Identifying adults at high-risk for change in weight and BMI in England: a longitudinal, large-scale, population-based cohort study using electronic health records

Summary

Background Targeted obesity prevention policies would benefit from the identification of population groups with the highest risk of weight gain. The relative importance of adult age, sex, ethnicity, geographical region, and degree of social deprivation on weight gain is not known. We aimed to identify high-risk groups for changes in weight and BMI using electronic health records (EHR).

Methods In this longitudinal, population-based cohort study we used linked EHR data from 400 primary care practices (via the Clinical Practice Research Datalink) in England, accessed via the CALIBER programme. Eligible participants were aged 18–74 years, registered at a general practice clinic, and had BMI and weight measurements recorded between Jan 1, 1998, and June 30, 2016, during the period when they had eligible linked data with at least 1 year of follow-up time. We calculated longitudinal changes in BMI over 1, 5, and 10 years, and investigated the absolute risk and odds ratios (ORs) of transitioning between BMI categories (underweight, normal weight, overweight, obesity class 1 and 2, and severe obesity [class 3]), as defined by WHO. The associations of demographic factors with BMI transitions were estimated by use of logistic regression analysis, adjusting for baseline BMI, family history of cardiovascular disease, use of diuretics, and prevalent chronic conditions.

Findings We included 2 092 260 eligible individuals with more than 9 million BMI measurements in our study. Young adult age was the strongest risk factor for weight gain at 1, 5, and 10 years of follow-up. Compared with the oldest age group (65–74 years), adults in the youngest age group (18–24 years) had the highest OR (4·22 [95% CI 3·86–4·62]) and greatest absolute risk (37% vs 24%) of transitioning from normal weight to overweight or obesity at 10 years. Likewise, adults in the youngest age group with overweight or obesity at baseline were also at highest risk to transition to a higher BMI category; OR 4·60 (4·06–5·22) and absolute risk (42% vs 18%) of transitioning from overweight to class 1 and 2 obesity, and OR 5·87 (5·23–6·59) and absolute risk (22% vs 5%) of transitioning from class 1 and 2 obesity to class 3 obesity. Other demographic factors were consistently less strongly associated with these transitions; for example, the OR of transitioning from normal weight to overweight or obesity in people living in the most socially deprived versus least deprived areas was 1·23 (1·18–1·27), for men versus women was 1·12 (1·08–1·16), and for Black individuals versus White individuals was 1·13 (1·04–1·24). We provide an open access online risk calculator, and present high-resolution obesity risk charts over a 1-year, 5-year, and 10-year follow-up period.

Interpretation A radical shift in policy is required to focus on individuals at the highest risk of weight gain (ie, young adults aged 18–24 years) for individual-level and population-level prevention of obesity and its long-term consequences for health and health care.

Funding The British Hearth Foundation, Health Data Research UK, the UK Medical Research Council, and the National Institute for Health Research.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

Introduction Adult obesity prevention policies, which are largely untargeted, have had limited success globally,1,2 and the high prevalence of obesity is predicted to increase substantially over the next decade.3 Population-wide approaches to obesity prevention could be complemented by new targeted approaches if population groups with the highest risk of weight gain could be identified using readily available information in national public health systems.4 Current obesity prevention policies are informed by evidence from cross-sectional, population-based surveys,5 which, by definition, cannot evaluate weight changes, and highlight the increased cross-sectional prevalence of obesity in middle-aged individuals (ie, those aged 40–59 years), those residing in socially deprived areas, and in particular ethnic groups.6 In longitudinal research, younger adults have been shown...
In this longitudinal, population-based cohort study, we used clinically recorded measures of height, weight, and BMI from primary care practices in England, accessed to have a greater risk of weight gain than older adults in many, but not all, studies (appendix pp 3–4).

An emerging data science opportunity to identify population groups at high risk for weight gain comes from longitudinal population-based electronic health records (EHRs). Understanding how adult age, sex, ethnicity, geographical region, and degree of social deprivation might together influence the risk of weight gain is essential if targeted policies are to be considered. We found no previous studies providing such evidence. Population-based EHRs offer valid measurements of weight and BMI changes, and they have potential advantages (compared with consented cohort studies) of sufficient scale to evaluate the joint contribution of several factors, and of providing updatable and low-cost measurements.

We used population-based EHRs to address long-standing calls for monitoring basic population weight data in the context of weight change by presenting intra-individual 1-year, 5-year, and 10-year patterns in BMI changes, according to sociodemographic factors, with the following objectives: (1) to test the extent to which temporal trends in mean BMI changes between 1998 and 2016 are replicated between EHRs and survey methods; (2) to compare the extent and distribution of BMI changes across age groups and BMI categories; (3) to estimate the associations between age, sex, degree of social deprivation, ethnicity, and geographical region with transitions across BMI categories; and (4) to produce a risk calculator (both online and in chart-form), showing how these risk factors combine to identify groups at a high risk of transitioning to higher BMI categories.

