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Hematopoietic stem cell gene therapy is emerging as a prom-
ising therapeutic strategy for many diseases of the blood and
immune system. However, several individuals who underwent
gene therapy in different trials developed hematological malig-
nancies caused by insertional mutagenesis. Preclinical assess-
ment of vector safety remains challenging because there are
few reliable assays to screen for potential insertional mutagen-
esis effects in vitro. Here we demonstrate that genotoxic vectors
induce a unique gene expression signature linked to stemness
and oncogenesis in transduced murine hematopoietic stem
and progenitor cells. Based on this finding, we developed the
surrogate assay for genotoxicity assessment (SAGA). SAGA
classifies integrating retroviral vectors using machine learning
to detect this gene expression signature during the course of
in vitro immortalization. On a set of benchmark vectors with
known genotoxic potential, SAGA achieved an accuracy of
90.9%. SAGA is more robust and sensitive and faster than pre-
vious assays and reliably predicts a mutagenic risk for vectors
that led to leukemic severe adverse events in clinical trials.
Our work provides a fast and robust tool for preclinical risk
assessment of gene therapy vectors, potentially paving the
way for safer gene therapy trials.

INTRODUCTION
Hematopoietic stem cell gene therapy with retroviral vectors has
demonstrated effectiveness in clinical trials for treatment of monoge-
netic diseases.1 However, transplantation of genetically modified he-
matopoietic stem cells led tomyelodysplastic syndromes and leukemias
in some gene therapy trials.2–4 These severe adverse events (SAEs) were
caused by integration of the provirus in the vicinity of proto-oncogenes,
such asMECOM and LMO2, which were subsequently upregulated by
the strong viral promoter and enhancer sequences.5 Research efforts to-
ward safer gene therapy led to removal of the long terminal repeat (LTR)
Molec
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enhancer elements in first-generation vectors. Instead, the field now
mostly uses internal promoters in self-inactivating (SIN) retroviral vec-
tor designs.6–8 However, safety tests of integrating retro- and lentiviral
vectors remain a bottleneck for transition frombasic research to clinical
application. Tumor-pronemice can be used to assess themutagenic po-
tential of integrating vectors, but these models are laborious, require
large numbers of animals, and suffer from long readout times.9 Another
commonly required safety analysis is the integration site pattern of a
vector and a screen for clonal dominance in mouse models. However,
judging the results of integration site studies regarding clonal domi-
nance versus normal clonal fluctuation in mouse models can be diffi-
cult10 and suffers from poor predictability of the clinical occurrence
of SAEs. Hence, efficient and reliable in vitro assays to screen for inser-
tionalmutagenesis are instrumental for clinical vectordevelopment.We
previously developed the in vitro immortalization (IVIM) assay to
quantify the risk of vector-induced cellular transformation.11 In this
assay, murine hematopoietic progenitor cells are expanded after trans-
duction with retroviral vectors. Following limiting dilution, non-
immortalized cells stop proliferating, whereas insertional mutants
give rise to clonal outgrowth. The incidence of vector-induced immor-
talization can be used to quantify and compare the mutagenicity of
different vector types. Although the IVIMassaymainly detects mutants
with insertions near the Mecom (also known as Evi1) locus, it reliably
uncovers the ability of a given vector to activate neighboring proto-on-
cogenes. Therefore, IVIM results have been accepted by regulatory
agencies in Europe, the United States, Canada, and Australia as part
of the preclinical safety assessment for gene therapy vectors.12–15
ular Therapy Vol. 29 No 12 December 2021 ª 2021 The Authors. 1
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Figure 1. IVIM and SAGA assays to detect vector genotoxicity in vitro

(A) Workflow of the in vitro genotoxicity assays. (B) Vector designs used in this study. Indicated are the various promoters and transgenes tested in our study (for details, see

Table S1). (C) Replating frequencies (RFs) of different IVIM samples (n = 502) measured in 68 IVIM assays. Each dot represents one individual sample. RFs above Q1 (Q1 =

0.75 quantile of the RF for LTR.RV.SFFV) are counted as positive assays. LOD, limit of detection. Above the graph, the ratios of assays with RFs above and below Q1 are

shown. Differences in the incidence of positive and negative assays relative to mock- or LTR.RV.SFFV-transduced cells were analyzed by Fisher’s exact test with Benjamini-

Hochberg correction (*p < 0.05, ***p < 0.001; NS, not significant). Bars indicate mean RF. (D) Receiver operating characteristic (ROC) of the IVIM assay for samples (n = 502)

with known activity in the IVIM assay. (E) Same as in (D) with separate curves for strongly transforming vectors (LTR.RV.SFFV) and mock controls (red curve) and weakly

transforming vectors, safe vectors, and mock controls (black curve) for which the classification based on repeated testing in the IVIM assay was known.
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However, the IVIM assay is limited in terms of sensitivity and suffers
from considerable inter-assay variability.

Transformation of healthy hematopoietic progenitors to preleukemic
cells and leukemia is linked to specific gene expression programs that
cause dysregulation of stemness pathways, growth, and perturbed dif-
ferentiation.16–18 By creating a resource of transcriptional responses
to vector integration, we show that integrating genotoxic vectors acti-
vate a gene expression program linked to transformation, stemness,
and cancer de-differentiation. We hypothesized that this transcrip-
tional signature can be exploited to create better predictors of vec-
tor-induced genotoxicity. To this end, we develop the surrogate assay
for genotoxicity assessment (SAGA) classifier, which uses machine
learning to detect dysregulation of this gene expression signature in
transduced murine hematopoietic stem and progenitor cells (HSPCs).
We compare results from the IVIM assay and SAGA for a variety of
integrating benchmark vectors, including the three gammaretroviral
vectors that triggered leukemias in clinical trials. The molecular
readout of SAGA enhances sensitivity and reproducibility and elimi-
2 Molecular Therapy Vol. 29 No 12 December 2021
nates the need to rely on the variable replating phenotype of the IVIM
assay, reducing assay duration. In addition, we provide the SAGA
analysis pipeline as a freely available R package.

RESULTS
Cell culture-based assays for in vitro genotoxicity prediction

For IVIM and SAGA, murine lineage-negative (Lin�) HSPCs are
transducedwith highmultiplicities of infection (MOIs) to reach at least
3 vector copies per cell (Figure 1A). After transduction, bulk cultures
are expanded for 15 days in myeloid differentiation-promoting me-
dium. On day 8 after transduction, cells are diluted to increase prolif-
erative selection pressure until day 15. For the IVIM assay, cells
are replated at low density and cultured for another 14 days before
microscopic and enzymatic detection of growing insertional mutants.
The results of the IVIM assay showed that non-transduced mock con-
trol cells rarely proliferated under limiting dilution conditions (11 of
124 assays positive), whereas cells transduced with a gammaretroviral
vector with strong spleen focus-forming virus (SFFV) promoter/
enhancer elements (LTR.RV.SFFV) showed a high incidence of
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insertional mutants (153 of 204 assays positive). These results are
congruent with clinical data because this vector design led to myeloid
malignancy in clinical trials for chronic granulomatous disease because
of insertional activation of EVI1 and PRDM16. We tested a variety of
gammaretroviral, alpharetroviral, and lentiviral vectors with different
designs and mutagenic potential in both assays, including several vec-
tors that have been or are currently used in clinical trials (Figures 1B
and 1C; Table S1). The IVIM assay identified the potential hazard
of two other vectors with clinically demonstrated genotoxicity:
LTR.RV.MLV.IL2RG (also known as MFGgC), which caused
leukemia in X-SCID studies,2 and LTR.RV.MPSV.WASP (also known
as CMMP-WASP), which led to several primary and secondary leuke-
mias in individuals with Wiskott-Aldrich syndrome (WAS).4,19 How-
ever, the replating frequencies and, hence, the power of the IVIM assay
to uncover the mutagenic potential was substantially lower for vectors
that contain weaker LTRs or SIN lentiviral vectors with SFFV as an in-
ternal promoter.We summarized the outcome of 502 IVIM assays in a
receiver operating characteristic (ROC) curve (Figure 1D) todetermine
the predictive power of the replating phenotype as a proxy for vector
mutagenicity. Overall, the IVIM assay showed a low false negative
rate (specificity, 88.1%) and a sensitivity of 68.8%, reaching an overall
area under the receiver operating curve (AUROC)of 0.827 (Figure 1D).
Next we evaluated the results separately for mock control cells against
the strongly transforming vector LTR.RV.SFFV (Figure 1E, red curve;
sensitivity, 74.6%; AUROCLTR.RV.SFFV, 0.88) or other vectors with
known mutagenicity (Figure 1E, black curve; sensitivity, 54.2%;
AUROCother, = 0.74). Hence, the IVIM assay has significant predictive
power to detect vector-induced immortalization in mouse hematopoi-
etic cells, but for vectors other than the LTR.RV.SFFV, the IVIM assay
suffers from low sensitivity andhas to be repeatedmany times to obtain
a reliable prediction of vector safety.

