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Abstract 

Aims  

The study aimed to elucidate the effects of rare genetic variants on the risk of type 2 diabetes (T2D). 

Materials and methods  

Weighted burden analysis of rare variants was applied to a sample of 200,000 exome-sequenced 
participants in the UK Biobank project, of whom over 13,000 were identified as having T2D. Variant 
weights were allocated based on allele frequency and predicted effect, as informed by a previous 
analysis of hyperlipidaemia.  

Results 

There was an exome-wide significant increased burden of rare, functional variants in three genes, 
GCK, HNF4A and GIGYF1. GIGYF1 has not previously been identified as a diabetes risk gene and its 
product appears to be involved in the modification of insulin signalling. A number of other genes did 
not attain exome-wide significance but were highly ranked and potentially of interest, including 
ALAD, PPARG, GYG1 and GHRL. Loss of function (LOF) variants were associated with T2D in GCK and 
GIGYF1 whereas nonsynonymous variants annotated as probably damaging were associated in GCK 
and HNF4A. Overall, fewer than 1% of T2D cases carried one of these variants. In HNF1A and HNF1B 
there was an excess of LOF variants among cases but the small numbers of these fell short of 
statistical significance. 

Conclusions 

Rare genetic variants make an identifiable contribution to T2D in a small number of cases but these 
may provide valuable insights into disease mechanisms. As larger samples become available it is 
likely that additional genetic factors will be identified.  

This research has been conducted using the UK Biobank Resource. 
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Introduction 

Genome-wide association studies of type 2 diabetes (T2D) have implicated a large number of 
common genetic variants [1]. In the UK Biobank, a genetic risk score derived from common variants 
was associated with T2D and incorporating it alongside conventional risk factors in order to predict 
T2D increased the area under the curve (AUC) from 0.851 to 0.855 [2]. Common variants have 
individually modest effects on risk but a small number of genes have been identified in which rare 
coding variants with large effects can result in a phenotype of non-insulin dependent diabetes. 
Maturity onset diabetes of the young (MODY) is caused by mutations in a number of genes including 
HNF1A, HNF4A, GCK, HNF1B, KCNJ11, ABCC8 [3]. Loss of function (LOF) and nonsynonymous variants 
in PPARG can cause a familial lipodystrophy with insulin resistant diabetes [4]. Recessively acting 
mutations in the INSR gene can cause insulin resistance with hyperglycaemia [5]. These rare coding 
variants have typically been identified by targeted studies of familial cases and individuals with 
severe phenotypes but the availability of large samples of exome sequenced subjects now allows the 



3 
 

possibility to explore the effects of variations in these genes in the population more broadly and 
potentially to discover novel genes. A study of 16,000 exome and genome sequenced cases and 
controls failed to detect a substantial contribution from rare variants to risk of type 2 diabetes [6]. 
However a larger study using 20,791 cases and 24,440 controls identified three exome-wide 
significant genes, MC4R, SLC30A8 and PAM, with SLC30A8 variants tending to be protective, as well 
as a specific variant in MC4R, rs79783591 (Ile269Asn), which was exome-wide significant in single 
variant analyses [7]. A study in which actionable MODY genes were sequenced revealed an increased 
burden of variants predicted to be pathogenic or likely pathogenic in T2D cases versus controls, 
especially driven by variants in GCK [8]. Rare variant association studies and functional studies have 
implicated two specific nonsynonymous variants in PAM, rs78408340 and rs35658696 [6, 9, 10]. 

Exome sequence data is now available for 200,000 of the 500,000 UK Biobank subjects  [11].  We 
have recently analysed this in order to illuminate the effect of rare, coding variants on susceptibility 
to hyperlipidaemia and we now apply the same approach to study T2D [12]. 

Materials and Methods 

The UK Biobank dataset was downloaded along with the variant call files for 200,632 subjects who 
had undergone exome-sequencing and genotype-calling by the UK Biobank Exome Sequencing 
Consortium using the GRCh38 assembly with coverage 20X at 95.6% of sites on average [11]. UK 
Biobank had obtained ethics approval from the North West Multi-centre Research Ethics Committee 
which covers the UK (approval number: 11/NW/0382) and had obtained informed consent from all 
participants. The UK Biobank approved an application for use of the data (ID 51119) and ethics 
approval for the analyses was obtained from the UCL Research Ethics Committee (11527/001). All 
variants were annotated using the standard software packages VEP, PolyPhen and SIFT [13–15].  To 
obtain population principal components reflecting ancestry, all variants with minor allele frequency 
(MAF) >= 0.1 were extracted using version 2.0 of plink (https://www.cog-genomics.org/plink/2.0/) 
[16, 17]. Then the command --pca 20 approx was run. This treats the genotype at each variant as a 
vector and then outputs the first 20 principal components.  

The UK Biobank sample contains 503,317 subjects of whom 94.6% are of white ethnicity. As we have 
discussed in the report of a previous analysis of BMI, it has become standard practice for 
investigators to simply discard data from participants with other ancestries and we regard this as 
regrettable [18]. In that analysis we demonstrated that if population principal components are 
included as covariates then it is possible to include all participants, regardless of ancestry, in the type 
of weighted burden analysis described below without any inflation of the test statistic.  

To define cases, a similar approach was used as was previously implemented for the investigation of 
hyperlipidaemia [12, 19]. The T2D phenotype was determined from three sources in the dataset: 
self-reported diabetes or type 2 diabetes (but not type 1 or gestational diabetes); reporting taking 
any of a list of named medications commonly used to treat T2D in the UK 
(https://www.diabetes.co.uk/Diabetes-drugs.html); having an ICD10 code for non-insulin-dependent 
diabetes mellitus in hospital records or as a cause of death. Subjects in any of these categories were 
deemed to be cases while all other subjects were taken to be controls. 

