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Abstract—Ultra-reliable low-latency communication (URLLC)
is becoming an important research topic since it can boost
mission-critical applications to serve 5G and its beyond. Tradi-
tionally, communication latency is determined by multiple factors
such as transmission distance, signal duration and signal pro-
cessing complexity. Among them, receiver side signal processing
is the most critical factor. Firstly, a traditional 5G receiver will
rely on independent signal processing blocks to decode a message,
which is not optimal and would introduce unnecessary processing
delay. Secondly, unsuccessful signal decoding will trigger re-
transmission and extra latency will be caused. This work
proposes a waveform fingerprinting (WF) framework, which can
easily identify users and resource assignment information based
on signal patterns. More importantly, the WF scheme removes
the block based 5G signal processing mechanism leading to a
faster signal identification. A deep learning based intelligent
identifier is integrated to assist the faster signal identification.
Simulation results reveal that the proposed WF scheme enables
higher reliability than the traditional 5G block based processing
especially when noise power is higher than signal power. In
addition, the processing latency of the WF scheme is two orders
of magnitude shorter than the traditional 5G block based scheme.

Index Terms—URLLC, waveform, fingerprinting, deep learn-
ing, signal classification, SEFDM, non-orthogonal.

I. INTRODUCTION

In 5G, ultra-reliable low-latency communication (URLLC)
is a critical technique for time-sensitive applications [1] such
as autonomous driving, industry 4.0, eHealth and financial
services. However, the design of URLLC might be the most
challenging [2] since it has to meet both ultra-reliable and
low-latency, which are mutually contradictory requirements.

The time and frequency resources allocated to a user equip-
ment (UE) is decided by downlink control information (DCI)
in physical downlink control channel (PDCCH) [3]. To let a
UE accurately identify the correct resource assignment, the
network typically allocates a unique radio network temporary
identifier (RNTI) to each UE when the UE initially registers to
the network. To avoid extra controlling overhead, the RNTI
is not sent as an independent message but is used to mask
cyclic redundancy check (CRC) messages in 5G. The mask
operation is regarded as a bit-by-bit scrambling operation on
the CRC message using the RNTI sequence. To correctly
recover the control information from DCI, a UE will use its
RNTI to blindly decode a set of pre-defined candidate CRC
packets. Once the CRC is unmasked and passes CRC check,
the correct DCI messages will be obtained with the resource
assignment information. However, the failure of CRC check

could happen due to incorrect RNTI blind CRC decoding
or unexpected signal transmission errors. In this case, the
receiver will discard the data and ask for re-transmission.
Therefore, the uncertainty of traditional DCI decoding could
cause longer and random processing latency at the receiver.

The aim of this work is to simplify the receiver side DCI
decoding by allocating intelligence to each UE device. A
successful communication is achieved on the basis of accurate
unmasking of CRC and the successful CRC check. One step
failure will result in incorrect resource assignment informa-
tion extraction and unexpected re-transmission. To avoid the
aforementioned error-sensitive signal processing, this work
applies an intelligent UE side processing strategy for user
resource assignment identification using intelligent waveform
fingerprinting. The basic idea is to apply a non-orthogonal
signal waveform termed spectrally efficient frequency division
multiplexing (SEFDM) [4], which can adaptively compress
spectral bandwidth while maintaining the same data rate.
The spectral compression, defined by bandwidth compression
factor (BCF), could be used as a unique label for user identity.
To accurately identify each signal pattern, a deep learning
framework will be used in this work. Therefore, an intelligent
waveform fingerprinting framework will be designed in this
work to simplify the traditional DCI decoding and will lead
to faster URLLC.