Methods

Study design and participants

In this longitudinal, population-based cohort study, we used clinically recorded measures of height, weight, and BMI from primary care practices in England, accessed...
through the Clinical Practice Research Datalink. This study was done as part of the CALIBER research platform. CALIBER, led by the UCL Institute of Health Informatics (University College London, London, UK), is an open resource for researchers providing validated EHR phenotyping algorithms and tools for the use of national structured health record data sources. Through the CALIBER platform, we obtained data from individuals aged 18–74 years registered at 400 primary care practices in England, with BMI measurements recorded between Jan 1, 1998, and June 30, 2016 (see appendix pp 5–8).

The study was approved by the UK Medicines and Healthcare products Regulatory Agency Independent Scientific Advisory Committee (18_010R), under Section 251 of the National Health Service (NHS) Social Care Act 2006, for the use of anonymised records in research without individual participant written consent.

Data collection

NHS policy is for a patient’s weight and height to be recorded at registration with a general practice clinic, with these measurements repeated at health checks (currently offered to patients aged 40–74 years and done once every 5 years) and at clinical discretion. We extracted height (in m), weight (in kg) and BMI (in kg/m²) measurements, as recorded during usual care by physicians, nurses, and health-care assistants using a range of devices. We included individuals with BMI and weight measurements recorded during the period in which they had eligible linked data, with at least 1 year of follow-up. We excluded individuals with BMI recorded during pregnancy; who had BMI measurements taken on the same day that differed by more than 0·5 kg/m²; whose highest recorded BMI was more than double their lowest recorded BMI; and in whom the absolute difference between recorded and calculated BMI on the

Figure 1: Flow chart showing the number of individuals and BMI measurements recorded in EHRs used for calculating 1-year, 5-year, and 10-year changes in BMI

EHR=electronic health record. *Temporal trends in BMI were calculated and compared with HSE data (see appendix pp 6–7). †For people with more than one valid pair of BMI measurements, we chose one pair at random for the calculation of BMI change. ‡For people with more than one valid pair of BMI measurements, we chose one pair at random for the calculation of BMI change. §We selected one timepoint with a BMI measurement at random and applied multiple imputation analysis.
same day was more than 1 kg/m² (figure 1). Following WHO guidelines, we defined underweight as a BMI of less than 18.5 kg/m²; normal weight as a BMI of 18.5–24.9 kg/m²; overweight as a BMI of 25.0–29.9 kg/m²; non-severe obesity (class 1 and 2) as a BMI of 30.0–39.9 kg/m²; and severe obesity (class 3) as a BMI of 40.0 kg/m² or higher.

We grouped individuals by age (taken at the date of the first BMI measurement; 18–24 years, 25–34 years, 35–44 years, 45–54 years, 55–64 years, and 65–74 years); sex (male or female); ethnicity (White, Asian [Chinese, Indian, Pakistani, Bangladeshi, or other Asian ethnicity], Black [Black African, Black Caribbean, or other Black ethnicity], or mixed or other ethnicity); degree of social deprivation, measured by use of the region-based Index of Multiple Deprivation (IMD; in quintiles from least deprived [first quintile] to most deprived [fifth quintile]); and geographical region (London, South West England, South Central England, South East England, West Midlands, East of England, central North East England, and North West England). Data on chronic disease, smoking status, and physical activity were also extracted from EHRs.

Statistical analysis

To compare trends in mean BMI changes over time, we randomly selected one BMI measurement from all eligible individuals included in CALIBER, and compared mean BMI between 1998 and 2016 in England with standardised survey measures of BMI from an annual cross-sectional survey (the Health Survey for England [HSE]), according to age and sex. The HSE is a source of data, independent of health-care consultation and recording practices, that has been widely used to inform public policy. We also compared EHR measures of BMI with corresponding measures obtained from the US National Health and Nutrition Examination Survey (NHANES) over the same time period, according to age group.

To estimate 1-year, 5-year, and 10-year changes in BMI, we randomly selected one pair of BMI measurements from individuals who had measurements taken during time windows of 6 months to 2 years, 4 years to 6 years, and 8 years to 12 years, respectively. We assumed that any change in BMI for each patient was linear during each time window (appendix pp 10–12).

The problem of missing values arises because not all individuals had two BMI measurements within the specific time windows of interest (figure 1). We assumed that the missingness mechanism for BMI change was missing not at random. For this reason, we applied multiple imputation with delta-adjustment, as this method provides a flexible and transparent means to impute missing data under missing-not-at-random mechanisms. We first imputed the missing values, not only for BMI change, but also for other factors using multiple imputation by chained equations (MICE). Specifically, we created ten copies of datasets in which missing values for BMI change, ethnicity, IMD, smoking status, and physical activity were replaced by imputed values sampled from their predictive distributions.
distribution by use of MICE, which was applied separately for the six age groups. We then added delta values to our imputed datasets of BMI change to minimise any bias due to missingness not at random.