The SCOREASSOC program was used to carry out a weighted burden analysis to test whether, in each 
gene, sequence variants which were rarer and/or predicted to have more severe functional effects 
occurred more commonly in cases than controls. Attention was restricted to rare variants with MAF 
<= 0.01 in both cases and controls. As previously described, variants were weighted by overall MAF 
so that variants with MAF=0.01 were given a weight of 1 while very rare variants with MAF close to 
zero were given a weight of 10 [18]. Variants were also weighted according to their functional 

https://www.diabetes.co.uk/Diabetes-drugs.html
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annotation using the GENEVARASSOC program, which was used to generate input files for weighted 
burden analysis by SCOREASSOC [20, 21]. The weights were informed from the analysis of the effects 
of different categories of variant in LDLR on hyperlipidaemia risk [12]. Variants predicted to cause 
complete LOF of the gene were assigned a weight of 100. Nonsynonymous variants were assigned a 
weight of 5 but if PolyPhen annotated them as possibly or probably damaging then 5 or 10 was 
added to this and if SIFT annotated them as deleterious then 20 was added. In order to allow 
exploration of the effects of different types of variant on disease risk the variants were also grouped 
into broader categories to be used in multivariate analyses as described below. The full set of 
weights and categories is displayed in Table 1. As described previously, the weight due to MAF and 
the weight due to functional annotation were multiplied together to provide an overall weight for 
each variant. Variants were excluded if there were more than 10% of genotypes missing in the 
controls or cases or if the heterozygote count was smaller than both homozygote counts in the 
controls or cases. If a subject was not genotyped for a variant then they were assigned the subject-
wise average score for that variant. For each subject a gene-wise weighted burden score was derived 
as the sum of the variant-wise weights, each multiplied by the number of alleles of the variant which 
the given subject possessed. For variants on the X chromosome, hemizygous males were treated as 
homozygotes.  

For each gene, logistic regression analysis was carried out including the first 20 population principal 
components and sex as covariates. The likelihood was first calculated for the case and control 
phenotypes predicted just by these covariates and then the likelihood was calculated again 
additionally incorporating the gene-wise weighted burden score for each subject. Then a likelihood 
ratio test was performed taking twice the natural log of the likelihood ratio as a chi-squared statistic 
with one degree of freedom. The statistical significance was summarised as a signed log p value 
(SLP), which is the log base 10 of the p value given a positive sign if the score is higher in cases and 
negative if it is higher in controls.  

Gene set analyses were carried out as before using the 1454 "all GO gene sets, gene symbols" 
pathways as listed in the file c5.all.v5.0.symbols.gmt downloaded from the Molecular Signatures 
Database at http://www.broadinstitute.org/gsea/msigdb/collections.jsp [22]. For each set of genes, 
the natural logs of the gene-wise p values were summed according to Fisher’s method to produce a 
chi-squared statistic with degrees of freedom equal to twice the number of genes in the set. The p 
value associated with this chi-squared statistic was expressed as a minus log10 p (MLP) as a test of 
association of the set with the T2D phenotype. In order to test for an overlap with common variant 
effects, an additional set was constructed consisting of the 33 putative functional genes whose 
expression was implicated as being associated with T2D risk in the previous GWAS meta-analysis [1]. 

For selected genes, additional analyses were carried out to clarify the contribution of different 
categories of variant. As described previously, logistic regression analyses were performed using as 
predictor variables the counts of the separate categories of variant as listed in Table 1, again 
including principal components and sex as covariates, to estimate the effect size for each category 
[12]. The odds ratios associated with each category were estimated along with their standard errors 
and the Wald statistic was used to obtain a p value, except for categories in which variants occurred 
fewer than 50 times in which case Fisher’s exact test was applied to the variant counts. The 
associated p value was converted to an SLP, again with the sign being positive if the mean count was 
higher in cases than controls. 

Data manipulation and statistical analyses were performed using GENEVARASSOC, SCOREASSOC and 
R  [23]. 

Results  

http://www.broadinstitute.org/gsea/msigdb/collections.jsp
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There were 13,938 cases of T2D and 186,694 controls. There were 20,384 genes for which there 
were qualifying variants. Given that there were 20,384 informative genes, the critical threshold for 
the absolute value of the SLP to declare a result as formally statistically significant 
is -log10(0.05/20384) = 5.61 and this was achieved by three genes, GCK (SLP = 22.24), HNF4A (SLP = 
6.82) and GIGYF1 (SLP = 6.22). The quantile-quantile (QQ) plot for the SLPs obtained for all genes 
except GCK is shown in Figure 1. This shows that the test appears to be well-behaved and conforms 
well with the expected distribution. Omitting the genes with the 100 highest and 100 lowest SLPs, 
which might be capturing a real biological effect, the gradient for positive SLPs is 1.06 with intercept 
at -0.007 and the gradient for negative SLPs is 1.02 with intercept at -0.009, indicating only modest 
inflation of the test statistic in spite of the fact that participants of all ancestries are included. 

Table 2 shows all the genes achieving SLP with absolute value greater than 3, equivalent to an 

uncorrected p value of 0.001. Given that 20,384 genes were tested, one would expect that by 

chance about 20 would reach this level of significance whereas in fact there are 32. If we take the 

average gradient of the QQ plot, 1.04, as an indication of an inflation factor then we would use a 

corrected threshold of 3*1.04 = 3.12 as an appropriate threshold to indicate p = 0.001 and 29 genes 

exceed this. Thus it is possible that some of these highly ranked genes do demonstrate a biological 

signal which fails to reach statistical significance after correction for multiple testing. As discussed 

below, a number of these seem of potential interest, comprising ALAD (SLP = 3.63), PPARG (SLP = 

3.45), GYG1 (SLP = 3.22) and GHRL (SLP = -3.15). The results for all genes are provided in 

Supplementary Table S1. 