II. LATENCY MODEL IN 5G
In 4G long term evolution (LTE), a basic time resource

assignment is fixed to a duration of 1 ms, which represents one
transmission time interval (TTI) or one subframe. However,
5G is more flexible and a shorter TTI, noted as a mini-slot [5],
is applicable. A conventional time slot includes 14 orthogonal
frequency division multiplexing (OFDM) symbols while the
mini-slot could have 2, 4, or 7 OFDM symbols. In addition,
due to the flexible numerology design for 5G, the sub-carrier
spacing is not limited to the 15 kHz in 4G. There are more
options such as 30 kHz, 60 kHz and 120 kHz. In this case,
one TTI in 5G, including 14 OFDM symbols, ranges from
0.125 ms to 1 ms. Therefore, to have a low-latency real-time
communication, the overall signal processing time should be
less than 0.125 ms.

End-to-end latency is commonly investigated, which is the
one-way signal transmission duration from a base station
(BS) to a UE. However, practical communication systems
have transmission errors and re-transmission of a signal is



Fig. 1. Round-trip latency model for 5G.

unavoidable. Therefore, round-trip latency is more realistic
for practical system latency evaluation. The theory behind a
round-trip communication is based on hybrid automatic repeat
request (HARQ) [6]. When a receiver decodes successfully a
message via passing CRC check, an acknowledgement (ACK)
will be sent back to a base station. Otherwise, a negative-
acknowledgement (NACK) will be sent to the base station for
re-transmission.

A general round-trip communication framework [3], [7]
is illustrated in Fig. 1. TBS,tx indicates the time duration
required to process data from higher communication lay-
ers (HCL) and lower communication layers (LCL). TBS,DL

represents the queueing time for a frame integrating in an
available 5G downlink (DL) slot. TDL,data represents the data
transmission duration, which is decided by the number of
OFDM symbols and sub-carrier spacing. A smaller number
of OFDM symbols will have a shorter TDL,data and thus low
latency. In addition, a larger sub-carrier spacing will lead to
a shorter time duration for one OFDM symbol. TDL,channel

indicates the time duration of a signal transmitted over the air.
The longer transmission distance between a base station and
a UE will cause a longer latency. TUE,rx is the processing
time duration between signal reception and the end of signal
decoding. This stage contributes a lot to the entire communi-
cation latency since signal compensation, demodulation and
decoding are all within this stage. The processing of this stage
is very important since the decoding result will determine
whether a re-transmission is needed or not. TUE,tx is the
duration for ACK/NACK generation. TUE,UL is the queueing
time for the ACK/NACK frame integrating in an available
5G uplink (UL) slot. TUL,data is the time interval of the UL
frame, which could occupy a few number of OFDM symbols
period. TUL,channel indicates the time duration of the UL
ACK/NACK packet transmitted over the air. TBS,rx indicates
the time interval to decode the ACK/NACK packet.

Therefore, the overall round-trip latency [3] for a commu-
nication is computed as

Ttotal = T1 +m×THARQ, (1)

where m indicates the number of re-transmission. Each term
in (1) is defined as

T1 = TBS,tx + TBS,DL + TDL,data + TDL,channel + TUE,rx

T2 = TUE,tx + TUE,UL + TUL,data + TUL,channel + TBS,rx

THARQ = T1 + T2.
(2)

As mentioned by [1], over-the-air transmission time dura-
tions TDL,channel and TUL,channel have limited impacts on
the entire end-to-end latency. The time duration TDL,data,
TUL,data for each frame has been optimized from 1 ms to
0.125 ms, which is the key improvement from 4G to 5G in
terms of URLLC. However, the time delays from queueing
TBS,DL, TUE,UL and UE signal processing TUE,rx are key
bottlenecks to further speed up URLLC.

Among the limitation factors, the signal processing time
duration TUE,rx at a UE is the key factor causing longer
latency since a unsuccessful message decoding will cause re-
transmission as mathematically described in (1). Therefore,
to quickly and accurately identify users and extract resource
assignment information from PDCCH packets is of great
importance and will be the motivation of this work.