After implementation of this approach, the average 10-year BMI change according to age and sex in our study (using CALIBER) and the HSE were the same. More details of the methods used to account for missing data are in the appendix (pp 13–19).

For sociodemographic factors, we estimated the odds ratios (ORs) for transitioning between BMI categories over 1-year, 5-year, and 10-year periods using logistic regression models. For example, to estimate the ORs for transitioning from overweight to obesity BMI categories, logistic regression was used whereby the dependent variable was “0” for individuals who did not transition and “1” for those who did transition (appendix pp 20–23). In all of these models, we additionally adjusted for BMI at baseline, a family history of cardiovascular disease, use of diuretics, prevalent cardiovascular disease, cancer, diabetes, mental health disorders (depression, anxiety, stress, phobia, schizophrenia, bipolar disorder, or affective disorder), and other prevalent chronic conditions (HIV, chronic obstructive pulmonary disease, neurological disease [dementia], rheumatological disease [rheumatoid arthritis, gout, or systemic lupus erythematosus], gastrointestinal disease [inflammatory bowel disease], or renal disease [chronic kidney disease or renal failure]) at baseline.

We calculated the age-standardised transition between BMI categories at 1, 5, and 10 years on the basis of the age structure of the English population (Office for National Statistics) and BMI information from the HSE (appendix p 24). We produced risk charts estimating the 10-year BMI changes, the proportion of individuals contributing to the time of their first BMI measurements are provided in the table. Regarding the individuals contributing to the assessment of 10-year BMI changes, the proportion of women (646 392 [58%]) was higher than men (470 932 [42%]). Most individuals were White (848 231 [76%]), 99 502 (9%) had prevalent cardiovascular disease, and 44 625 (4%) had prevalent cancer.

We first validated time trends in mean BMI changes using EHR (CALIBER) data compared with HSE data. Minor differences between mean BMI estimates obtained from EHR and HSE were observed, particularly in individuals aged younger than 65 years (appendix pp 6–7). Mean BMI was higher in older age groups than in younger age groups. We then compared time trends in mean BMI changes using CALIBER with those from US NHANES data. Mean BMI increased in each age group between 1999 and 2016 in England, and the rate of increase was similar to that observed in the USA, with mean BMIs in the USA approximately 2 kg/m² higher in each biannual period and age group compared with England (appendix p 8).

Using EHR data, we estimated the initial and estimated average weight at 10 years according to age and sex (appendix p 28). We found that younger individuals gained more weight on average than older individuals during this time period. For example, the average initial weight in men aged 18–24 years was 80·8 kg, and their average estimated weight after 10 years was 92·2 kg, whereas the average initial weight of men aged 65–74 years was 83·9 kg, and their average estimated weight after 10 years was 82·2 kg.

Adults in the youngest age group (18–24 years) had the highest increase in weight at 10 years, and the widest

<table>
<thead>
<tr>
<th>Index of Multiple Deprivation quintile</th>
<th>1-year BMI change (n=1 912 589)</th>
<th>5-year BMI change (n=1 524 022)</th>
<th>10-year BMI change (n=1 117 324)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Continued from previous page)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (least deprived)</td>
<td>317 299 (17%)</td>
<td>261 382 (17%)</td>
<td>198 813 (18%)</td>
</tr>
<tr>
<td>2</td>
<td>311 664 (16%)</td>
<td>254 612 (17%)</td>
<td>190 582 (17%)</td>
</tr>
<tr>
<td>3</td>
<td>297 464 (16%)</td>
<td>239 316 (16%)</td>
<td>177 138 (16%)</td>
</tr>
<tr>
<td>4</td>
<td>277 168 (14%)</td>
<td>220 613 (14%)</td>
<td>161 415 (14%)</td>
</tr>
<tr>
<td>5 (most deprived)</td>
<td>244 600 (13%)</td>
<td>192 236 (13%)</td>
<td>137 042 (12%)</td>
</tr>
<tr>
<td>Missing</td>
<td>464 394 (24%)</td>
<td>355 863 (23%)</td>
<td>252 334 (23%)</td>
</tr>
<tr>
<td>Family history of cardiovascular disease</td>
<td>484 281 (25%)</td>
<td>403 575 (26%)</td>
<td>312 249 (28%)</td>
</tr>
<tr>
<td>Use of diuretics</td>
<td>263 253 (14%)</td>
<td>213 835 (14%)</td>
<td>155 597 (14%)</td>
</tr>
<tr>
<td>Prevalence of chronic diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>100 838 (5%)</td>
<td>70 018 (5%)</td>
<td>44 625 (4%)</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>184 118 (10%)</td>
<td>141 333 (9%)</td>
<td>99 502 (9%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>139 737 (7%)</td>
<td>101 046 (7%)</td>
<td>66 601 (6%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>902 998 (47%)</td>
<td>723 369 (47%)</td>
<td>527 420 (47%)</td>
</tr>
<tr>
<td>Mental health disorders†</td>
<td>580 160 (30%)</td>
<td>433 828 (28%)</td>
<td>298 979 (27%)</td>
</tr>
<tr>
<td>Other chronic diseases‡</td>
<td>200 230 (10%)</td>
<td>140 513 (9%)</td>
<td>86 484 (8%)</td>
</tr>
</tbody>
</table>

Data are n (%) or mean (SD). The table shows baseline characteristics of patients at the time of their first BMI measurement (recorded in their health records), which was used to calculate changes in BMI at 1, 5, and 10 years.