In order to see if any additional genes were highlighted by analysing gene sets, gene set analysis was 
performed as described above after first removing all genes with absolute SLP value greater than 3. 
Given that 1,454 sets were tested a critical MLP to achieve to declare results significant after 
correction for multiple testing would be log10(1454*20) = 4.46 and this was not achieved by any set. 
There were two sets with MLP > 3, EXTERNAL SIDE OF PLASMA MEMBRANE (MLP = 3.29) and 
MONOSACCHARIDE TRANSMEMBRANE TRANSPORTER ACTIVITY (MLP = 3.06). The latter is of some 
interest because it consists of 10 genes, of which three were individually significant at p<0.05, these 
being SLC2A2 (SLP = 2.54), SLC2A3 (SLP = -2.37) and SLC2A4 (SLP = 1.70). The set of 33 putative 
functional T2D genes implicated in the previous GWAS meta-analysis showed no evidence for 
association (MLP=0.86). The results for all sets are provided in Supplementary Table S2. 

For the genes of possible interest listed above, a logistic regression analysis of different categories of 

variant was carried out to elucidate their relative contributions. The results for the three exome-

wide significant genes are shown in Table 3, which shows differences between the genes relating to 

the implicated pattern of variants. The results for GCK demonstrate that splice site variants and gene 

disruptive variants, comprising frameshift and stop variants, are associated with large effects on risk. 

These occur a total of 17 times among the 13,938 cases. However of note is that nonsynonymous 

variants annotated as probably damaging by PolyPhen are also associated with increased risk, with 

OR = 2.97 (1.59 - 5.54), and these occur 33 times among cases. The situation for HNF4A is quite 

different. There are no splice site variants and only 6 gene disruptive variants and these all occur in 

controls. Only probably damaging nonsynonymous variants show an effect, with OR = 2.97 (1.61 - 

5.50), and these occur 34 times among cases. Finally, for GIGYF1 probably damaging 

nonsynonymous variants have no discernible effect and it is only the splice site (OR = 7.70 (2.62 - 

22.67)) and disruptive (OR = 5.65 (3.07 - 10.40)) variants which increase risk and these occur 24 

times in cases. 

Table 3 also shows the results of variant category analysis for the genes which, while not exome-

wide significant, had SLP with magnitude >3 and which appeared to be potentially of interest, ALAD, 
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PPARG, GYG1 and GHRL. The signal for ALAD seems to be driven by the fact that although splice site 

and disruptive variants occur only a total of 5 times in cases this still makes them about 7 times as 

frequent as in controls. The signal for PPARG arises from the fact that disruptive variants occur 4 

times in cases and 7 times in controls, OR = 8.23 (2.29 - 29.63). The findings for GYG1 seem 

somewhat more robust, being based on an excess of both disruptive (OR = 1.98 (1.40 - 2.81)) and 

splice site (OR = 3.08 (0.96 - 9.81)) variants in cases, with a total of 37 occurrences. For GHRL, which 

has SLP = -3,15, implying that variants in it might be protective, no individual category has a 

statistically significant effect and there is more a general tendency for there to be fewer variants 

among cases which is spread over a number of categories, including 3 prime UTR, protein altering, 

indel, disruptive and deleterious. 

The analyses described above failed to highlight a number of genes which have previously been 

implicated in T2D, comprising HNF1A (SLP = 1.66), HNF1B (SLP = -0.28), ABCC8 (SLP = 1.94), INSR (SLP 

= -0.25), MC4R (SLP = 1.41), SLC30A8 (SLP = -2.64) and PAM (SLP = 0.19). The association with T2D 

for each category of variant within these genes is shown in Table 4. From this it can be seen that LOF 

variants in HNF1A and HNF1B are commoner in cases than controls but that their absolute numbers 

are too small to produce statistically significant effects. By contrast, LOF variants have higher overall 

frequency in ABCC8 and INSR and they have approximately equal frequencies in cases and controls.  

The results for MC4R suggest that variants which are disruptive or annotated as deleterious or 

damaging may be associated with a moderate increase in risk, with OR 1.2 – 1.5, but no individual 

category is statistically significant. Unfortunately genotypes for the single MC4R variant previously 

reported to be associated with T2D, rs79783591 producing an Ile269Asn substitution, were not 

provided in the supplied dataset even though it is clearly exonic and genotypes for nearby variants 

are available. The frequency of nonsynonymous variants annotated as deleterious in SLC30A8 is 

higher in controls than cases, consistent with previous findings that missense variants in this gene 

typically result in reduced T2D risk, but again this is not statistically significant. In PAM there is no 

real suggestion of any signal among the included variants. However the frequency criteria used 

excluded the two variants which had previously been individually implicated and when these were 

analysed separately they both showed evidence for a small effect on risk, with rs35658696 

(Asp563Gly) having SLP = 5.68, OR = 1.15 (1.08 – 1.21) and rs78408340 having SLP = 6.92, OR = 1.20 

(1.13 – 1.28). 

  

Discussion 

Biobank data differs from that which can be obtained using specifically designed association studies 
in a number of ways. One must make use of measures which are available rather than being able to 
specify predetermined inclusion and exclusion criteria in order to decide which subjects to define as 
cases and controls. It also needs to be borne in mind that in the UK Biobank not all fields are 
complete for all participants and in order to maximise sample size one may wish to choose fields for 
which relatively complete information is available rather than those which may more closely define 
the phenotype of interest. Here, a pragmatic method for distinguishing cases and controls has been 
used which is intended to broadly reflect a real world diagnosis of type 2 diabetes. This is based on a 
combination of self-report, recorded diagnoses and prescribed medication. Of course it is to be 
expected that some participants categorised as cases might not meet operationally defined criteria 
for diabetes while some controls might well actually be found to have diabetes if they were 
specifically assessed for this. Nevertheless, this approach does produce a large sample which yields 
some interesting results. 
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Burden analyses makes the general assumption that rare variants which make changes to the 
function of a gene on average impair functioning rather than enhance it. This is clearly expected for 
LOF variants and for nonsynonymous variants it seems reasonable to expect that a random change is 
more likely to have a negative than a positive effect. However it must be recognised that gain of 
function variants can occur and that including all variants together in a burden analysis will tend to 
water down the effects of variants with opposing effects, reducing power. For variants that are 
common this issue can be addressed with methods such as the sequence kernel association test 
(SKAT) but such approaches are not applicable to extremely rare variants [24]. For a given category 
of nonsynonymous variant, for example those reported as deleterious by SIFT, it is to be expected 
that there will be range of effect sizes, perhaps in both directions. However because the variants 
concerned are extremely rare it is generally not possible to gain any accurate estimate of their 
individual effects and the ORs reported represent an average for the whole category. As more 
sequence data becomes available it may be possible to develop improved methods for predicting 
likely effects of coding variants on gene function. In turn, this will support the development of 
improved weighting schemes, for example by assigning negative weights to variants expected to 
produce gain of function. 