Transforming vectors impose an oncogenic gene expression

signature

We hypothesized that gene expression changes induced by trans-
forming vectors might be a more accurate and sensitive predictor of
vector-induced genotoxicity than the occurrence of a poorly defined
clonal outgrowth after long periods of in vitro culture. Therefore, we
analyzed the transcriptome from HSPC bulk cultures on day 15 after
transduction. t-distributed stochastic neighbor embedding (t-SNE)20

and heatmaps of single assays (Figures 2A–2D) revealed that trans-
duction with transforming vectors (based on the IVIM assay)
imposed a distinct gene expression signature in HSPCs, clearly distin-
guishing them from the mock samples. In contrast, SIN vectors with
weaker internal promoters, such as the EF1a-short (EFS) promoter,
clustered with the non-transduced mock controls (Figures 2C and
2D). Importantly, gene expression changes were linked to but inde-
pendent of the full immortalization phenotype in the IVIM assay.
Cultures that were transduced with transforming vectors but did
not immortalize in the IVIM assay (indicated as closed circles in Fig-
ure 2A) still showed similar gene expression changes compared with
LTR.RV.SFFV immortalized samples (Figures 2A and 2B). The trans-
formation-associated gene expression changes were observed across
different vector genera as transforming gammaretroviral, lentiviral,
and alpharetroviral vectors clustered together (Figures 2C and 2D;
Figure S1A). The most consistently dysregulated genes (absolute
log2FC > 1.0, Padj. < 10�5; Table S2, tabs 1 and 2) in samples trans-
duced with transforming vectors included stem cell-associated genes
(Aldh1a1, Smim5, and Ifitm6), proto-oncogenes (Zbtb16, Sox4,
Pdgfrb, and Fgf3), stem cell transcription factors or their target genes
(Spns2, Ces2g, and Myct1), and myeloid markers (Mpo and Cebpe).
This oncogenic signature was detected as early as day 4 after transduc-
tion with transforming vectors (Figures S1B and S1C) and across
three gene expression platforms (microarrays, qPCR, and RNA
sequencing [RNA-seq]; Figures S1D and S1E). Gene set enrichment
analysis (GSEA) showed upregulation of gene sets linked to positive
cell cycle regulation, hematopoietic stem cells, erythroid/megakaryo-
cytic differentiation, and Evi1 target genes21 in samples transduced
with transforming vectors compared withmock controls and safe vec-
tor designs (Figures 2E, 2F, 2H, and 2I; Table S3, tab 2). Interestingly,
samples transduced with safe vector designs displayed a similar
enrichment of cell cycle gene sets and genes linked to erythroid/mega-
karyocytic differentiation compared with mock controls (Figure 2G).
However, in contrast to transforming vectors, they showed downre-
gulation of stemness and Evi1 target genes and a reduction of myeloid
gene sets (Figures 2G and 2J; Table S3, tab 8). We hypothesized that
the accelerated cell cycle and upregulation of genes associated with
non-myeloid lineages might be a sign that assay progression and
myeloid differentiation were generally delayed in transduced samples,
independent of the vector type. Therefore, we compared early mock
samples from day 8 with mock samples from day 15. Indeed, non-
transduced HSPCs from this early time point displayed a similar
enrichment of cell cycle, erythroid, and megakaryocytic gene sets
but no upregulation of Evi1 target genes (Figure 2K; Figure S1F; Table
S3, tab 14), reflecting incomplete myeloid differentiation and faster
proliferation at that time. Most importantly, only genotoxic vectors
upregulated hematopoietic stem cell transcriptional programs and
Evi1 target genes compared with mock and non-transforming vec-
tors. The upregulation of myeloid differentiation genes and stemness
programs by transforming vectors (Figures 2E and 2F) underscores
that differentiation and transformation are not mutually exclusive,
as described for Evi1-driven leukemogenesis.22 By probing more
than 8,000 gene sets from the MSigDB collection,22 we sought to
obtain a more global view of the biological processes and pathways
altered by transforming vectors. We found that transforming vectors
triggered an early transcriptional signature that already included
several “hallmarks of cancer,”23 including upregulation of gene sets
linked to DNA replication, stemness, cancer de-differentiation, and
therapeutic resistance and an enrichment of interferon signaling
genes (Figure 2L; Table S3, tab 11). These data demonstrate that inte-
grating vectors with the propensity to transform hematopoietic cells
induce a unique oncogenic gene expression signature that distin-
guishes them from non-transforming vectors.

Dataset preparation for classifier development

Having shown that genotoxic vectors impose a specific stemness-
related gene expression profile, we sought to develop a machine
learning algorithm distinguishing transforming vectors from safe
Molecular Therapy Vol. 29 No 12 December 2021 3
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Figure 2. Transforming vectors impose an oncogenic gene expression signature in murine HSPCs

(A) t-distributed stochastic neighbor embedding (t-SNE) of three mock samples (gray) and 4 samples transduced with LTR.RV.SFFV (red) from one SAGA assay (ID 120411)

using all 36,226 annotated probes. (B) Hierarchical clustering of the samples shown in (A) based on the most variable probes (top 1%). (C) t-SNE of a second SAGA assay (ID

150128, 36,226 annotated probes). (D) Hierarchical clustering of the samples shown in (C) based on the most variable probes (top 1%). (E) Gene set enrichment analysis

(GSEA) of hematopoiesis-associated gene sets (Table S3, tab 1) of samples transduced with IVIM-transforming vectors versus mock controls. Plotted are normalized

enrichment scores (NESs) against the false discovery rate (FDR). The enrichment cutoff (FDR < 0.1) is indicated by the dashed line. (F) GSEA of IVIM-transforming vectors

against IVIM-safe vectors. (G) GSEA of samples transduced with IVIM-safe vectors against mock controls. (H–K) GSEA plots for EVI1 target genes20 for the contrasts (H)

transforming versus mock, (I) transforming versus safe, (J) safe versus mock, (K) mock day 8 versus mock day 15. (L) Enrichment map of highly upregulated (FDR < 0.005)

gene sets from MSigDB in samples transduced with transforming vectors compared with mock control and safe samples.
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Figure 3. Development phase of an SVM classifier to predict genotoxicity

(A–C) Data preprocessing. (A) t-SNE representation of all 169 SAGA assays after quantile normalization using all 39,428 probes. The coloring scheme encodes individual

SAGA assays. (B) t-SNE of the 169 SAGA-samples after quantile normalization and ComBat correction using the same color key as in (A). (C) t-SNE plot as in (B) with the

samples color coded according to vector properties in the IVIM assay. IVIM positive, transforming vectors; IVIM negative, nontransforming vectors; mock, untransduced

controls; unknown, IVIM data inconclusive. (D) Scheme of classifier development during the development phase. The complete raw dataset was quantile normalized and

(legend continued on next page)
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designs. We started with the full dataset consisting of 169 SAGA mi-
croarrays with 39,428 probes each, resulting in more than 6 million
data points. Similar to other cell culture assays analyzed with high-
throughput methods,24 we observed systematic differences between
assays because of different primary cell material, reagent lots, instru-
ments, time, and personnel (“batch effects”). These batch effects
caused clustering of samples by assay and processing date after
normalization (Figure 3A). Thus, we first implemented a robust
normalization and batch effect correction method to reduce the un-
wanted variation between individual SAGAs. We found that a com-
bination of quantile normalization25 (Figures S2A and S2B) followed
by ComBat26 effectively normalized and removed batch effects, allow-
ing us to analyze all samples within a common gene expression space
where transforming and safe/mock groups formed two different but
overlapping groups (Figures 3B and 3C). Importantly, both methods
are capable of “add-on adjustment” of new test batches, allowing
cross-batch predictive modeling by leaving training data and classifi-
cation rules fixed when new test data are adjusted.27 For the classifier
development phase, the jointly normalized and batch-corrected gene
expression matrix was reduced to samples with known properties in
the IVIM assay (transforming/non-transforming/mock, n = 152; Fig-
ure 3D). We split the dataset into 10 different training and test sets,
with the training sets comprised of 70% and corresponding test sets
comprised of 30% of the samples. Development of models was per-
formed on the training sets using repeated cross-validation to assess
model performance during feature selection and hyperparameter
tuning (Figure 3D; Figure S3). The test sets were then used to assess
the performance of the final model fit and to control for overfitting of
the classifier; for instance, because of feature selection bias or
hyperparameter tuning.28,29