*Percentages are calculated according to the total number of patients in each age group. †Includes depression, anxiety, stress, phobia, schizophrenia, bipolar disorder, and affective disorder. ‡Includes chronic obstructive pulmonary disease, neurological disease (dementia), rheumatological disease (rheumatoid arthritis, gout, and systemic lupus erythematosus), gastrointestinal disease (inflammatory bowel disease), HIV, and renal disease (chronic kidney disease and renal failure).
Figure 2

10-year weight change (kg) for different age groups:

- **18–24 years**
 - Underweight
 - Normal weight
 - Overweight
 - Class 1 and 2 obesity
 - Class 3 obesity

- **25–34 years**
- **35–44 years**
- **45–54 years**
- **55–64 years**
- **65–74 years**

Percentage (%)

- **p10**
- **p90**
- **Median**
- **IDR**

For example:

- **Underweight:**
 - 18–24 years: p10 = -1.9, p90 = -20.9, Median = 7.9, IDR = 38.1
 - 25–34 years: p10 = -15.5, p90 = -28.8, Median = 6.4, IDR = 43.5
 - 35–44 years: p10 = -15.5, p90 = -20.7, Median = 2.8, IDR = 36.2
 - 45–54 years: p10 = -29.4, p90 = 31.1, Median = 2.2, IDR = 60.5
 - 55–64 years: p10 = -31.8, p90 = -12.1, Median = -7.8, IDR = 43.9
 - 65–74 years: p10 = -31.8, p90 = -12.1, Median = -7.8, IDR = 43.9

(Figure 2 continues on next page)
distribution in each BMI category (figure 2A, B). Each of these measures decreased progressively with increasing age in each BMI category. For example, in men aged 18–24 years in the normal weight BMI category, the median weight change was 7·9 kg and the 90th percentile was 22·0 kg compared with a median weight change of 0·5 kg and a 90th percentile of 10·7 kg in men aged 65–74 years (figure 2A). Similar findings were observed for 1-year and 5-year weight changes in both men and women (appendix p 29).

We estimated that, in the normal weight BMI category, 13% transitioned to the overweight category at 1 year, 22% at 5 years, and 29% at 10 years (figure 3). In the overweight BMI category, 11% transitioned to the obesity category at 1 year, 21% at 5 years, and 29% at 10 years. In the obesity BMI category, we estimated that 15% transitioned to the overweight category at 1 year, 18% at 5 years, and 19% at 10 years.

Compared with adults in the oldest age group (65–74 years), adults in the youngest age group (18–24 years) had the highest relative risk (OR 4·22 [95% CI 3·86–4·62]) and absolute risk (37% vs 24%) of transitioning from the normal weight BMI category to overweight or obesity categories at 10 years (figure 4). Other demographic factors, such as degree of social deprivation (most deprived vs least deprived OR 1·23 [1·18–1·27]), sex (men vs women OR 1·12 [1·08–1·16]) and ethnicity (Black individuals vs White individuals OR 1·13 [1·04–1·24]), were less associated with this transition. Compared with the 65–74 years age group, individuals in the 18–24 years age group had the highest relative risk (OR 4·60 [4·06–5·22]) and absolute risk (42% vs 18%) of transitioning from the overweight to the obesity BMI category, and the highest relative risk (OR 5·87 [5·23–6·59]) and absolute risk (22% vs 5%) of transitioning from class 1 and 2 obesity to class 3 obesity.

We found that the association between IMD and transition to a higher BMI category was even more pronounced among individuals in the 18–24 years age group compared with older age groups (appendix p 30).

We also considered the absolute and relative risks of transitioning from normal weight to underweight BMI categories and for remaining in the obesity BMI category over the 10-year period. Compared with the other age groups, individuals in the 65–74 years age group had a higher risk of transitioning from normal weight to underweight BMI categories (appendix p 31). We also observed that individuals aged 35–54 years had the highest absolute risk (84% in the 35–44 years age group and 83% in the 45–54 years age group) and OR (35–44 years vs 65–74 years OR 2·09 [95% CI 1·97–2·22]; 45–54 years vs 65–74 years 1·97 [1·87–2·08]) of remaining in the obesity BMI category at 10 years. We observed similar results for
the youngest age group for the transitions at higher BMI categories at 1 and 5 years (appendix pp 32–33).