III. WAVEFORM FINGERPRINTING FOR FASTER URLLC

To identify assigned resource blocks for a unique user, the
DCI has to be extracted first using the UE RNTI number. One
way to simplify this process is to modify signal characteristics
for assigned resources with unique and distinguishable fea-
tures. This work employs the non-orthogonal signal waveform,
SEFDM [4], which maintains the same data rate (i.e. same
frame duration) compared to 5G OFDM, but compresses sub-
carrier spacing. In this case, the occupied spectral bandwidth
will be adaptive based on the sub-carrier spacing compression
ratio. Each compression ratio will be used as an identifier
for a specific user and the associated signal band will be
identified and allocated to that user. This automatic signal
identification will simplify the UE side signal processing and
the identification process is robust to transmission errors. It
indicates that even the transmission has errors and cannot pass
CRC check, the user and resource identification still works.
This can avoid redundant signal re-transmission when a signal
cannot pass CRC check due to transmission errors or failed
RNTI unmasking.

A. Principle of Waveform

The basic principle of the non-orthogonal waveform is
shown in Fig. 2. It should be noted that each impulse rep-
resents a sub-carrier and all the cases in Fig. 2 have the same
spectral bandwidth per sub-carrier. The sub-carrier spacing
for OFDM in Fig. 2(a) is labelled as ∆f . Due to the spectral
compression advantage, the sub-carrier spacing for SEFDM in
Fig. 2(b), denoted as ∆f1, is smaller than ∆f . The bandwidth
compression factor, termed α1, is allocated to the SEFDM
signal in Fig. 2(b). The value of α1 is fractional and α1 < 1.
Further spectral bandwidth compressions can be achieved in
Fig. 2(c)(d) with configurations as ∆f3 < ∆f2 < ∆f1 < ∆f
and α3 < α2 < α1. Based on the examples in Fig. 2, four
users could be supported via using the four different signals.
The mathematical expression for a SEFDM signal is defined
as

Xk =
1√
Q

N−1∑
n=0

sn exp

(
j2πnkα

Q

)
, (3)



Fig. 2. Principle of SEFDM signal waveform and the illustration for
its feasibility as user identity. Each impulse represents a sub-carrier
and (a)(b)(c)(d) have the same bandwidth per sub-carrier but with
different sub-carrier spacing ∆f3 < ∆f2 < ∆f1 < ∆f . In this
example, (a)(b)(c)(d) can represent four different users.

where the parameters are defined as
• Xk, the time sample with the index of k = 0, 1, ..., Q−1.
• Q = ρN , the number of time samples.
• N , the number of sub-carriers.
• ρ, the oversampling factor.
• 1√

Q
, the scaling factor.

• sn, the nth single-carrier symbol in one SEFDM symbol.
• α = ∆f ·T , the bandwidth compression factor where ∆f

is the sub-carrier spacing and T is the time duration of
one SEFDM symbol.

B. Traditional 5G PDCCH Decoding

The user identity information RNTI and its corresponding
resource assignment details are included in PDCCH. A gen-
eral PDCCH signal generation and reception architecture is
presented in Fig. 3.

At the transmitter, the control information is encoded by
a CRC encoder, which will add CRC redundancy bits at
the end. To guarantee that the control message can be sent
to a specific UE, the user identity number RNTI should be
included. The efficient way to add the RNTI number is to use
it to scramble the CRC redundancy bits. In this case, only
the right UE, with the right RNTI number, can descramble
the message and pass the CRC check. After the scrambling,
Polar code is used to encode the control message to mitigate
potential wireless channel effects. To achieve a specific coding
rate, rate matching is applied. The binary bit sequence is
then QPSK mapped to obtain complex symbols. At the end,
the OFDM modulation block is applied to modulate each
symbol on allocated sub-carriers. The multi-carrier OFDM
signal will be transmitted over the air with distortions from
frequency selective channels and additive white Gaussian
noise (AWGN).

Fig. 3. Block diagram of PDCCH signal generation and reception.

Fig. 4. Receiver side signal processing for user identity and resource
assignment information. (a) Traditional PDCCH decoding. (b) Pro-
posed intelligent signal identifier based on waveform fingerprinting.