In spite of the inherent limitations of available data and the analytical approaches used, some 
confidence in their validity may be gained from the fact that two established genes, GCK and HNF4A, 
are implicated with exome wide significance. Variants in GCK are recognised as the cause of up to 
half of cases of MODY, itself accounting for around 1-2% of cases of all diabetes diagnoses [25]. 
Likewise, HNF4A variants cause 5-10% of cases of MODY [26].  

The third gene which is exome wide significant, GIGYF1, has not previously been implicated in the 
aetiology of diabetes. Its product binds to growth factor receptor-bound protein 10 (GRB10) and has 
a role in modulating the insulin-like growth factor (IGF1) receptor signalling pathway  [27, 28]. A 
variant in GRB10 has been reported to be associated with decreased early-phase insulin secretion 
and the muscle-specific ablation of Grb10 in mice causes increased glucose uptake into muscles with 
increased insulin signalling [29, 30].  

Among genes significant at p < 0.001, a number are of interest in the light of previous research. The 
expression of ALAD (SLP = 3.63) is reduced in obese subjects while the expression of Alad is reduced 
in rats with high-fat diet-induced weight gain and inhibition of ALAD with aminotriazole led to 
reduced glucose uptake in cultured human adipocytes [31]. The common P12A variant of PPARG 
(SLP = 3.45) reduces risk of T2D whereas rare LOF variants and nonsynonymous variants which cause 
reduced activity (occurring in approximately 1 in 1,000 individuals) have previously been reported to 
substantially increase risk [32]. Damaging variants in GYG1 (SLP = 3.22) cause deficiency of 
glycogenin 1, resulting in glycogen storage myopathies, but have not been reported to be associated 
with diabetes [33]. GHRL (SLP = -3.15) encodes the ghrelin-obestatin preproprotein which is cleaved 
to yield two peptides, ghrelin and obestatin, which are involved in appetite and energy metabolism 
and there have been some studies which have claimed that the common Leu72Met (rs696217) 
variant is associated with reduced risk of T2D although the effect does not seem to be consistent 
and the gene was not highlighted in a large GWAS meta-analysis [1, 34]. 

It is noteworthy that in the gene set analyses the second highest ranked set is MONOSACCHARIDE 
TRANSMEMBRANE TRANSPORTER ACTIVITY. This includes SLC2A2 (SLP = 2.54), SLC2A3 (SLP = -2.37) 
and SLC2A4 (SLP = 1.70). SLC2A2, previously known as GLUT2, codes for a glucose transporter 
expressed by beta cells which senses glucose levels and recessively acting variants in it can cause 
neonatal diabetes [35]. A common intronic variant of SLC2A2, rs8192675, is associated with the 
glycaemic response to metformin [36]. SLC2A4 codes for a glucose transporter whose levels in cell 
membranes increase in response to insulin but although candidate gene studies claim that common 
variants in it are associated with T2D these results are not supported by properly powered GWAS 
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metanalysis [1, 37]. The results presented here suggest that rare coding variants in these glucose 
transporter genes might have some effect on risk of T2D. 

Some genes which have been previously implicated in T2D failed to produce significant results. LOF 
variants in HNF1A and HNF1B were commoner in cases but are too rare to produce definitive results 
in this sample. By contrast, LOF variants in ABCC8 are less rare but do not differ in frequency 
between cases and controls. These results are consistent with reports that it is only activating 
variants in ABCC8 which result in diabetes whereas LOF variants can cause hyperinsulinaemia and 
this reflects the fact that weighted burden analysis is not expected to detect gain of function effects 
[38]. The fact that the frequency of LOF variants in INSR is similar in cases and controls, indicates 
that, although recessively acting variants can cause infantile hyperinsulinaemia followed by insulin 
dependent diabetes, the loss of function of a single copy of this gene has little discernible effect on 
risk of T2D [5].  

These analyses provide an overview of the way very rare genetic variants contribute to risk of type 2 
diabetes in a large sample broadly representative of the UK population. The weighted burden 
analysis successfully identifies two known diabetes genes, GCK and HNF4A, and implicates a novel 
gene, GIGYF1. A few other biologically plausible genes do not reach formal levels of statistical 
significance after correction for multiple testing but might be worthy of further investigation, 
including ALAD, PPARG, GYG1, GHRL, SCL2A2 and SLC2A4. Any possible role for these genes will 
become clearer as additional data becomes available, for example from the remaining 300,000 UK 
Biobank subjects for whom exome sequence data has not yet been released. Typically, hundreds of 
variants are identified per gene, mostly occurring in only a handful of subjects each. The findings for 
some previously implicated genes, HNF1A, HNF1B, MC4R and SLC30A8, are not formally statistically 
significant but are consistent with an effect which could be detected once the sample size is 
increased.  