We next developed the risk calculator for estimating the risk of transitioning between BMI categories, combining age, sex, degree of social deprivation, and initial BMI. We show that, within each stratum, the risks for transitioning to higher BMI categories were substantially higher in the youngest adult age group than in older age groups. For example, compared with men aged 65–74 years in the third IMD quintile who were close to the BMI transition cutoffs, the risk of those aged 18–24 years transitioning from the normal weight to the overweight BMI category at 10 years was 68% versus 44%, from the overweight to the obesity BMI category was 65% versus 38%, and from the class 1 and 2 obesity to class 3 obesity BMI category was 47% versus 27% (figure 5). By contrast, there were only modest modifications of the influence of the risk of transitioning to higher BMI categories by degree of social deprivation and sex (figure 5; see also the online risk calculator). We found consistent patterns of age-associated transitions to higher BMI categories at 1 year (appendix p 34) and 5 years (appendix p 35).

The sensitivity analyses indicated that our findings were robust when we applied the same analysis: (1) without controlling for the prevalent chronic conditions (appendix p 38); (2) excluding individuals with prevalent chronic diseases at baseline (appendix p 39); (3) excluding individuals with prevalent chronic diseases and those who developed chronic conditions during follow-up (appendix p 40); (4) without accounting for the delta values after the multiple imputation (appendix p 42); and (5) excluding all missing values (complete case analysis; appendix p 41). We also found that the results remained largely the same in individuals who had never smoked, and in former and current smokers (appendix p 43). Compared with individuals who had never smoked, former smokers had a higher risk of transitioning to a higher BMI category, whereas current smokers had a lower risk (appendix p 44).