At the traditional 5G receiver, as illustrated in Fig. 4(a),
timing offset has to be compensated before an accurate
message decoding. The compensated multi-carrier signal will
go through OFDM demodulation and output single-carrier
symbols. Channel estimation is operated in frequency-domain
and the estimated channel coefficients are used to equalize
the single-carrier symbols using a one-tap equalizer. The
equalized PDCCH symbols will go through rate recovery
before Polar decoding. Then the descrambling is operated
using UE’s RNTI number. The CRC redundancy bits of a
target PDCCH packet should be correctly unmasked using the
UE’s RNTI. If the unmasked message can pass CRC check,
the exact resource assignment details will be extracted.

However, the receiver side process in the traditional 5G
system has the following drawbacks:

• RNTI error. Since a UE has no way to immediately
identify the message that is sent to him, therefore the
UE will blindly attempt a set of PDCCH packets and
using its RNTI to find the right packet. It is inferred that
this blind decoding delay is not deterministic. The best
case is that the first attempt is successful while the worst
case is no solution in the set of candidates.

• Transmission error. It is difficult to judge whether the
CRC check failure comes from transmission errors or
incorrect RTNI attempts. The failure of CRC check
could be caused by transmission errors in non-stationary
wireless environments even using a correct UE’s RNTI



Fig. 5. Deep learning CNN signal identifier architecture.

number. In this case, the UE could discard the message
that belongs to it and check other candidate packets. This
will cause additional and random time delay. The worst
case is that all the attempts are unsuccessful either due
to transmission errors or incorrect RNTI unmasking. Re-
transmission will be requested and will cause round-trip
time delay.

• Signal processing error. The block based receiver ar-
chitecture cannot guarantee reliable signal processing.
Timing compensation, channel estimation and channel
equalization might not be perfect. This will cause signal
processing errors at the receiver, which will cause the
failure of CRC check as well.

• Coding redundancy. The traditional downlink control
message decoding requires Polar coding to guarantee the
correct decoding of DCI information. Therefore, extra
coding redundancy will be required leading to reduced
spectral efficiency.

To reduce the re-transmission request and cut signal pro-
cessing delay at a UE, intelligent solutions are possible such
as the deep learning identifier shown in Fig. 4(b), which can
automatically learn signal features and identify raw signals
from waveform fingerprints before any receiver side signal
processing.

C. Proposed Intelligent Signal Identifier

A specific UE-signal mapping scheme is pre-defined as
shown in Fig. 5. Each UE is uniquely correlated with a signal
pattern. An intelligent signal identifier will identify the value
of α for each incoming signal. Then the α labelled UE will
be identified with its allocated resources.

Intelligent signal identification has been successfully ap-
plied and implemented for single-carrier modulation classi-
fication [8] and later applied in multi-carrier signal classifi-
cation [9]. The commonly used intelligent solution for signal
classification is deep learning since it can automatically extract
signal hidden features, in which unique features are applied to

identify each signal. One representative deep learning method
is convolutional neural network (CNN), which employs mul-
tiple convolutional layers for automatic feature extraction and
its feature extraction principle is mathematically explained
below

L0 = f(Y ;φ0, φ1, ..., φK−1)

L1 = f(L0;ω0, ω1, ..., ωK−1)

...
LΩ−1 = f(LΩ−2;σ0, σ1, ..., σK−1),

(4)

where L0 indicates the feature maps after the 1st convolu-
tional layer operations, f(· ) indicates a convolution opera-
tion, Y is the received signal immediately after the chan-
nel, (φ0, φ1, ..., φK−1) represents K feature filters at the 1st
convolutional layer. There will be K convolution operations
between Y and φ. Therefore, L0 includes K feature maps.
The similar operations will be repeated for the following
convolutional layers until all the Ω convolutional layers are
went through. The final feature maps are noted as LΩ−1,
which will be used by a classification function as below

Ccnn = ξ(LΩ−1;W ), (5)

where ξ(· ) represents classification function and W indicates
full connection functions.