Genetic algorithm-enhanced feature selection for prediction of

genotoxicity

Initial testing of several machine learning approaches revealed that
support vector machines (SVMs) offered a good classification perfor-
mance on our dataset. Because the performance and computational
cost of SVMs are negatively influenced by non-informative predic-
tors, we performed feature selection on the training sets to find
smaller predictor subsets with higher predictive power. A second
aim for feature selection was to reduce the number of predictors as
far as possible for potential later transfer of SAGA to other technical
platforms that offer higher sample throughput but can interrogate
fewer predictors. Starting with all 36,226 annotated probes, an unsu-
pervised filtering step was applied to remove all probes with little or
no variation across the training set, leaving a median of 1,195 probes
(Figure 3D; Figure S3; Table S4, tab 1). Next we performed recursive
batch corrected. The dataset was split 10 times into training (70%of samples) and test se

further splitting the training sets using repeated cross-validation and monitoring predict

each step of the feature selection routines using nested cross-validation. An SVMwith ra

SVM-RFE and SVM-GA and used to predict the test set. (E and F) Performance profi

remaining probes during SMV-RFE for a representative training set (split 7). (G) Performa

of the GA for training set 7. (H and I) Estimates of the prediction accuracy for the full mode

validation (y axis). The horizontal and vertical bars represent the 95% confidence interv
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feature elimination (SVM-RFE),30 which ranks all predictors accord-
ing to their individual predictive power and then iteratively removes
the least important predictors. The performance profiles across the
different predictor subset sizes showed performance maxima between
3 and 45 predictors for the different training sets (median, 23 predic-
tors; Figures 3E and 3F; Table S4, tab 1). On average, SVM-RFE
removed more than 98% of the probes from the dataset, which re-
sulted in a slight but significant boost in prediction performance, as
measured by cross-validation (median accuracy full models, 89.0%;
median accuracy RFE models, 90.8%; median Ppaired, 0.038; Table
S4, tab 1). On the separate test sets, the median accuracy for the
full models was 90.0%, whereas the SVM-RFE models achieved a
median accuracy of 91.1% (Table S4, tabs 1 and 2). Notably, the
SVM-RFEmodels required less than a tenth of the computation times
of the full models because of the smaller number of predictors.

SVM-RFE is a greedy algorithm that is effective in eliminating large
numbers of less important probes, but it does not perform an exhaus-
tive search to find the best combination of retained predictors.We hy-
pothesized that an optimal combination of probeswith high predictive
powerwould allowus to further reduce the number of required predic-
tors while maintaining or even increasing prediction performance. To
this end, we next employed a genetic algorithm (GA) to find the best
combination of probes retained by SVM-RFE. GAs search for the best
solution in a given feature space, guided by evolutionary principles.31

GAs have been shown to efficiently find optimal or near-
optimal solutions for complex optimization problems, including
feature selection.29 We implemented the GA together with support
vectormachine-basedmodeling (SVM-GA) and used cross-validation
to asses predictive performance during the feature selection process.
For SVM-GA, a population of 40 candidate solutions (individuals)
was initially created from random subsets of the most informative
probes found by the preceding SVM-RFE step. The predictor subsets
with the highest fitness (prediction performance) of each generation
had the best chances to survive andproduce the next generation of pre-
dictor subsets by random crossover and mutation, producing more
and more optimized probe combinations over time (Figure 3D; Fig-
ure S3). We performed feature selection using SVM-GA for all
training/test set splits where SVM-RFEhad retainedmore than 10 pre-
dictors. This ensured that the GA could choose from a sufficient num-
ber of predictors to create the initial population of predictor subsets. In
three of four cases where SVM-RFE alone had arrived at less than 10
predictors, cross-validation accuracy (median accuracy full models,
89.0%; median accuracy RFE models, 90.7%; median Ppaired, 0.024)
and test set accuracies (median accuracy full models, 90.0%; median
accuracy RFE models, 92.2%; Table S4, tab 1) were already improved,
ts (30% of samples). Feature selection by SVM-RFE and SVM-GAwas performed by

ion performance using the hold-out samples. Tuning of the SVM was performed at

dial kernel was trained on the training set reduced to the optimal predictors found by

le of SVM-RFE: accuracy on the hold-out samples plotted against the number of

nce profile of SVM-GA: accuracy on the hold-out samples plotted against generation

ls (H), RFEmodels (I), and GAmodels (J) using the test set (x axis) or repeated cross-

als using the test set and resampling approach, respectively.



www.moleculartherapy.org

Please cite this article in press as: Schwarzer et al., Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine
learning, Molecular Therapy (2021), https://doi.org/10.1016/j.ymthe.2021.06.017
making a second round of feature selection unnecessary. The cross-
validation performance over the 40 generations of SVM-GA was
aggregated into a performance profile demonstrating the progress of
the algorithm and to choose the optimal generation for the entire data-
set (Figure 3G). The algorithm further reduced the median number of
predictors from 36 to 14 for the six training/test set splits subjected to
SVM-GA. Importantly, cross-validation accuracy and test set accu-
racy showed improved predictive power compared with the full and
SVM-RFE models (median cross-validation accuracy SVM-GA,
92.5%; median cross-validation accuracy full model, 89.0%; median
test set accuracy SVM-GA, 93.3%;median test set accuracy full model,
90.0%; Figures 3H–3J; Table S4, tabs 1 and 2).

Because the performance of the final SAGA classifier, which was built
on all 152 samples available, could only be estimated via cross-valida-
tion, we assessed whether our cross-validation strategy was trust-
worthy or whether it produced overly optimistic results because of
feature selection bias or overfitting. Therefore, we plotted the accu-
racy estimates from cross-validation within the training sets against
the test set accuracies (Figures 3H–3J). The performance estimates
obtained by cross-validation and the test set accuracies showed
good agreement, with the median of both estimates for the different
splits (red dots in Figures 3H–3J) being located near the identity
line. The wider confidence intervals of the accuracies calculated
from single test sets demonstrated the higher uncertainty of perfor-
mance estimates obtained from a test set of limited size compared
with properly implemented resampling.28 Next we defined SAGA
as the compound classifier obtained on a training set when SVM-
RFE retained less than 10 predictors for this training set and used
SVM-RFE followed by SVM-GA otherwise.

Assessing the predictive performance of SAGA

In the classifier development phase, the test samples were selected by
random sampling from a jointly preprocessed gene expression matrix
to obtain test sets of sufficient size and with the same class distributions
as the training set. However, this approach did not fully reflect the later
test scenario, where a new test set is to be predicted by SAGA using a
preprocessed and fixed training set and classifier. To realistically assess
the predictive performance of SAGAwith unseen data in the absence of
external validation data, we employed a jack-knife, leave-one-batch-out
approach. The SAGA dataset was comprised of 19 individual SAGAs
(batches). For each iteration, one complete batch was set aside as an in-
dependent test set (Figure 4A). The remaining 18 batches were used as
the training set to which the preprocessing and feature selection pipe-
line developed above was applied (Figure 4A; Figure S3). On median,
10 optimal predictors were derived from the training sets (Table S5,
tab 1), and an SVM was trained on the training set reduced to the
optimal predictors (Figure 4B). Next, the batch that served as the inde-
pendent test set was add-on normalized and add-on batch corrected.
This adjusted the test set to the training set without altering the latter
(Figure 4C), ruling out data leakage from the test samples into the
training set or the classifier.32,33 Finally, the add-on adjusted test set
was reduced to the optimal predictors, and the class labels were pre-
dicted. We repeated this procedure for all 19 batches and aggregated
the prediction results over the 19 iterations (Figures 4D–4I; Figure S4;
Table S5, tabs 1 and 2). Compared with the IVIM assay, SAGA outper-
formed the IVIM assay in terms of AUROC (AUROCSAGA, 0.940;
AUROCIVIM, 0.827; PDELONG < 10�4; Figure 4D), overall accuracy
(accuracySAGA, 90.9%; accuracyIVIM, 76.9%; Figure 4D), and the area
under the precision recall curve (AUPRCSAGA, 0.944; AUPRCIVIM,
0.89; Figure 4G). Specifically, SAGA had a markedly higher sensitivity
(87.7%) compared with the IVIM assay (68.8%). Most importantly,
SAGA detected the genotoxicity of strongly transforming vectors
(accuracySAGA, 97.1%; accuracyIVIM, 80.8%; Figures 4E and 4H) and
vectors with weaker transforming potential with higher predictive
power than the IVIM assay (accuracySAGA, 88.9%; accuracyIVIM,
78.5%; Figures 4F and 4I). The negative predictive value of SAGA
was much higher than that of the IVIM assay (negative predictive value
[NPV]SAGA, 0.91; NPVIVIM, 0.67; Table S5, tab 2); therefore, there is
much higher confidence to classify a vector as “safe” for clinical use
when using SAGA than IVIM. The number of predictors at each
step and the classification performance metrics over the 19 iterations
of the leave-one-batch-out approach are summarized in Figures
S4A–S4D. To assess the stability of the feature selection process, we
quantified how often individual predictors were included in the set of
optimal predictors in each of the 19 iterations (Table 1; Table S5, tab
3). We found a high degree of overlap between the sets of optimal pre-
dictors found during the different iterations with a core set of highly
potent predictors, such as Naip1 and Itih5, which were included in
most of the sets (Table 1). These predictors also showed a high degree
of overlap with the features found for the random test sets during the
development phase (Table 1; Table S4, tab 3), as well as with the final
list of 11 optimal features (Table 1; Table S4, tab 5) obtained on the
complete SAGA dataset (described below).

