

Table 4
Average Accuracy evaluation of the model configuration by different number of convolu-
tional layers based on different labelled data

Number of Layers
Proportion of labelled AIS segments

Avgerage Accuracy10% 25% 50% 75% 100%

2 0.625 0.681 0.723 0.741 0.751 0.704
4 0.628 0.694 0.734 0.752 0.769 0.715
6 0.628 0.694 0.734 0.752 0.759 0.713
8 0.628 0.697 0.724 0.748 0.764 0.712

layer numbers to 4 can help to improve SCEDN accuracy by
1 percent.
5.3.3. Prediction Ability for Ship Encounter Situations

In order to evaluate the prediction ability for our SCEDN
model, the confusion matrix for the labelled AIS segments is
introduced. The evaluation is conducted on the test dataset.
Table 5 shows the confusion matrix, precision and recall for
each label. The crossing situation has a large proportion

in the test dataset and can get a higher recall around 95%.
We can see that the overtaking is the smallest proportion
in our test dataset, but the recall and precision may not be
lower than the crossing and head-on situations. This is due
to the training scheme of our proposed in the Section 4.3 can
specifically solve the label imbalance problem. Another in-
teresting finding is that the head-on situation’s recall and pre-
cision are not so high with the reason being that the angle for
head-on situations for two ships is difficult to identify com-
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Figure 11: Comparison of accuracy for different hyperparameter schedules with different proportion of labelled data

Table 5
Confusion Matrix for our SCEDN in Test Dataset

Confusion Matrix
Predicted ship encounter

crossing overtaking head-on Recall

True label

crossing 4980 30 220 0.95
overtaking 88 1208 60 0.89
head-on 182 38 1650 0.88
Precision 0.94 0.94 0.85

pared to that in crossing situations. One of potential ways to
address such a compromised classification is via providing
more head-on situation data.

6. Conclusions
In this paper, we have proposed a Semi-Supervised Con-

volutional Encoder-Decoder Network (SCEDN) for ship en-
counter situation classification purely based on shipAIS data.
First, a segmentation process is developed based on the ship
movement characteristics such as relative distance, relative
speed, time to closest point of approach and distance to clos-
est point of approach. Then based on these four features, a
4-channel tensor representation for each ship encounter situ-
ation is built for the SCEDN network. Due to the shortage of
labelled ship encounter situation data and a large proportion
of unlabelled ship encounter situation, a semi-supervised ar-
chitecture coupled with a designated training scheme have

been designed. The labelled data plays a warm-up role in
the whole training and shares the training weights to the un-
labelled data to speed up the model convergence. Our ex-
tensive experiments show that our model has a better perfor-
mance than the other baseline classification models.

In terms of the future work, although a good training per-
formance can be achieved using the proposed algorithm, fur-
ther improvements such as replacing the training scheme by
an end-to-end architecture can potentially help with the hy-
perparameters fine tuning process.Also, to better understand
complex encountering situations in practical maritime en-
vironments, the ship encounter situation representation can
also be improved by adding with more features apart from
the four channel features already used in this paper to help
extract more details.
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