Together, variants which can be identified as having large effects on risk occur in fewer than 1% of 
the cases of T2D in this sample. There is no doubt that identifying specific genetic causes may be 
useful to guide treatment for some patients [4]. However it needs to be acknowledged that for the 
vast majority of patients with T2D exome sequencing will be not be helpful in terms of identifying 
specific subtypes of disease which might benefit from specific treatments. Thus, the potential to 
apply a personalised medicine approach to T2D based on genetic testing seems to be somewhat 
limited. 

The main potential utility of genetic investigations such as this might be to better characterise the 
mechanisms which can lead to disease, identify novel drug targets and develop improved 
therapeutic approaches which would benefit T2D patients in general, rather than only the small 
number carrying the relevant genetic variant. If some of the findings reported here can be replicated 
then the genes identified could become the objects of more intensive investigation. 
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Table 1 

The table shows the weight which was assigned to each type of variant as annotated by VEP, 
Polyphen and SIFT as well as the broad categories which were used for multivariate analyses of 
variant effects [13–15]. The category referred to as “Unused” indicates variant annotations which 
were not assigned to any variants and/or were not included in the multivariate analyses. 

VEP / SIFT / Polyphen annotation Weight Category 

intergenic_variant 0 Unused 

feature_truncation 0 Intronic, etc. 

regulatory_region_variant 0 Intronic, etc. 

feature_elongation 0 Intronic, etc. 

regulatory_region_amplification 1 Intronic, etc. 

regulatory_region_ablation 1 Intronic, etc. 

TF_binding_site_variant 1 Intronic, etc. 

TFBS_amplification 1 Intronic, etc. 

TFBS_ablation 1 Intronic, etc. 

downstream_gene_variant 0 Intronic, etc. 

upstream_gene_variant 0 Intronic, etc. 

non_coding_transcript_variant 0 Intronic, etc. 

NMD_transcript_variant 0 Intronic, etc. 

intron_variant 0 Intronic, etc. 

non_coding_transcript_exon_variant 0 Intronic, etc. 

3_prime_UTR_variant 1 3 prime UTR 

5_prime_UTR_variant 1 5 prime UTR 

mature_miRNA_variant 5 Unused 

coding_sequence_variant 0 Unused 

synonymous_variant 0 Synonymous 

stop_retained_variant 5 Unused 

incomplete_terminal_codon_variant 5 Unused 

splice_region_variant 1 Splice region 

protein_altering_variant 5 Protein altering 

missense_variant 5 Protein altering 

inframe_deletion 10 InDel, etc 

inframe_insertion 10 InDel, etc 

transcript_amplification 10 InDel, etc 

start_lost 10 Unused 

stop_lost 10 Unused 

frameshift_variant 100 Disruptive 

stop_gained 100 Disruptive 

splice_donor_variant 100 Splice site variant 

splice_acceptor_variant 100 Splice site variant 

transcript_ablation 100 Disruptive 

SIFT deleterious 20 Deleterious 

PolyPhen possibly damaging 5 Possibly damaging 

PolyPhen probably damaging 10 Probably damaging 
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Table 2  

Genes with absolute value of SLP exceeding 3 or more (equivalent to p<0.001) for test of association 
of weighted burden score with T2D. 

Symbol SLP Name 

GCK 22.25 Glucokinase 

HNF4A 6.82 Hepatocyte Nuclear Factor 4 Alpha 

GIGYF1 6.22 GRB10 Interacting GYF Protein 1 

ZNF620 3.78 Zinc Finger Protein 620 

RAI2 3.74 Retinoic Acid Induced 2 

TM4SF20 3.65 Transmembrane 4 L Six Family Member 20 

ALAD 3.63 Aminolevulinate Dehydratase 

PPARG 3.45 Peroxisome Proliferator Activated Receptor Gamma 

LOC105370752 3.42 Uncharacterized LOC105370752 

KLHL11 3.35 Kelch Like Family Member 11 

HMGXB4 3.35 HMG-Box Containing 4 

MIR6825 3.31 MicroRNA 6825 

TAZ 3.30 Tafazzin 

WDR33 3.25 WD Repeat Domain 33 

HECTD1 3.24 HECT Domain E3 Ubiquitin Protein Ligase 1 

ZNF571-AS1 3.23 ZNF571 Antisense RNA 1 

GYG1 3.22 Glycogenin 1 

APTX 3.20 Aprataxin 

KCNK15 3.19 Potassium Two Pore Domain Channel Subfamily K Member 15 

XPO1 3.19 Exportin 1 

PKD1 3.10 Polycystin 1, Transient Receptor Potential Channel Interacting 

ZNF763 -3.01 Zinc Finger Protein 763 

COA5 -3.05 Cytochrome C Oxidase Assembly Factor 5 

GHRL -3.15 Ghrelin And Obestatin Prepropeptide 

DEUP1 -3.20 Deuterosome Assembly Protein 1 

C7orf50 -3.22 Chromosome 7 Open Reading Frame 50 

MFSD12 -3.34 Major Facilitator Superfamily Domain Containing 12 

C19orf73 -3.34 Chromosome 19 Open Reading Frame 73 

ATXN1L -3.35 Ataxin 1 Like 

EML4 -3.58 EMAP Like 4 

DLEC1 -3.72 DLEC1 Cilia And Flagella Associated Protein 

RPS5 -3.76 Ribosomal Protein S5 
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Table 3 

Results from logistic regression analysis showing the effects on risk of T2D of different categories of 
variant within exome-wide significant genes and genes of interest with absolute value of gene-wise 
SLP > 3. Odds ratios for each category are estimated including principal components and sex as 
covariates.  