Construction of the final SAGA model

Next, using the pipeline developed above, we built the final SAGA
classifier on the entire set of available samples (n = 152) for use as
the training set in the SAGAR package. After variance-based filtering,
1,243 features (Table S6, tabs 1 and 2) were supplied to SVM-RFE
(Figure 5A), which retained 20 predictors (Table S6, tab 3). The
following SVM-GA step found an optimal combination of 11 predic-
tors after 14 iterations for the complete dataset (Figure 5B; Table S6,
tab 4). Principal-component analysis of the SAGA dataset reduced to
these 11 probes showed a clear separation of IVIM-transforming vec-
tors against mock controls and IVIM-neutral vectors (Figure 5C),
whereas a separation of classes was not discernible when the dataset
was reduced to 11 randomly selected probes (Figure 5D). Finally,
we queried transcriptome data from the Immunological Genome
Consortium34 to determine which cell types of the hematopoietic sys-
tem expressed the 20 most important predictors found by SVM-RFE.
A majority of these predictors were highly expressed in the most
immature hematopoietic stem cells (Figure 5E), whereas the predic-
tors that were retained after unsupervised filtering and used as input
into the feature selection process showed no such association with
HSCs (Figure S5). The remaining genes, such as Frat2 and Traf4,
were mainly associated with the lymphoid lineage, whereas none of
these genes was expressed in mature granulocytes, a route of
Molecular Therapy Vol. 29 No 12 December 2021 7
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Figure 4. Estimation of model performance via the leave-one-batch-out approach

(A) Scheme of the leave-one-batch-out approach used to estimate SAGA performance. Details are given in themain text. (B) PCA representation of training set 01 reduced to

the 8 optimal predictors derived from the training set and used to train the SVM. (C) Projection of add-on adjusted test set 01 samples into the PCA plot spanned by training

set 01. (D–I) Aggregated prediction results over 19 iterations for the leave-one-batch-out approach versus a conventional IVIM assay. (D) AUC-ROC for all vector genera. (E)

AUC-ROC for strongly transforming LTR.RV.SFFV vectors. (F) AUC-ROC for non-LTR.RV.SFFV vectors. (G) AUC-PRC for all vector genera. (H) AUC-PRC for strongly

transforming LTR.RV.SFFV vectors. (I) AUC-PRC for non-LTR.RV.SFFV vectors.
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Table 1. Top 20 predictors most often selected in the leave-one-batch-out approach and random test set approach used during the development phase

Leave-one-batch-out approach Random test set approach

Probe ID Gene symbol

Times
selected
(of 19)

Variable
importance
(AUC) Probe ID Gene symbol

Times
selected
(of 10)

A_51_P289392 Naip1* 16 94.49 A_55_P2077048 Itih5* 10

A_55_P2077048 Itih5* 15 98.06 A_55_P2024155 Zbtb16* 8

A_51_P106059 Traf4* 14 94.65 A_51_P289392 Naip1* 7

A_66_P135106 Slco3a1* 12 94.18 A_66_P135106 Slco3a1* 7

A_55_P1987984 Zfpm1 12 93.64 A_55_P2018929 Spns2* 7

A_55_P2018929 Spns2* 11 96.98 A_66_P122559 Myct1 5

A_55_P2024155 Zbtb16* 9 100.00 A_51_P334942 Aldh1a1 4

A_51_P486121 Aff3* 8 96.59 A_55_P2108248 Art4* 4

A_55_P2057587 Arx 8 95.15 A_55_P1987984 Zfpm1 4

A_55_P1976882 4930519L02Rik 7 95.00 A_55_P2136426 Prss57 3

A_55_P2108248 Art4* 7 95.62 A_52_P6828 Xk 3

A_52_P56682 Sla2* 6 95.77 A_55_P1976882 4930519L02Rik 2

A_51_P177171 Tie1* 6 93.49 A_55_P2472735 A530032D15Rik 2

A_51_P334942 Aldh1a1 5 90.31 A_51_P486121 Aff3* 2

A_52_P73475 Fam78a 5 93.76 A_55_P2057587 Arx 2

A_52_P162957 Frat2* 5 93.52 A_52_P73475 Fam78a 2

A_52_P68221 Gria3 5 92.75 A_52_P162957 Frat2* 2

A_51_P115626 Shank3 5 94.49 A_52_P68221 Gria3 2

A_55_P2146034 Abca4 4 91.82 A_52_P663904 Lhfpl1 2

Tabulated are the number of times a predictor was included in the list of optimal predictors for a given training set and the global variable importance (AUC-ROC) of each individual
predictor computed on the complete dataset of 152 SAGA samples. Indicated with asterisk (*) are 11 optimal predictors of the final SAGA classifier. Complete lists can be found in
Table S4, tab 3; Table S5, tab 3; and Table S6, tab 4.
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differentiation normally supported by the cytokine conditions used
for the IVIM assay and SAGA. The most important predictors to
detect genotoxic vectors were linked to stemness, differentiation
arrest, and non-myeloid cell fates reflecting early steps of leukemo-
genesis that precede full cellular transformation and leukemia.35

SAGA-GSEA

A critical step in the SAGA-SVM procedure is correct estimation and
correction of batch effects to project the new samples into a common
gene expression space together with the training samples. This can be
error prone for assays with few samples, a profoundly skewed class
distribution, or particularly severe batch effects. For these cases, we
sought to implement a more robust classifier that can be used within
each individual SAGA independently (Figure 6A). We first examined
whether the predictors found by our feature selection approach could
be used in GSEA to discriminate genotoxic from safe vector designs.
Indeed, we observed strong enrichment of the 11 optimal predictors
from the final SAGA classifier in transforming vectors compared with
mock controls (Figure 6B), whereas this signature was coordinately
downregulated in safe vector designs compared with mock samples
(Figure 6C). To estimate the predictive performance of this approach,
we performed SAGA-GSEA within each of the leave-one-batch-out
iterations by using the optimal predictors found for each of the
training sets by our feature selection routine as a gene set for
GSEA. We then examined the enrichment of the optimal predictor
gene sets by performing GSEA for each sample against the mock con-
trols in the left-out batches, yielding an AUC-ROC of 0.91 over
all iterations (Figure 6D). To determine the optimal normalized
enrichment score (NES) cutoff, we performed a ROC analysis,
yielding an NES of greater than 1.7 as the ideal cutoff point for the
complete dataset (Figure 6D). However, we found that this was
confounded by inclusion of many samples of the strongly genotoxic
LTR.RV.SFFV vector, which served as positive control and displayed
very strong enrichment of the predictor gene sets. Therefore, we
determined the cutoff again on the dataset without LTR.RV.SFFV
samples, for which a NES of greater than 1.3 was the optimal
threshold (Figure 6D). Using this NES cutoff, SAGA-GSEA outper-
formed the IVIM assay, albeit with a lower specificity than with the
SVM-based SAGA classifier (AUROCGSEA, 0.91; AUROCIVIM,
0.827; PDELONG, 0.005; accuracyGSEA, 84.8%; accuracyIVIM, 76.9%;
AUPRCGSEA, 0.91; AUPRCIVIM, 0.89; Table S7, tab 1; Figures 6E
and 6F). Similar to SAGA-SVM, we used the 11 final predictors
(Table S6, tab 4) that were derived from the complete dataset as a
GSEA gene set for the final SAGA-GSEA classifier. The optimal
NES cutoff for this 11-predictor gene set was determined by ROC
analysis on the complete dataset after exclusion of the LTR.RV.SFFV
Molecular Therapy Vol. 29 No 12 December 2021 9
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Figure 5. Construction of the final SAGA classifier