It is noted that the input to the CNN feature learning process
(4) is the original signal Y , which is not pre-processed by
any compensation algorithms. The CNN will automatically
learn hidden features that are robust to channel and hardware
impairments.

The specific CNN classifier architecture designed for this
work is demonstrated in Fig. 5 where multiple neural network
(NN) sub-blocks are packed to realize a deep neural network
structure. This work will configure multi-carrier signals with
1024 sub-carriers. Taking into account QPSK symbols, real



and imaginary part of a symbol will lead to a 2×1024 input
symbol matrix.

For the first six NN sub-blocks, four sub-layers are
included, namely convolutional layer, normalization layer,
ReLU layer and MaxPool layer. Each layer has its unique
function. The convolutional layer works as a filter. This work
designs K=64 feature filers and after the convolutional layer
there will be 64 independent feature maps. Therefore, the
dimension of the first NN sub-block becomes 2×1024×64.
Each feature map will contain useful hidden feature informa-
tion. The convolutional layer output will be normalized and
then fed to the ReLU activation function. The MaxPool layer
is used to down sample the ReLU layer output and reserve
extreme features. The dimension of each NN sub-block will
be decreased and it will be simplified into 2×16×64 at the
last NN sub-block. The same sub-layer structure will be
followed for other NN sub-blocks except the last NN sub-
block, in which an AveragePool layer is applied instead of
the MaxPool layer. The reason is to get smooth features
here instead of extreme features. Once the hidden feature is
extracted, a full connection layer and a SoftMax layer will
work together for signal classification. The cross-entropy loss
between predicted signal classes and true signal classes will be
minimized by the stochastic gradient descent with momentum
(SGDM) optimizer. After pre-defined training iterations with
backpropagation operations, the optimal CNN classifier will
be obtained.

IV. SIMULATION SETUP AND RESULTS

A. Simulation Environment

To have a convincing simulation result, this work follows
the 5G downlink control processing model in Matlab [10]. The
framework applies a blind RNTI search decoding mechanism
since a UE has no information of the control channel archi-
tecture. It will pre-define a set of PDCCH search candidates
and a UE will use its own RNTI to find and decode the right
candidate. Once the decoded message passes CRC check with
returned zero checksum, the UE successfully finds its control
information packet and assigned resources.

In this simulation, PDCCH aggregation level is configured
to be one, which indicates the number of control channel ele-
ment (CCE) is one. According to the 5G DL framework [10],
there are four possible sub-carrier mapping schemes at the first
aggregation level. Here we consider the forth option and the
total number of available bits will be 108 bits. The inverse
fast Fourier transform (IFFT) size is 1024 and an OFDM
signal will have 1024 time samples. This simulation follows
the TDL-A channel model with a 30 ns delay spread profile. In
addition, this work considers a single-antenna communication
scenario. For the traditional 5G downlink control channel, to
decode Polar coded messages, a successive-cancellation list
decoder is applied at the receiver with the length of decoding
list of 8. At UE side, the receiver has no information of
the sub-carrier packing scheme. Therefore, a set of search
candidates are pre-defined. In this simulation, we consider
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Fig. 6. Accuracy comparison for reliability evaluation.

a small candidate set with aggregation levels of 1, 2, 4,
with the number of candidates being 4, 2, 1, respectively.
Fundamentally, the UE will need to search all the candidates
per aggregation level and find the correct one with zero CRC
result. However, the search could be early terminated when
the right solution is found during the search. This is the reason
why the blind search causes extra and random time latency.

B. Training Dataset Collection

To have a fair comparison with the traditional 5G receiver
DCI decoding, the CNN training dataset will follow the 5G
signal standard. As shown in Fig. 3, either the traditional 5G
DCI decoding or the proposed intelligent signal classifier will
be within the ‘RX Processing’ block. Therefore, both schemes
follow the 5G signal format. The intelligent CNN classifier has
to collect training data first and train a working model offline.
Once a model is obtained, there will be no additional training
anymore and the model can be reused for future purposes.