Table 3A 

Results for GCK. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 9531 0.051051 1034 0.074186 1.04 (0.97 - 1.12) 0.55 

5 prime UTR 940 0.005035 137 0.009829 1.08 (0.89 - 1.31) 0.39 

Synonymous 4550 0.024371 333 0.023892 0.91 (0.81 - 1.02) -0.98 

Splice region 1810 0.009695 132 0.009471 1.04 (0.87 - 1.25) -0.20 

3 prime UTR 1533 0.008211 100 0.007175 0.92 (0.75 - 1.13) -0.37 

Protein altering 744 0.003985 103 0.007390 1.05 (0.77 - 1.41) 0.12 

InDel, etc 4 0.000021 2 0.000143 7.27 (1.26 - 41.81) 1.22 

Disruptive 3 0.000016 11 0.000789 61.80 (16.62 - 229.79) 10.27 

Splice site variant 2 0.000011 6 0.000430 36.48 (6.79 - 196.08) 5.56 

Deleterious 300 0.001607 47 0.003372 1.23 (0.69 - 2.16) 0.32 

Possibly damaging 89 0.000477 10 0.000717 1.14 (0.52 - 2.51) 0.13 

Probably damaging 129 0.000691 33 0.002368 2.97 (1.59 - 5.54) 3.32 
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Table 3B 

Results for HNF4A. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 11703 0.062685 1181 0.084732 1.03 (0.97 - 1.09) 0.42 

5 prime UTR 275 0.001473 17 0.001220 0.84 (0.51 - 1.39) -0.31 

Synonymous 5140 0.027532 429 0.030779 1.01 (0.91 - 1.12) 0.07 

Splice region 1159 0.006208 115 0.008251 0.89 (0.72 - 1.10) 0.55 

3 prime UTR 460 0.002464 53 0.003803 0.99 (0.74 - 1.34) 0.02 

Protein altering 1326 0.007103 163 0.011695 0.92 (0.72 - 1.18) 0.29 

InDel, etc 3 0.000016 0 0.000000  0.00 

Disruptive 6 0.000032 0 0.000000  0.00 

Splice site variant 0 0.000000 0 0.000000  0.00 

Deleterious 541 0.002898 81 0.005811 1.46 (0.85 - 2.50) 0.80 

Possibly damaging 290 0.001553 35 0.002511 1.30 (0.72 - 2.36) 0.42 

Probably damaging 117 0.000627 34 0.002439 2.97 (1.61 - 5.50) 3.41 
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Table 3C 

Results for GIGYF1. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 23552 0.126153 1950 0.139905 0.98 (0.94 - 1.03) 0.44 

5 prime UTR 163 0.000873 20 0.001435 1.02 (0.63 - 1.66) 0.03 

Synonymous 4794 0.025678 419 0.030062 0.99 (0.89 - 1.10) 0.08 

Splice region 3394 0.018179 352 0.025255 1.04 (0.94 - 1.15) 0.33 

3 prime UTR 2102 0.011259 149 0.010690 0.88 (0.74 - 1.04) -0.88 

Protein altering 5653 0.030279 463 0.033219 1.05 (0.89 - 1.24) 0.27 

InDel, etc 489 0.002619 38 0.002726 1.11 (0.79 - 1.55) 0.26 

Disruptive 35 0.000187 16 0.001148 5.65 (3.07 - 10.40) 7.85 

Splice site variant 8 0.000043 6 0.000430 7.70 (2.62 - 22.67) 3.68 

Deleterious 1365 0.007311 114 0.008179 0.95 (0.75 - 1.20) 0.17 

Possibly damaging 2347 0.012571 175 0.012556 1.03 (0.82 - 1.29) -0.10 

Probably damaging 1237 0.006626 111 0.007964 1.14 (0.87 - 1.47) 0.48 
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Table 3D 

Results for ALAD. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 11859 0.063521 974 0.069881 1.00 (0.93 - 1.07) 0.02 

5 prime UTR 160 0.000857 22 0.001578 1.30 (0.81 - 2.08) 0.58 

Synonymous 3296 0.017655 251 0.018008 0.91 (0.79 - 1.04) 0.83 

Splice region 188 0.001007 26 0.001865 1.37 (0.89 - 2.10) 0.85 

3 prime UTR 149 0.000798 12 0.000861 1.04 (0.57 - 1.90) 0.05 

Protein altering 939 0.005030 87 0.006242 0.94 (0.67 - 1.32) 0.15 

InDel, etc 0 0.000000 0 0.000000  0.00 

Disruptive 6 0.000032 3 0.000215 6.67 (1.55 - 28.73) 1.69 

Splice site variant 3 0.000016 2 0.000143 8.31 (1.26 - 55.06) 1.38 

Deleterious 407 0.002180 49 0.003516 1.60 (0.80 - 3.18) 0.76 

Possibly damaging 191 0.001023 25 0.001794 1.20 (0.58 - 2.50) 0.21 

Probably damaging 177 0.000948 18 0.001291 0.82 (0.37 - 1.82) 0.21 
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Table 3E 

Results for PPARG. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 5096 0.027296 506 0.036304 0.97 (0.88 - 1.07) 0.27 

5 prime UTR 119 0.000637 26 0.001865 1.17 (0.75 - 1.83) 0.33 

Synonymous 3003 0.016085 231 0.016573 0.96 (0.84 - 1.11) 0.23 

Splice region 95 0.000509 7 0.000502 0.94 (0.43 - 2.08) -0.05 

3 prime UTR 174 0.000932 14 0.001004 1.07 (0.61 - 1.88) 0.10 

Protein altering 454 0.002432 49 0.003516 1.20 (0.79 - 1.81) 0.42 

InDel, etc 1 0.000005 0 0.000000  0.00 

Disruptive 7 0.000037 4 0.000287 8.23 (2.29 - 29.63) 2.29 

Splice site variant 0 0.000000 1 0.000072  1.16 

Deleterious 138 0.000739 15 0.001076 1.24 (0.58 - 2.66) 0.24 

Possibly damaging 46 0.000246 6 0.000430 1.25 (0.47 - 3.31) 0.19 

Probably damaging 131 0.000702 13 0.000933 0.92 (0.41 - 2.06) 0.08 
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Table 3F 

Results for GYG1. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 8535 0.045717 787 0.056464 0.98 (0.91 - 1.07) 0.17 