(A) Performance profile of the SVM-RFE procedure for the

complete set of 152 samples. The filled circle represents

the predictor subset with the highest performance

comprised of the 20 most important predictors. (B) Per-

formance profile of the SVM-GA procedure for the com-

plete set of 152 samples over 40 generations of the GA. (C)

Principal-component analysis (PCA) of 152 samples with

known IVIM activity on the 11 optimal probes found by

SVM-GA. (D) PCA of 152 samples with known IVIM activity

on 11 randomly selected probes of 36,226 annotated

probes. (E) Heatmap representing expression of the 20

genes with the highest predictive power from SVM-RFE

across murine hematopoiesis.34 The boxplot below the

heatmap represents the expression of genes in each

column relative to the expression of all genes. LT-HSC,

long-term HSC; ST-HSC, short-term HSC; MPP, multi-

potent progenitor; Mac/MF, macrophage; Mo, monocyte;

Gran/GN, granulocyte.
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samples (NES > 1.0; Figure 6G). LTR-driven gammaretroviral, SIN
lentiviral, or alpharetroviral vectors with strong promoters and trans-
forming properties in the IVIM assay showed a mean NES between
1.22 and 2.15 (Figure 6H), whereas potentially safer vector architec-
tures with weaker internal promoters did not or only rarely showed
this enrichment (Figure 6H; Table S7, tab 2). SAGA-GSEA presents
an alternative classifier that circumvents the caveats of cross-batch
prediction when correct add-on adjustment is difficult to achieve
but critically depends on the integrity of the mock samples.
10 Molecular Therapy Vol. 29 No 12 December 2021
DISCUSSION
One important bottleneck for gene therapy is the
necessity to assess potential safety risks. Since its
inception,11, the IVIM assay has become the de
facto gold standard in vitro assay for risk assess-
ment of gene therapy vectors, and multiple
groups have used the IVIMassay to test their vec-
tor constructs.12–15 Here we show that the IVIM
assay uncovers the genotoxic potential of vectors
that caused SAEs in clinical trials for CGD3

(LTR.RV.SFFV), X-SCID2 (LTR.RV.MLV), and
WASP4 (LTR.RV.MPSV). However, transfor-
mation potential is affected by vector design,
integration sites, vector copy number, the trans-
gene itself, and the disease background. In some
contexts, such as ADA-SCID, even LTR-driven
vector designs seemed to have an acceptable
safety profile,36 although one individual treated
with Strimvelis developed T cell leukemia linked
to an insertional event.37 Consequently, most
gene therapy trials now use SIN vectors. IVIM
assays for the mutagenic vector design
SIN.LV.SFFV revealed the genotoxic risk in
only 40% of assays. Hence, even though the
IVIM has an excellent specificity because of its
low sensitivity, it has to be repeatedmultiple times to produce an infor-
mative and reliable result. We developed SAGA as a robust, standard-
ized pipeline that efficiently identifies genotoxic vectors with higher
accuracy by coupling a shortened IVIM assay with a molecular
readout. By performing gene expression profiling on murine hemato-
poietic progenitors transduced with vectors with known IVIM
properties, we show that only genotoxic vectors upregulate a
specific gene expression signature that is reminiscent of immature
HSC transcriptional programs, myeloid differentiation, and early
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Figure 6. SAGA-GSEA

(A) t-SNE representation of gene expression data from three independent SAGAs without batch correction. (B) GSEA plot for the 11 optimal predictors from the final classifier

for LTR.SFFV.EGFP (sample X4991) versus mock from IVIM 3 (shown in A). (C) GSEA plot for the 11 optimal predictors for SIN.LV.EFS (sample X4997) versusmock from IVIM

3. (D) AUC-ROC aggregated from the leave-one-batch-out approach for all vector genera (red) and without strongly transforming LTR.RV.SFFV vectors (gray). The points on

the curve indicate the best NES cutoff. (E) AUC-ROC for all vector genera (same curve as in D) versus AUC-ROC of the IVIM assay. (F) AUC-PRC aggregated from the leave-

one-batch-out approach for all vector genera versus IVIM. (G) AUC-ROC using the 11 optimal predictors from the final classifier on all IVIM batches for all vector genera (red)

and without strongly transforming LTR.RV.SFFV vectors (gray). The point on the curve indicates the best NES cutoff. (H) SAGA-GSEA results for all tested vectors. Plotted are

the NESs of the 11-probe gene set from the final classifier over the different vector genera. The dashed line denotes NES R 1.0, indicating evidence of genotoxicity as

determined from the ROC analysis (Figure 6G) for genotoxic vectors when the strongly transforming LTR.SFFV samples were disregarded. Above the graph, mean NES

values are shown for each vector type. The level of evidence whether the NES is significantly different from the positive control is indicated (ns = not significant, *p < 0.05,

***p < 0.001; p values were calculated using a Kruskal-Wallis test with Dunn’s post hoc test).
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transformation. One challenge was to identify a set of optimal predic-
tors from the highly dimensional predictor space that allow precise
classification to keep computational costs low and make the model
more interpretable and as a potential starting point for possible later
transfer of SAGA to simpler technical platforms. However, even
with efficient feature reduction using RFE, the predictor space to be
explored to find the best combination of features retained after
SVM-RFE is vast. For instance, finding the best combination of 10–
15 of 30 retained predictors would require building and testing over
500 million models. Instead of a complete search of the predictor
space, we show here that Darwinian natural selection embedded in a
GA can be used efficiently for a guided search of the predictor space.
Thus, harnessing principles of population biology for complex optimi-
zation tasks is a powerful approach, as shown before for optimization
of a gene expression-based classifier using particle swarm optimiza-
tion.38 However, because of the nature of the GA, the solution repre-
sents a local optimum for each training set, and it cannot be excluded
that better solutions may exist. Initializing the GA with different
random seeds yielded slightly different lists of optimal predictors.
However, the solutions mostly differed by only one or two predictors,
indicating that the feature selection procedure was stable and the GA
found a near-optimal solution. Importantly, as more samples are
added to the dataset, improved solutions will be found, and SAGA
will continue to evolve.

We tested a SIN lentiviral vector for RAG1 and RAG2 deficiency, in
which transgene expression is controlled by a strong MND or a
weaker PGK promoter.39 The PGK promoter did not display geno-
toxic potential in IVIM or SAGA. Conversely, the MND promoter
constructs differed in their risk profile; vector SIN.LV.MND.RAG1
was determined to be safe by IVIM (0 of 9 positive assays) and
SAGA (2 of 9 samples with an NESR 1.0). In contrast, SIN.LV.MN-
D.RAG2 showed a replating phenotype in 2 of 9 IVIM assays and a
core set enrichment in 7 of 9 SAGA tests. This underscores the higher
sensitivity and predictive potential of SAGA compared with IVIM.
Based on these data, the preferred vector for potential treatment of
RAG2-SCID is PGK-RAG2 rather than MND-RAG2. Similarly,
when we tested an integrase mutant (LTR.RV.SFFV.W390A) of the
strongly transforming LTR.RV.SFFV vector with an altered and
potentially safer integration profile,40,41 SAGA detected a decrease
in the mean NES to 1.35 (compared with 2.15 of the wild-type inte-
grase vector). Thus, by providing a continuous score rather than a
digital outcome, SAGA provides a higher resolution of genotoxic risk.