At the training stage, 1024 time samples will be captured
for each received symbol even without perfect timing syn-
chronization. As noted that the fourth sub-carrier packing
scheme at the first PDCCH aggregation level is considered,
therefore this work will consider four signal patterns with the
following configurations: OFDM, SEFDM (α=0.9), SEFDM
(α=0.8), SEFDM (α=0.7). The training stage will collect
2,000 symbols for each signal class and there will be overall
8,000 SEFDM/OFDM symbols for training a CNN classifier.

C. Simulation Results

1) Reliability: Unlike the traditional bit error rate (BER)
metric measurement for reliability, this work will use identifi-
cation accuracy as the metric. Accuracy for traditional 5G DCI
decoding indicates the probability of successful DCI decoding
with zero CRC checksum. On the other hand, accuracy for
our proposed waveform fingerprinting scheme is the ratio of
correctly recognized symbols to total evaluated symbols.

In Fig. 6, it is clear that both schemes can achieve 100% ac-
curacy when signal power is large sufficient. The accuracy will
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drop significantly when noise power dominates especially for
Es/N0 below zero. In the low Es/N0 regime, the WF scheme
still has chances to successfully decode messages while the
traditional DCI decoding will always fail. It reveals that the
WF scheme has higher reliability than the traditional DCI
decoding especially when noise power dominates. A higher
accuracy rate indicates a lower probability of re-transmission,
which will therefore shorten communication latency.

2) Latency: This work measures processing latency in
Matlab using an off-the-shelf CPU (Intel(R) Core(TM) i7-
6700 CPU @3.4GHz). For the traditional UE processing, a
number of operations are needed as shown in Fig. 4(a). For our
proposed waveform fingerprinting framework, a single pro-
cessing block, intelligent signal identifier, is required in Fig.
4(b). Fig. 7 demonstrates that the traditional DCI decoding
scheme has a longer latency than the proposed WF scheme.
This is expected since multiple signal processing modules are
needed for DCI decoding in Fig. 4(a) while the WF scheme
in Fig. 4(b) only needs one processing module. In addition, a
UE has to go through a set of pre-defined PDCCH candidates
and find the one that can pass the CRC check. However,
the WF framework will automatically evaluate the received
signal features and classify it to a proper user. Moreover, an
important discovery is the dynamic operation latency by the
DCI decoding. In Fig. 7, it is obvious that the DCI decoding
requires longer time at low Es/N0 regime. This is due to
the high noise power such that all the candidates have to be
searched. When signal power is increased, the CRC check will
be successful at the correct candidate and early termination
will avoid redundant search.

This work applies hardware CPU to measure operation
latency, which will not be scientifically accurate compared
to 5G transceiver hardware. To have a fair comparison for
the two schemes using CPU, this work ensures the same
simulation operation environment for both cases. Based on
the time profile from Matlab, the latency for the traditional
DCI decoding is roughly 0.6 s at low Es/N0 regime and 0.3 s

at high Es/N0 regime while the latency is reduced to 0.003 s
for the WF scheme. The WF latency is more than two orders
of magnitude lower than the DCI decoding latency.

V. CONCLUSION

This work proposed a new 5G receiver side control channel
processing scheme, termed waveform fingerprinting (WF),
which can enable faster URLLC. It can assist a UE to identify
the right PDCCH packet and assign resources in a faster and
simpler way. A non-orthogonal signal waveform is integrated
in a 5G framework and the waveform unique pattern can be
used as the identifier for each UE. By adaptively changing
spectral characteristics, multiple non-orthogonal waveform
patterns are obtained and therefore multiple UEs can be
supported based on the dynamic waveform tuning. Simulation
is designed based on an available 5G framework. Firstly,
results reveal that the WF scheme achieves higher reliability
than the traditional 5G receiver signal processing especially
when signal is greatly distorted by noise. Secondly, results
show that the WF scheme will use a shorter time to process
incoming packets. The processing latency of the WF scheme is
more than two orders of magnitude shorter than the traditional
5G signal processing.
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