5 prime UTR 3285 0.017596 250 0.017937 1.04 (0.91 - 1.18) 0.24 

Synonymous 1348 0.007220 184 0.013201 0.94 (0.78 - 1.14) 0.28 

Splice region 270 0.001446 37 0.002655 1.58 (1.11 - 2.27) 1.99 

3 prime UTR 1457 0.007804 118 0.008466 0.91 (0.75 - 1.10) 0.51 

Protein altering 3509 0.018795 313 0.022457 1.10 (0.91 - 1.32) 0.51 

InDel, etc 5 0.000027 3 0.000215 3.70 (0.83 - 16.43) 1.84 

Disruptive 203 0.001087 33 0.002368 1.98 (1.40 - 2.81) 4.03 

Splice site variant 15 0.000080 4 0.000287 3.08 (0.96 - 9.81) 1.41 

Deleterious 1934 0.010359 158 0.011336 0.90 (0.63 - 1.30) 0.24 

Possibly damaging 157 0.000841 28 0.002009 0.95 (0.60 - 1.50) 0.09 

Probably damaging 1611 0.008629 114 0.008179 1.00 (0.69 - 1.47) -0.01 
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Table 3G 

Results for GHRL. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 6647 0.035604 621 0.044554 0.99 (0.91 - 1.08) 0.07 

5 prime UTR 6997 0.037478 621 0.044554 1.02 (0.94 - 1.11) 0.19 

Synonymous 258 0.001382 24 0.001722 1.06 (0.68 - 1.63) 0.10 

Splice region 3237 0.017339 230 0.016502 0.98 (0.86 - 1.13) -0.10 

3 prime UTR 268 0.001436 13 0.000933 0.65 (0.37 - 1.15) -0.89 

Protein altering 2500 0.013391 140 0.010044 0.82 (0.45 - 1.49) -0.30 

InDel, etc 32 0.000171 1 0.000072 0.44 (0.06 - 3.35) -0.14 

Disruptive 50 0.000268 1 0.000072 0.23 (0.03 - 1.77) -0.82 

Splice site variant 11 0.000059 0 0.000000  0.00 

Deleterious 103 0.000552 6 0.000430 0.60 (0.22 - 1.66) -0.50 

Possibly damaging 47 0.000252 6 0.000430 2.14 (0.64 - 7.14) 0.69 

Probably damaging 2279 0.012207 122 0.008753 0.94 (0.50 - 1.76) -0.07 
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Table 4 

Results from logistic regression analysis showing effect on risk of T2D of different categories of 
variant within genes previously implicated in diabetes pathogenesis.  

Table 4A 

Results for HNF1A. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 8981 0.048105 798 0.057254 0.93 (0.86 - 1.00) 1.24 

5 prime UTR 413 0.002212 54 0.003874 1.26 (0.94 - 1.69) 0.93 

Synonymous 1561 0.008361 157 0.011264 1.05 (0.89 - 1.24) 0.27 

Splice region 624 0.003342 87 0.006242 1.03 (0.81 - 1.31) 0.08 

3 prime UTR 330 0.001768 30 0.002152 0.78 (0.53 - 1.16) 0.66 

Protein altering 2806 0.015030 268 0.019228 1.07 (0.90 - 1.28) 0.38 

InDel, etc 8 0.000043 1 0.000072 1.96 (0.23 - 16.51) 0.32 

Disruptive 29 0.000155 7 0.000502 3.27 (1.39 - 7.70) 1.96 

Splice site variant 2 0.000011 1 0.000072 7.91 (0.67 - 93.47) 0.71 

Deleterious 1274 0.006824 107 0.007677 0.87 (0.64 - 1.20) 0.41 

Possibly damaging 430 0.002303 39 0.002798 1.07 (0.72 - 1.58) 0.13 

Probably damaging 449 0.002405 43 0.003085 1.27 (0.83 - 1.94) 0.58 
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Table 4B 

Results for HNF1B. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 9825 0.052626 1188 0.085235 1.03 (0.97 - 1.09) 0.43 

5 prime UTR 2883 0.015442 259 0.018582 1.08 (0.94 - 1.23) 0.57 

Synonymous 848 0.004542 78 0.005596 1.02 (0.80 - 1.29) 0.05 

Splice region 140 0.000750 14 0.001004 1.44 (0.82 - 2.54) 0.72 

3 prime UTR 1116 0.005978 145 0.010403 0.89 (0.74 - 1.08) 0.65 

Protein altering 1734 0.009288 184 0.013201 1.19 (0.96 - 1.47) 1.00 

InDel, etc 7 0.000037 1 0.000072 2.04 (0.24 - 17.58) 0.36 

Disruptive 2 0.000011 1 0.000072 6.79 (0.57 - 81.16) 0.71 

Splice site variant 0 0.000000 0 0.000000  0.00 

Deleterious 1046 0.005603 60 0.004305 0.58 (0.33 - 1.00) -1.34 

Possibly damaging 591 0.003166 32 0.002296 1.00 (0.55 - 1.82) 0.00 

Probably damaging 445 0.002384 33 0.002368 1.39 (0.76 - 2.53) -0.56 
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Table 4C 

Results for ABCC8. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 40619 0.217570 3992 0.286411 1.02 (0.99 - 1.05) 0.84 

5 prime UTR 3981 0.021324 443 0.031784 1.06 (0.96 - 1.17) 0.65 

Synonymous 6894 0.036927 686 0.049218 0.98 (0.90 - 1.06) 0.26 

Splice region 1489 0.007976 115 0.008251 0.92 (0.76 - 1.12) 0.41 

3 prime UTR 117 0.000627 6 0.000430 0.62 (0.27 - 1.45) -0.58 

Protein altering 5651 0.030269 521 0.037380 1.07 (0.93 - 1.23) 0.49 

InDel, etc 13 0.000070 1 0.000072 0.90 (0.11 - 7.17) 0.00 

Disruptive 103 0.000552 9 0.000646 1.19 (0.59 - 2.40) 0.21 

Splice site variant 58 0.000311 4 0.000287 0.83 (0.29 - 2.37) -0.14 

Deleterious 1861 0.009968 189 0.013560 1.17 (0.96 - 1.43) 0.97 

Possibly damaging 469 0.002512 38 0.002726 0.70 (0.48 - 1.02) 1.26 

Probably damaging 2290 0.012266 215 0.015425 1.10 (0.90 - 1.33) 0.46 
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Table 4D 