Recently, Zhou et al.42 observed that murine thymocytes transduced
with mutagenic vectors show developmental arrest during T-lympho-
cyte development. The arrested progenitors overexpressed Lmo2,
Mef2c, and Prdm16. The transcription factor LMO2 was the most
clinically relevant dysregulated proto-oncogene in vector-associated
transformation in clinical trials for X-SCID and WASP. Importantly,
Lmo2 and Mef2c upregulation was detected in SAGA samples trans-
duced with mutagenic vectors (log2FC Lmo2, 0.67; p = 5 � 10�24;
log2FC Mef2c, 0.79; p = 9 � 10�15; moderated t test with BH adjust-
ment; Table S2, tab 1). Hence, SAGA detects perturbation of proto-
12 Molecular Therapy Vol. 29 No 12 December 2021
oncogenes of the lymphoid lineage, something that is beyond
the capacity of the conventional IVIM assay. In addition, more
work is needed to determine whether SAGA can detect genotoxic po-
tential caused by transformation mechanisms other than cis activa-
tion of proto-oncogenes, such as aberrant splicing,43,44 and whether
the SAGA principle can be transferred to non-hematopoietic target
tissues. In the future, single-cell RNA-seq experiments might help
to further fine-tune the SAGA signature. Our work provides insights
into the early molecular events of genotoxicity following transduction
of hematopoietic cells with integrating vectors and presents a power-
ful machine-learning approach to prospectively estimate the muta-
genic potential of integrating vector systems for gene therapy.

MATERIALS AND METHODS
Study design

The study aimed to develop a gene expression-based diagnostic clas-
sifier to distinguish potentially genotoxic gene therapy vectors from
safe vector designs. For SAGA, murine Lin� HSPCs were transduced
with vectors of interest (Table S1) at high MOIs (target, >3 vector
copies per cell) and expanded in myeloid growth-promoting medium
(Figure 1A). On day 15, RNA was extracted for microarray analysis
on Agilent Whole Mouse Genome 4x44K v.2 microarrays. The data
were analyzed using R 3.5.1 and Bioconductor 3.7. All available mi-
croarrays (n = 169) were read in, quantile normalized, and batch cor-
rected. 152 SAGA samples with known behavior in the IVIM assay
(65 transforming, 55 safe, and 32 mock samples; Supplemental mate-
rials and methods; Table S8, tabs 1 and 2) were analyzed for differen-
tial expression (Table S2), GSEA (Table S3), and development of the
SAGA classifier (Table S4). During classifier development, the jointly
preprocessed gene expression matrix of all 152 SAGA samples was
split into 10 different training (70% of samples) and test sets (30%)
using stratified resampling to ensure comparable class distributions
in test and training sets (Figure S3). Development of models
was performed on the training sets only using cross-validation to
assess model performance during feature selection and nested
cross-validation for hyperparameter tuning. The test sets were not
used at any point for feature selection or model tuning. Three
different feature selection routines were applied to the training data
to reduce the number of predictors as far as possible. First, an unsu-
pervised filter was applied to exclude probes showing little variation
in the dataset, followed by RFE, which iteratively removes the least
important predictors before applying a GA to find a near-optimal
combination of predictors retained by the preceding steps. After
feature selection, an SVM was trained on the training data reduced
to the optimal predictors and used to predict the test sets. For estima-
tion of classifier performance, a jack-knife, leave-one-batch-out pro-
cedure was employed by leaving one batch of SAGA assays
completely out of the model building process. The complete feature
selection and model training pipeline was applied to the remaining
batches. After the optimal predictors had been derived from the
training set and the classifier had been trained and fixed, the batch
that served as the independent test set was add-on normalized,
add-on batch corrected, and predicted. The procedure was repeated
for each of the 19 experimental SAGA batches, and the predictions
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results on the left-out batches were aggregated to determine perfor-
mance. The final SAGA classifier was built on the entire set of avail-
able samples (n = 152) for use as the training set in the SAGA
R package. For SAGA-GSEA, we used the optimal predictors found
by the feature selection routines on each training set for each iteration
as a gene set for GSEA. We then examined the enrichment of these
optimal predictor gene sets by performing GSEA for each test set sam-
ple against the mock controls within the left-out test sets.

Cell culture for IVIM and SAGA

Lin� cells were isolated from tibiae, femora, and iliac crests of 8- to
12-week-old female C57BL/6J animals (Janvier) using themouse line-
age cell depletion kit (Miltenyi Biotec). Cells were frozen in aliquots of
5� 105 cells in 90% fetal bovine serum (FBS) (PAA Laboratories) and
10% DMSO (Merck). After thawing, one aliquot per assay was
cultured for 48 h in StemSpan (STEMCELL Technologies) supple-
mented with 50 ng/mL rm-SCF, 100 ng/mL rh-Flt-3L, 100 ng/mL
rh-interleukin-11 (IL-11), and 20 ng/mL rm-IL-3 (PeproTech). For
transduction, 250 mL of viral supernatant (or medium for the mock
controls) was preloaded on 24-well suspension plates coated with Ret-
roNectin (TaKaRa) to reach a definedMOI. Following the preloading,
1 � 105 cells were added to the wells in a total volume of 250 mL and
incubated overnight. The preloading procedure was repeated for the
second round of transduction. For this, suspension cells from the first
transduction round were harvested, and cells still bound to RetroNec-
tin were incubated with cell dissociation buffer (Gibco), pelleted, and
resuspended in 250 mL of fresh culture medium before being added to
the suspension harvest. Subsequently, 750 mL of the cell suspension
was added to the wells preloaded for the second transduction. Cells
were incubated for 24 h; harvested as described; mixed with 1.6 mL
IMDM (Biochrom) containing 10% FBS, 1% penicillin/streptomycin
(PAN Biotech), 2 mM glutamine (Biochrom). and cytokines as
described above; and seeded onto 12-well suspension plates. On
day 4 after (the second round of) transduction, we isolated DNA
and/or RNA from 10% and used 2.5% of the cell material for flow cy-
tometry analysis of transgene expression. After feeding the cells with
1.9 mL IMDM containing supplements (IMDM+), cells were incu-
bated for 48 h on 6-well suspension plates before adding another
2.2 mL of medium. On day 8 post transduction (p.t.), samples were
diluted (�1:10) by seeding 1 � 106 cells in 4 mL of IMDM+ in 6-
well suspension plates. On days 11 and 13 p.t., cells were given
1.2 mL of IMDM+. For the IVIM replating step, cells were re-seeded
on day 15 p.t. at 100 cells/well in 96-well flat-bottom suspension
plates. Following 14 days of incubation, plates were screened micro-
scopically for growth of insertional mutants. Afterward, 20 mL of
0.25% thiazolyl blue tetrazolium bromide (Sigma) in DPBS (Pan
Biotech) was added to the wells and incubated for 2–3 h at 37�C. Cells
were lysed by addition of 100 mL of 20% SDS (Sigma). Plates were set
on a shaker overnight at room temperature before absorption was
measured at 540 nm with a SpectraMax 340PC (Molecular Devices).
After background subtraction, the highest absorption value from the
mock plate was used as a threshold to determine positive wells unless
the value was higher than the mean absorption value of immortalized
wells from a meta-analysis of 22 assays (5.61 times the expression
value of a microscopically negative well). In this case, the second-high-
est mock value was used as a cutoff. Differences in the incidence of
positive and negative assays relative to mock or LTR.RV.SFFV.
EGFP-transduced cells were analyzed by Fisher’s exact test with the
Benjamini-Hochberg multiple testing correction procedure.

SAGA sample processing and bioinformatics

A complete list of SAGA samples with a detailed description of RNA
isolation, microarray acquisition, and all bioinformatic procedures,
including de novo annotation of microarrays, raw data preprocess-
ing, t-SNE, and principal-component analysis (PCA) visualizations,
differential expression analysis, GSEA, description of the classifier
development and performance measurements, the SAGA R package,
qRT-PCR, and RNA-seq are outlined in the Supplemental materials
and methods.

Statistical analysis

The incidence of positive and negative IVIM assays in Figure 1C was
analyzed by a Fisher’s exact test with Benjamini-Hochberg correction.
The SAGA-GSEA results in Figure 6H were compared using a Krus-
kal-Wallis test with Dunn’s post hoc test. For a detailed description of
the different R package versions and statistical tests used in each bio-
informatic step of SAGA, refer to the respective Supplemental mate-
rial and methods section.

Data and materials availability

All data associated with this paper can be found in themain text or the
Supplemental materials. Raw and processed expression data from all
experiments have been deposited in the Gene Expression Omnibus
under GEO: GSE109391. The R code for the SAGA genotoxicity pre-
diction package and all other computations is available as source code
and compiled R package via https://github.com/rothemi/SAGA. For
convenience, an Amazon Machine Image running R3.6 and SAGA
is available, including test samples from two different SAGA assays.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.
1016/j.ymthe.2021.06.017.