<table>
<thead>
<tr>
<th>Age, years</th>
<th>Normal baseline BMI, kg/m²</th>
<th>Number of individuals*</th>
<th>Absolute risk (%)</th>
<th>Odds ratio (95% CI)</th>
<th>Overweight to obesity (n=398 226)</th>
<th>Mean baseline BMI, kg/m²</th>
<th>Number of individuals*</th>
<th>Absolute risk (%)</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–24</td>
<td>21·7</td>
<td>19 244</td>
<td>37%</td>
<td>4·22 (1·86–6·62)</td>
<td>27·1</td>
<td>8270</td>
<td>42%</td>
<td>4·60 (4·06–5·22)</td>
<td></td>
</tr>
<tr>
<td>25–34</td>
<td>22·2</td>
<td>22 565</td>
<td>34%</td>
<td>2·54 (2·40–2·70)</td>
<td>27·2</td>
<td>14 642</td>
<td>35%</td>
<td>2·94 (2·76–3·14)</td>
<td></td>
</tr>
<tr>
<td>35–44</td>
<td>22·4</td>
<td>29 276</td>
<td>34%</td>
<td>2·25 (1·62–2·34)</td>
<td>27·2</td>
<td>24 880</td>
<td>32%</td>
<td>2·50 (2·39–2·61)</td>
<td></td>
</tr>
<tr>
<td>45–54</td>
<td>22·6</td>
<td>25 369</td>
<td>32%</td>
<td>1·81 (1·73–1·88)</td>
<td>27·3</td>
<td>25 807</td>
<td>28%</td>
<td>1·93 (1·85–2·00)</td>
<td></td>
</tr>
<tr>
<td>55–64</td>
<td>22·8</td>
<td>20 143</td>
<td>30%</td>
<td>1·46 (1·40–1·52)</td>
<td>27·3</td>
<td>21 881</td>
<td>23%</td>
<td>1·47 (1·43–1·52)</td>
<td></td>
</tr>
<tr>
<td>65–74</td>
<td>22·8</td>
<td>11 527</td>
<td>24%</td>
<td>1 (ref)</td>
<td>27·3</td>
<td>12 381</td>
<td>18%</td>
<td>1 (ref)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>22·3</td>
<td>79 426</td>
<td>30%</td>
<td>1·12 (1·08–1·16)</td>
<td>27·2</td>
<td>53 884</td>
<td>28%</td>
<td>0·98 (0·96–1·00)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>22·8</td>
<td>48 698</td>
<td>36%</td>
<td>1·00 (0·96–1·04)</td>
<td>27·3</td>
<td>53 977</td>
<td>27%</td>
<td>1·06 (1·05–1·11)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>22·4</td>
<td>119 802</td>
<td>32%</td>
<td>0·91 (0·86–0·96)</td>
<td>27·3</td>
<td>101 228</td>
<td>27%</td>
<td>1·00 (0·97–1·03)</td>
<td></td>
</tr>
<tr>
<td>Mixed or other</td>
<td>23·3</td>
<td>4672</td>
<td>31%</td>
<td>0·90 (0·83–0·97)</td>
<td>27·2</td>
<td>34 465</td>
<td>24%</td>
<td>0·92 (0·82–0·97)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>22·3</td>
<td>1659</td>
<td>31%</td>
<td>0·92 (0·85–0·99)</td>
<td>27·2</td>
<td>12 274</td>
<td>24%</td>
<td>0·92 (0·82–0·93)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>22·5</td>
<td>1991</td>
<td>37%</td>
<td>1·13 (1·04–1·24)</td>
<td>27·3</td>
<td>21 013</td>
<td>31%</td>
<td>1·05 (0·97–1·13)</td>
<td></td>
</tr>
<tr>
<td>IMD quintile (from least to most deprived)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>22·4</td>
<td>30 808</td>
<td>30%</td>
<td>1 (ref)</td>
<td>27·2</td>
<td>23 524</td>
<td>24%</td>
<td>1 (ref)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>22·5</td>
<td>28 546</td>
<td>31%</td>
<td>1·06 (1·03–1·09)</td>
<td>27·2</td>
<td>23 503</td>
<td>26%</td>
<td>1·06 (1·02–1·09)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>22·4</td>
<td>25 562</td>
<td>32%</td>
<td>1·09 (1·05–1·13)</td>
<td>27·3</td>
<td>23 312</td>
<td>27%</td>
<td>1·10 (1·07–1·13)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>22·4</td>
<td>23 723</td>
<td>34%</td>
<td>1·19 (1·15–1·24)</td>
<td>27·3</td>
<td>21 819</td>
<td>29%</td>
<td>1·18 (1·14–1·21)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>22·3</td>
<td>19 479</td>
<td>35%</td>
<td>1·23 (1·18–1·27)</td>
<td>27·3</td>
<td>17 333</td>
<td>31%</td>
<td>1·21 (1·18–1·25)</td>
<td></td>
</tr>
<tr>
<td>Geographical region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>22·4</td>
<td>16 191</td>
<td>31%</td>
<td>1 (ref)</td>
<td>27·2</td>
<td>12 886</td>
<td>27%</td>
<td>1 (ref)</td>
<td></td>
</tr>
<tr>
<td>South West</td>
<td>22·4</td>
<td>13 488</td>
<td>32%</td>
<td>1·08 (1·03–1·13)</td>
<td>27·3</td>
<td>11 992</td>
<td>27%</td>
<td>1·06 (1·02–1·11)</td>
<td></td>
</tr>
<tr>
<td>South Central</td>
<td>22·4</td>
<td>16958</td>
<td>31%</td>
<td>1·01 (0·97–1·05)</td>
<td>27·2</td>
<td>13 978</td>
<td>26%</td>
<td>1·01 (0·97–1·06)</td>
<td></td>
</tr>
<tr>
<td>South East</td>
<td>22·4</td>
<td>15 602</td>
<td>32%</td>
<td>1·06 (1·02–1·10)</td>
<td>27·3</td>
<td>13 335</td>
<td>27%</td>
<td>1·08 (1·04–1·12)</td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>22·5</td>
<td>14 617</td>
<td>31%</td>
<td>1·00 (0·96–1·04)</td>
<td>27·2</td>
<td>11 617</td>
<td>26%</td>
<td>0·99 (0·95–1·03)</td>
<td></td>
</tr>
<tr>
<td>West Midlands</td>
<td>22·5</td>
<td>16 405</td>
<td>32%</td>
<td>1·04 (1·00–1·09)</td>
<td>27·3</td>
<td>13 864</td>
<td>27%</td>
<td>1·04 (0·99–1·08)</td>
<td></td>
</tr>
<tr>
<td>Central and North East</td>
<td>22·5</td>
<td>21 509</td>
<td>33%</td>
<td>1·05 (1·00–1·10)</td>
<td>27·3</td>
<td>18 365</td>
<td>27%</td>
<td>1·02 (0·98–1·07)</td>
<td></td>
</tr>
<tr>
<td>North West</td>
<td>22·4</td>
<td>13 354</td>
<td>34%</td>
<td>1·16 (1·10–1·22)</td>
<td>27·3</td>
<td>11 814</td>
<td>29%</td>
<td>1·16 (1·10–1·21)</td>
<td></td>
</tr>
</tbody>
</table>

(Figure 4 continues on next page)
to public health agencies, and that young adults should be a major focus of strategies to prevent the onset of overweight and obesity.

We did this large-scale study (involving more than two million individuals) to provide high-resolution estimates of BMI change across 900 strata, defined by age (six groups), sex, social deprivation (five groups), and initial BMI (15 categories). Most of the individual strata contained more than 1000 individuals. Approximately 77% of adults have at least one BMI measurement recorded in their primary health-care record; a percentage that is higher compared with the response rates in consented cross-sectional surveys such as HSE14 and NHANES.15 For repeated measures, completeness for 1-year BMI changes in CALIBER improved from 47% before 2005 to 53% from 2006 to 2016 in our study. Previous studies have shown the validity of single measures of BMI recorded in primary care, and of BMI changes in people with obesity26 or after bariatric surgery.27 Our study replicates (and extends) previous findings from smaller longitudinal studies (appendix pp 3–4) using large-scale EHRs. We propose that the monitoring of population weight data by public health agencies should involve incorporating information on intra-individual weight changes from EHRs, which are becoming increasingly available.19,20

Adults in the youngest age group (18–24 years) had the highest absolute and relative risk of transitioning from the normal weight to overweight or obesity BMI categories, from the overweight to obesity BMI categories, and from class 1 and 2 obesity to class 3 obesity BMI categories at 1, 5, and 10 years. Individuals aged 35–54 years had the highest risk for remaining in the obesity BMI category, further emphasising the importance of early intervention.