Results for INSR. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 36762 0.196910 3725 0.267255 0.99 (0.96 - 1.02) 0.31 

5 prime UTR 165 0.000884 15 0.001076 0.86 (0.50 - 1.49) 0.23 

Synonymous 15478 0.082906 1385 0.099369 1.02 (0.97 - 1.07) 0.29 

Splice region 4126 0.022100 387 0.027766 0.96 (0.82 - 1.13) 0.22 

3 prime UTR 400 0.002143 48 0.003444 1.24 (0.91 - 1.70) 0.78 

Protein altering 8249 0.044185 603 0.043263 0.89 (0.79 - 1.00) -1.33 

InDel, etc 18 0.000096 2 0.000143 1.41 (0.49 - 4.07) 0.19 

Disruptive 45 0.000241 5 0.000359 1.62 (0.63 - 4.19) 0.51 

Splice site variant 16 0.000086 1 0.000072 0.64 (0.08 - 5.12) 0.00 

Deleterious 3668 0.019647 292 0.020950 1.21 (0.87 - 1.67) 0.61 

Possibly damaging 3181 0.017039 249 0.017865 0.90 (0.65 - 1.25) 0.27 

Probably damaging 357 0.001912 26 0.001865 0.98 (0.59 - 1.62) -0.03 
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Table 4E 

Results for MC4R. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 0 0.000000 0 0.000000  0.00 

5 prime UTR 265 0.001419 25 0.001794 1.28 (0.84 - 1.96) 0.63 

Synonymous 799 0.004280 93 0.006672 0.97 (0.77 - 1.21) 0.12 

Splice region 0 0.000000 0 0.000000  0.00 

3 prime UTR 45 0.000241 4 0.000287 1.26 (0.44 - 3.61) 0.11 

Protein altering 1248 0.006685 117 0.008394 0.91 (0.69 - 1.22) 0.27 

InDel, etc 3 0.000016 1 0.000072 4.85 (0.48 - 49.39) 0.60 

Disruptive 72 0.000386 8 0.000574 1.47 (0.69 - 3.12) 0.51 

Splice site variant 0 0.000000 0 0.000000  0.00 

Deleterious 412 0.002207 44 0.003157 1.22 (0.61 - 2.44) 0.25 

Possibly damaging 181 0.000970 22 0.001578 1.39 (0.78 - 2.49) 0.59 

Probably damaging 389 0.002084 39 0.002798 1.28 (0.60 - 2.72) 0.29 
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Table 4F 

Results for SLC30A8. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 7313 0.039171 607 0.043550 0.93 (0.85 - 1.02) 0.88 

5 prime UTR 307 0.001644 36 0.002583 1.21 (0.85 - 1.74) 0.55 

Synonymous 509 0.002726 65 0.004664 1.40 (1.07 - 1.84) 1.92 

Splice region 351 0.001880 40 0.002870 1.12 (0.80 - 1.58) 0.31 

3 prime UTR 2262 0.012116 197 0.014134 1.04 (0.88 - 1.23) 0.18 

Protein altering 2666 0.014280 257 0.018439 0.96 (0.80 - 1.14) 0.19 

InDel, etc 3 0.000016 0 0.000000  0.00 

Disruptive 99 0.000530 9 0.000646 0.82 (0.40 - 1.68) 0.23 

Splice site variant 59 0.000316 1 0.000072 0.24 (0.03 - 1.77) -0.82 

Deleterious 616 0.003300 30 0.002152 0.61 (0.29 - 1.30) -0.72 

Possibly damaging 455 0.002437 26 0.001865 0.89 (0.57 - 1.39) -0.23 

Probably damaging 441 0.002362 22 0.001578 0.98 (0.41 - 2.34) -0.02 
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Table 4G 

Results for PAM. 

Category Total 
count 
in 
controls 

Mean 
count in 
controls 

Total 
count in 
cases 

Mean 
count in 
cases 

OR SLP 

Intronic, etc 12269 0.065717 1169 0.083871 0.97 (0.91 - 1.03) 0.55 

5 prime UTR 563 0.003016 49 0.003516 0.93 (0.69 - 1.26) 0.19 

Synonymous 2051 0.010986 203 0.014564 1.11 (0.95 - 1.29) 0.78 

Splice region 733 0.003926 85 0.006098 0.94 (0.74 - 1.19) 0.23 

3 prime UTR 121 0.000648 8 0.000574 0.92 (0.44 - 1.92) -0.09 

Protein altering 6968 0.037323 654 0.046922 1.09 (0.91 - 1.30) 0.47 

InDel, etc 199 0.001066 19 0.001363 1.20 (0.74 - 1.95) 0.34 

Disruptive 123 0.000659 4 0.000287 0.46 (0.16 - 1.26) -0.91 

Splice site variant 33 0.000177 2 0.000143 0.78 (0.18 - 3.35) 0.00 

Deleterious 5168 0.027682 486 0.034869 1.11 (0.81 - 1.50) 0.29 

Possibly damaging 459 0.002459 41 0.002942 0.89 (0.59 - 1.35) 0.23 

Probably damaging 4890 0.026193 457 0.032788 1.12 (0.81 - 1.54) 0.31 
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Figure 1 

QQ plot of signed log10 p values (SLPs) obtained for weighted burden analysis of association 
with T2D showing observed against expected SLP for each gene, omitting results for GCK, 
which has SLP = 22.25.  

 

 

 

 