ACKNOWLEDGMENTS
We are grateful to Prof. Christopher Baum (Charité, Berlin) for scien-
tific support and valuable discussions.We thankAnneGaly andFulvio
Mavilio (Genethon, France) for providing vector LV.WASP.WASP.
We are grateful to Prof. ChristophKlein (LMU,Munich) for providing
the CMMP.WASP plasmid. We thank David A. Williams and Chris-
tian Brendel (Boston Children’s Hospital) for vector supernatant
SIN.LV.LCR.D12G5. We thank Chris Mason (AVROBIO) for
providing the lentiviral supernatants LV2AGA, LV2GBA and
pCCL.CTNS. This work was supported by the German Research
Foundation (RO 5102/1-1, cluster of excellence REBIRTH [Exc 62/
2], and SFB738), the Federal State of Lower Saxony (research project
R2N), and the CRACK-IT initiative from the National Centre for
the Replacement, Refinement and Reduction of Animals in Research
(NC3Rs; NC/C015102/1). Results incorporated in this study received
Molecular Therapy Vol. 29 No 12 December 2021 13

https://github.com/rothemi/SAGA
https://doi.org/10.1016/j.ymthe.2021.06.017
https://doi.org/10.1016/j.ymthe.2021.06.017
http://www.moleculartherapy.org


Molecular Therapy

Please cite this article in press as: Schwarzer et al., Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine
learning, Molecular Therapy (2021), https://doi.org/10.1016/j.ymthe.2021.06.017
funding from the European Union Horizon 2020 Research and Inno-
vation Program (755170) and the FP7 Project CELL-PID (261387). A.
Schwarzer is a fellow of theClinician-Scientist Program “YoungAcad-
emy” of HannoverMedical School and received funding from the Else
Kröner-Fresenius-Stiftung (2017_A74) and Joachim Herz Stiftung.
A.J.T. received funding from The Wellcome Trust (090233/Z/09/Z).

AUTHOR CONTRIBUTIONS
M.R., V.D., B.W., A.L.B., and O.D.-B. performed the experiments. A.
Schwarzer, S.R.T., and M.R. designed and analyzed experiments,
performed bioinformatic analyses, and wrote the manuscript.
S.R.T. programmed the SAGA R package. A.J.T., R.G., and H.B.G.
provided materials and revised the manuscript. A. Selich, J.W.S.,
F.J.T.S., U.M., M.M., and T.C.H. discussed data, helped to adjust
experimental designs, and revised the manuscript. A. Schwarzer su-
pervised the study and revised the manuscript.

DECLARATION OF INTERESTS
A patent application has been filed under registration number
EP3394286A1 (Analytical process for genotoxicity assessment).

REFERENCES
1. Morgan, R.A., Gray, D., Lomova, A., and Kohn, D.B. (2017). Hematopoietic Stem Cell

Gene Therapy: Progress and Lessons Learned. Cell Stem Cell 21, 574–590.

2. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N.,
McIntyre, E., Radford, I., Villeval, J.-L., Fraser, C.C., Cavazzana-Calvo, M., and
Fischer, A. (2003). A serious adverse event after successful gene therapy for X-linked
severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256.

3. Stein, S., Ott, M.G., Schultze-Strasser, S., Jauch, A., Burwinkel, B., Kinner, A.,
Schmidt, M., Krämer, A., Schwäble, J., Glimm, H., et al. (2010). Genomic instability
and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene ther-
apy for chronic granulomatous disease. Nat. Med. 16, 198–204.

4. Braun, C.J., Boztug, K., Paruzynski, A., Witzel, M., Schwarzer, A., Rothe, M., Modlich,
U., Beier, R., Gohring, G., Steinemann, D., et al. (2014). Gene Therapy for Wiskott-
Aldrich Syndrome–Long-Term Efficacy and Genotoxicity. Sci. Transl. Med. 6,
227ra33.

5. Howe, S.J., Mansour, M.R., Schwarzwaelder, K., Bartholomae, C., Hubank, M.,
Kempski, H., Brugman, M.H., Pike-Overzet, K., Chatters, S.J., de Ridder, D., et al.
(2008). Insertional mutagenesis combined with acquired somatic mutations causes
leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118,
3143–3150.

6. Schambach, A., Zychlinski, D., Ehrnstroem, B., and Baum, C. (2013). Biosafety fea-
tures of lentiviral vectors. Hum. Gene Ther. 24, 132–142.

7. Baum, C., Schambach, A., Bohne, J., and Galla, M. (2006). Retrovirus vectors: toward
the plentivirus? Mol. Ther. 13, 1050–1063.

8. Rothe, M., Schambach, A., and Biasco, L. (2014). Safety of gene therapy: new insights
to a puzzling case. Curr. Gene Ther. 14, 429–436.

9. Cesana, D., Ranzani, M., Volpin, M., Bartholomae, C., Duros, C., Artus, A., Merella,
S., Benedicenti, F., Sergi Sergi, L., Sanvito, F., et al. (2014). Uncovering and dissecting
the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol. Ther. 22, 774–785.

10. Gonin, P., Buchholz, C.J., Pallardy, M., and Mezzina, M. (2005). Gene therapy bio-
safety: scientific and regulatory issues. Gene Ther. 12 (Suppl 1 ), S146–S152.

11. Modlich, U., Bohne, J., Schmidt, M., von Kalle, C., Knöss, S., Schambach, A., and
Baum, C. (2006). Cell-culture assays reveal the importance of retroviral vector design
for insertional genotoxicity. Blood 108, 2545–2553.

12. Punwani, D., Kawahara, M., Yu, J., Sanford, U., Roy, S., Patel, K., Carbonaro, D.A.,
Karlen, A.D., Khan, S., Cornetta, K., et al. (2017). Lentivirus Mediated Correction
of Artemis-Deficient Severe Combined Immunodeficiency. Hum. Gene Ther. 28,
112–124.
14 Molecular Therapy Vol. 29 No 12 December 2021
13. Huang, J., Khan, A., Au, B.C., Barber, D.L., López-Vásquez, L., Prokopishyn, N.L.,
Boutin, M., Rothe, M., Rip, J.W., Abaoui, M., et al. (2017). Lentivector Iterations
and Pre-Clinical Scale-Up/Toxicity Testing: Targeting Mobilized CD34+ Cells for
Correction of Fabry Disease. Mol. Ther. Methods Clin. Dev. 5, 241–258.

14. Wolstein, O., Boyd,M., Millington,M., Impey, H., Boyer, J., Howe, A., Delebecque, F.,
Cornetta, K., Rothe, M., Baum, C., et al. (2014). Preclinical safety and efficacy of an
anti-HIV-1 lentiviral vector containing a short hairpin RNA to CCR5 and the C46
fusion inhibitor. Mol. Ther. Methods Clin. Dev. 1, 11–14.

15. Negre, O., Bartholomae, C., Beuzard, Y., Cavazzana, M., Christiansen, L., Courne, C.,
Deichmann, A., Denaro, M., de Dreuzy, E., Finer, M., et al. (2015). Preclinical eval-
uation of efficacy and safety of an improved lentiviral vector for the treatment of
b-thalassemia and sickle cell disease. Curr. Gene Ther. 15, 64–81.

16. Krivtsov, A.V., Twomey, D., Feng, Z., Stubbs, M.C., Wang, Y., Faber, J., Levine, J.E.,
Wang, J., Hahn, W.C., Gilliland, D.G., et al. (2006). Transformation from committed
progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822.

17. Eppert, K., Takenaka, K., Lechman, E.R., Waldron, L., Nilsson, B., van Galen, P.,
Metzeler, K.H., Poeppl, A., Ling, V., Beyene, J., et al. (2011). Stem cell gene expression
programs influence clinical outcome in human leukemia. Nat. Med. 17, 1086–1093.

18. Ng, S.W.K., Mitchell, A., Kennedy, J.A., Chen, W.C., McLeod, J., Ibrahimova, N.,
Arruda, A., Popescu, A., Gupta, V., Schimmer, A.D., et al. (2016). A 17-gene stemness
score for rapid determination of risk in acute leukaemia. Nature 540, 433–437.

19. Boztug, K., Schmidt, M., Schwarzer, A., Banerjee, P.P., Díez, I.A., Dewey, R.A., Böhm,
M., Nowrouzi, A., Ball, C.R., Glimm, H., et al. (2010). Stem-cell gene therapy for the
Wiskott-Aldrich syndrome. N. Engl. J. Med. 363, 1918–1927.