Our findings have policy implications in three inter-related areas: (1) obesity prevention; (2) the health priorities of young adults; and (3) addressing lockdown-associated weight gain. First, obesity prevention policies should identify groups at a high risk of weight gain for targeted interventions. There could be key opportunities for intervention in young adults because certain factors, such as changes in dietary and exercise behaviours28 and relationships,22 being in higher education, and employment status,21 can influence weight gain. For example, BMI can increase in women and men during the course of cohabiting relationships and marriage.22 Identifying groups at the highest risk of weight gain is not currently recommended in obesity prevention policies,29 and is not mentioned in reports on new strategies in obesity prevention.1 Most of the attention of current obesity prevention guidelines is directed mainly at individuals who already have obesity.24 As the evidence presented in our study suggests, the opportunity to modify weight gain is greatest in individuals who are young and do not yet have obesity. Our findings also suggest that regional and national initiatives aimed at socially deprived areas might...
Figure 5: Absolute risk of transitioning to a higher BMI category over 10 years, according to baseline BMI category, age, sex, and IMD quintile

This analysis included 1117324 individuals; across the 900 strata, there are at least 1000 individuals in 458 (51%) strata, and at least 100 individuals in 890 (99%) strata. IMD=Index of Multiple Deprivation.
be complemented by targeting young adults. Second, young adults are increasingly a focus of health policies seeking to address a wide range of issues, including substance abuse, sexual health, mental health, violence and injuries, and criminality. An extensive review of preventive interventions targeted to young adults made no mention that this group of individuals are at highest risk of weight gain, and found that there were no programmes addressing overweight, obesity, or healthy living. Additionally, the increasing trends in BMI are combined with an increasing prevalence of diabetes in young adults. From the perspective of both obesity prevention and health in young adults, it is important to address the challenge that, with the exception of pregnancy complications, most of the adverse health consequences of obesity and weight gain (including severe COVID-19, cardiovascular disease, and type 2 diabetes) occur decades later, in middle-age and older age. Finally, repeated lockdowns during the COVID-19 pandemic have profoundly reduced the amount of physical activity and energy expenditure in young adults, which has had adverse effects on weight gain.

Population-based EHRs are the only high-resolution source of information on changes in BMI with a sufficient sample size to estimate risk across combinations of age, sex, ethnicity, degree of social deprivation, and BMI category. Our study was the first large-scale study to focus on modern BMI change patterns at 1, 5, and 10 years at a high resolution, taking socioeconomic and demographic factors into consideration.

Our study has important limitations. We focused on BMI changes at 1, 5, and 10 years; however, individuals had their bodyweight measurements taken at their general practice clinic infrequently, and younger (and healthier) individuals had their bodyweight measurements taken less frequently than older individuals. To address this problem, we considered time windows within which individuals had a pair of recorded BMI measurements, and assumed linear BMI changes in these time windows. Despite the large sample size of our study, it is possible that our sample was not representative for estimating changes in BMI, as the individuals who had their bodyweight measured multiple times at the general practice clinic had a higher prevalence of chronic disease than those with one or no measurement. A challenge to any study investigating long-term BMI changes is loss to follow-up; the proportion of missing pairs of BMI observations was 48% in the 1-year time window, 52% in the 5-year time window, and 59% in the 10-year time window, comprising individuals who had died or were no longer registered with their general practice. To account for this limitation, we applied multiple imputation with delta-adjustment (to account for missingness not at random) using mean BMI change data from the HSE. Our results were robust to sensitivity analyses using a complete case analysis (no imputation of missing values) and without delta adjustment. However, we cannot exclude the possibility that we mis-specified the imputation models, even though it is unlikely that the resulting bias would be major. In addition, because we used observational data, it is possible that some of the health variables we used, both in the imputation model and in the analysis presented in figure 4, were prone to misclassification bias. Furthermore, since a small proportion of people aged 18 years had not attained their adult height, BMI changes in a small proportion of individuals in the youngest age group might have been slightly underestimated. Comparing data from CALIBER and the HSE, mean BMI values according to age, sex, and calendar year were not significantly different in adults aged 18–54 years (ie, the 95% CIs included 0). However, among individuals aged 65–74 years there was some evidence that BMI measurements from the HSE were higher than those from CALIBER (appendix p 7); nevertheless, we included age in the imputation models, and we applied the delta-adjustment to correct any remaining (small) differences at the end.

Our findings suggest the importance of appropriate interventions for obesity prevention at both population and individual levels. At the population level, structural mechanisms (eg, access to housing, affordable healthy food choices, and physical activity opportunities) might influence the risk of transitioning to the obesity BMI category in young adults. There is a need to develop interventions targeted at groups of individuals who have the highest risk of weight gain, with the aim of achieving weight maintenance in the normal weight BMI category. Given the projected weight gain in children and adolescents, complementary approaches before and after the age of 18 years should be followed. At the individual level, is it possible to communicate information on risk of weight gain, and incorporate this information into interventions designed to affect the knowledge, attitude, and behaviour of young adults? Individuals might have, or seek, additional and actionable predictive information (eg, accelerometry data), which could inform the design of interventions. In addition, to what extent is there a role for primary care professionals and other clinicians in using and recording risk of weight gain information alongside other actionable information in the EHR?

In summary, we found that young adults aged 18–24 years had the highest risk of transitioning to a higher BMI category compared with older age groups. Compared with age, other sociodemographic factors had weaker absolute and relative associations with weight gain and transitioning to higher BMI categories. Young adulthood offers an important, and currently neglected, opportunity for both population-level prevention of the onset of obesity and the identification of individuals at high risk of weight gain for targeted interventions.

Contributors
MK, CL, and HH conceived the research question. MK, SD, and HH secured funding for the study. MK, AGL, KD-O, MG, KB, CL, and HH designed and planned the study. MK and SD prepared the data.
including EHR phenotyping in the CALIBER open-access resource. MK, MG, and KD-O statistically analysed the data. MK, CL, and HH drafted the initial and final versions of the manuscript. All authors critically revised early and final versions of the manuscript. MK had full access to all the data in the study and had final responsibility to submit for publication. SD and MK had access to and verified the study data.

Declaration of interests
RLB reports consulting fees from Novo Nordisk, ViV Healthcare, Pfizer, and Gila Therapeutics; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events from Novo Nordisk, ViV Healthcare, International Medical Press, and Medscape; participation on a data safety monitoring board or advisory board for Novo Nordisk, Pfizer, and ViV Healthcare; being a committee member of the British Obesity and Metabolic Surgery Society, a trustee for the Association for the Study of Obesity, a scientific chair of the International Federation for the Surgery for Obesity (IFSO) and metabolic disorders Europe, a chair of the college of Physicians advisory Committee on Nutrition, Weight and Health, an European Society of Endocrinology clinical committee member, and a trustee of Obesity Empowerment Network UK; being a member of the IFSO scientific committee; being a member of the NICE Weight Management Guideline Development Group; and being a principal investigator on two obesity clinical trials of cagrilintide versus placebo and semaglutide versus placebo (sponsored by Novo Nordisk), and one clinical trial of liraglutide versus placebo (both drugs were provided by Novo Nordisk). All reports grants from Astra Zeneca. All other authors declare no competing interests. Data sharing
Individual participant data are available from the CPRD. A data dictionary with details of the definitions of the variables used in the study is available at https://www.caliberreresearch.org/portal/codebooks. Estimates for weight change can be found via our online tool at bmi.caliberresearch.org.

Acknowledgments
MK is funded by the British Heart Foundation (FS/18/5/33139), KD-O is supported by the UK Wellcome Trust Institutional Strategic Support Fund–London School of Hygiene & Tropical Medicine Fellowship (204928/2/Z/16/Z), SD is supported by an Alan Turing Fellowship. AGL is supported by funding from the Wellcome Trust (204841/2/16/Z), National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre (BRC714/HI/RW/101440), NIHR Great Ormond Street Hospital Biomedical Research Centre (19RX02), and the Health Data Research UK Better Care Catalyst award. HH is an NIHR senior investigator, whose work is supported by (i) Health Data Research UK (LOND), which is funded by the UK Medical Research Council, the Engineering and Physical Sciences Research Council, the Economic and Social Research Council, the Department of Health and Social Care (England), the Chief Scientist Office of the Scottish Government Health and Social Care Directorates, the Health and Social Care Research and Development Division (Welsh Government), the Public Health Agency (Northern Ireland), the British Heart Foundation, and the Wellcome Trust; (ii) BigData@Heart consortium, funded by the Innovative Medicines Initiative-2 Joint Undertaking (116074), which receives support from the EU’s Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Associations, and involves a collaboration between 20 academic and industry partners and the European Society of Cardiology; and (iii) the NIHR University College London Hospitals Biomedical Research Centre. We thank Bianca DeStavola for her comments on the manuscript, and especially for her suggestions on how to deal with missing values. This study is based, in part, on data from the Clinical Practice Research Datalink obtained under license from the UK Medicines and Healthcare products Regulatory Agency. The data are provided by patients and collected by the NHS as part of their care and support. The interpretation of data and conclusions contained in this study are those of the authors.

References