20. van der Maaten, L., and Hinton, G. (2008). Visualizing Data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

21. Kustikova, O.S., Schwarzer, A., Stahlhut, M., Brugman, M.H., Neumann, T., Yang,
M., Li, Z., Schambach, A., Heinz, N., Gerdes, S., et al. (2013). Activation of Evi1 in-
hibits cell cycle progression and differentiation of hematopoietic progenitor cells.
Leukemia 27, 1127–1138.

22. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., andMesirov, J.P. (2005). Gene
set enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550.

23. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation.
Cell 144, 646–674.

24. Goh, W.W.B., Wang, W., and Wong, L. (2017). Why Batch Effects Matter in Omics
Data, and How to Avoid Them. Trends Biotechnol. 35, 498–507.

25. Gautier, L., Cope, L., Bolstad, B.M., and Irizarry, R.A. (2004). affy–analysis of
Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315.

26. Johnson, W.E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics 8, 118–127.

27. Hornung, R., Causeur, D., Bernau, C., and Boulesteix, A.-L. (2017). Improving cross-
study prediction through addon batch effect adjustment or addon normalization.
Bioinformatics 33, 397–404.

28. Kuhn, M., and Johnson, K. (2013). Applied Predictive Modeling (Springer), p. 67.

29. Kuhn, M., and Johnson, K. (2019). Feature Engineering and Selection: A Practical
Approach for Predictive Models, First Edition (Chapman and Hall/CRC).

30. Guyon, I., Weston, J., and Barnhill, S. (2002). Gene Selection for Cancer Classification
using Support Vector Machines. Mach. Learn. 46, 389–422.

31. Chatterjee, S., Laudato, M., and Lynch, L.A. (1996). Genetic algorithms and their sta-
tistical applications: an introduction. Comput. Stat. Data Anal. 22, 633–651.

32. Castaldi, P.J., Dahabreh, I.J., and Ioannidis, J.P.A. (2011). An empirical assessment of
validation practices for molecular classifiers. Brief. Bioinform. 12, 189–202.

33. Hornung, R., Boulesteix, A.L., and Causeur, D. (2016). Combining location-and-scale
batch effect adjustment with data cleaning by latent factor adjustment. BMC
Bioinformatics 17, 27.

34. Yoshida, H., Lareau, C.A., Ramirez, R.N., Rose, S.A., Maier, B., Wroblewska, A.,
Desland, F., Chudnovskiy, A., Mortha, A., Dominguez, C., et al.; Immunological
Genome Project (2019). The cis-Regulatory Atlas of the Mouse Immune System.
Cell 176, 897–912.e20.

http://refhub.elsevier.com/S1525-0016(21)00323-3/sref1
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref1
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref2
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref2
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref2
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref2
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref3
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref3
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref3
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref3
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref4
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref4
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref4
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref4
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref5
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref5
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref5
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref5
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref5
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref6
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref6
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref7
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref7
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref8
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref8
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref9
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref9
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref9
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref10
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref10
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref10
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref11
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref11
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref11
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref12
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref12
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref12
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref12
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref13
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref13
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref13
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref13
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref13
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref14
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref14
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref14
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref14
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref15
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref15
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref15
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref15
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref16
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref16
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref16
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref17
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref17
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref17
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref18
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref18
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref18
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref19
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref19
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref19
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref20
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref20
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref21
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref21
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref21
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref21
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref22
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref22
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref22
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref22
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref23
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref23
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref24
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref24
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref25
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref25
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref26
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref26
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref27
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref27
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref27
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref28
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref29
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref29
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref30
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref30
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref31
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref31
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref32
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref32
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref33
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref33
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref33
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref34
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref34
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref34
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref34


www.moleculartherapy.org

Please cite this article in press as: Schwarzer et al., Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine
learning, Molecular Therapy (2021), https://doi.org/10.1016/j.ymthe.2021.06.017
35. Stavropoulou, V., Kaspar, S., Brault, L., Sanders, M.A., Juge, S., Morettini, S., Tzankov,
A., Iacovino, M., Lau, I.-J., Milne, T.A., et al. (2016). MLL-AF9 Expression in
Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related
Genes Linked to Poor Outcome. Cancer Cell 30, 43–58.

36. Cicalese, M.P., Ferrua, F., Castagnaro, L., Pajno, R., Barzaghi, F., Giannelli, S.,
Dionisio, F., Brigida, I., Bonopane, M., Casiraghi, M., et al. (2016). Update on the
safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine
deaminase deficiency. Blood 128, 45–54.

37. (2020). Strimvelis: risk of lymphoid T-cell leukaemia? React. Wkly. 1830, 6.

38. Best, M.G., Sol, N., In ’t Veld, S.G.J.G., Vancura, A., Muller, M., Niemeijer, A.N.,
Fejes, A.V., Tjon Kon Fat, L.A., Huis In ’t Veld, A.E., Leurs, C., et al. (2017).
Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using
Tumor-Educated Platelets. Cancer Cell 32, 238–252.e9.

39. Garcia-Perez, L., van Eggermond, M., van Roon, L., Vloemans, S.A., Cordes, M.,
Schambach, A., Rothe, M., Berghuis, D., Lagresle-Peyrou, C., Cavazzana, M., et al.
(2020). Successful Preclinical Development of Gene Therapy for Recombinase-
Activating Gene-1-Deficient SCID. Mol. Ther. Methods Clin. Dev. 17, 666–682.
40. El Ashkar, S., De Rijck, J., Demeulemeester, J., Vets, S., Madlala, P., Cermakova, K.,
Debyser, Z., and Gijsbers, R. (2014). BET-independent MLV-based Vectors Target
Away From Promoters and Regulatory Elements. Mol. Ther. Nucleic Acids 3, e179.

41. El Ashkar, S., Van Looveren, D., Schenk, F., Vranckx, L.S., Demeulemeester, J., De
Rijck, J., Debyser, Z., Modlich, U., and Gijsbers, R. (2017). Engineering Next-
Generation BET-Independent MLV Vectors for Safer Gene Therapy. Mol. Ther.
Nucleic Acids 7, 231–245.

42. Zhou, S., Fatima, S., Ma, Z., Wang, Y.-D., Lu, T., Janke, L.J., Du, Y., and Sorrentino,
B.P. (2016). Evaluating the Safety of Retroviral Vectors Based on Insertional
Oncogene Activation and Blocked Differentiation in Cultured Thymocytes. Mol.
Ther. 24, 1090–1099.

43. Scholz, S., Fronza, R., Bartholomae, C., Cesana, D., Montini, E., Kalle, C.V., Gil-
Farina, I., and Schmidt, M. (2017). Lentiviral Vector Promoter is Decisive for
Aberrant Transcript Formation. Hum. Gene Ther. 28, 875–885.

44. Knight, S., Bokhoven, M., Collins, M., and Takeuchi, Y. (2010). Effect of the internal
promoter on insertional gene activation by lentiviral vectors with an intact HIV long
terminal repeat. J. Virol. 84, 4856–4859.
Molecular Therapy Vol. 29 No 12 December 2021 15

http://refhub.elsevier.com/S1525-0016(21)00323-3/sref35
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref35
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref35
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref35
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref36
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref36
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref36
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref36
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref37
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref38
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref38
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref38
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref38
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref39
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref39
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref39
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref39
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref40
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref40
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref40
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref41
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref41
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref41
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref41
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref42
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref42
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref42
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref42
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref43
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref43
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref43
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref44
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref44
http://refhub.elsevier.com/S1525-0016(21)00323-3/sref44
http://www.moleculartherapy.org

	Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning
	Introduction
	Results
	Cell culture-based assays for in vitro genotoxicity prediction
	Transforming vectors impose an oncogenic gene expression signature
	Dataset preparation for classifier development
	Genetic algorithm-enhanced feature selection for prediction of genotoxicity
	Assessing the predictive performance of SAGA
	Construction of the final SAGA model
	SAGA-GSEA

	Discussion
	Materials and methods
	Study design
	Cell culture for IVIM and SAGA
	SAGA sample processing and bioinformatics
	Statistical analysis
	Data and materials availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


