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ABSTRACT

In this Perspective article, we present recent developments on interaction effects on the carrier transport properties of one-dimensional (1D)
semiconductor quantum wires fabricated using the GaAs/AlGaAs system, particularly the emergence of the long predicted fractional quantiza-
tion of conductance in the absence of a magnetic field. Over three decades ago, it was shown that transport through a 1D system leads to inte-
ger quantized conductance given by N-2¢’/h, where N is the number of allowed energy levels (N =1, 2, 3, ...). Recent experiments have shown
that a weaker confinement potential and low carrier concentration provide a testbed for electrons strongly interacting. The consequence leads
to a reconfiguration of the electron distribution into a zigzag assembly which, unexpectedly, was found to exhibit quantization of conductance
predominantly at 1/6, 2/5, 1/4, and 1/2 in units of e*/h. These fractional states may appear similar to the fractional states seen in the Fractional
Quantum Hall Effect; however, the system does not possess a filling factor and they differ in the nature of their physical causes. The states may
have promise for the emergent topological quantum computing schemes as they are controllable by gate voltages with a distinct identity.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0061921

The ground-breaking investigations performed within the last
60 years or so exploring the fundamental quantum aspects of low dimen-
sional electron transport occurred as a result of technological develop-
ments. By an interesting scientific coincidence, the Field Effect, where
applying an electric field between two conductors separated by an insula-
tor to vary the carrier concentration, was first investigated by C. F. Mott,
the father of the immensely well-known solid state theorist N. F. Mott.
This was at the suggestion of Mott’s supervisor J. J. Thomson shortly after
his discovery of the electron in 1897. As Mott used metals, no effect was
observed, and it was only in the 1960s that the quality of semiconductor-
insulator interfaces improved to such an extent that successful experi-
mentation was possible, particularly using the Silicon Metal Oxide
Semiconductor Field Effect Transistor (MOSFET).

The use of MOSFET devices was pioneered by the IBM group
who showed that the inversion layer of the device was two-
dimensional (2D) and found Landau levels resulting from magnetic
quantization of the 2D density of states resulting in Shubnikov—
de-Haas oscillations." The device was subsequently used for detailed
studies of Anderson Localization, such as Variable Range Hopping”
and the nonexistence of true metallic states in 2D.” A particularly note-
worthy development was the discovery of the Quantum Hall Effect
(QHE) in 1980;" the accuracy and extent of the quantization of the

Hall conductance in units of e*/h were not anticipated by physics,
which did predict the geometrical independence of the Hall conduc-
tance when the Fermi energy was between Landau levels.” The QHE
is most easily understood on the edge state model combined with
localization of states in the tails of the Landau levels, which are located
away from the edges. The net result is that conduction in the bulk of a
2D system is rendered negligible at low temperatures, the edge states
support one-dimensional (1D) conduction as the electrons at each
edge cannot be backscattered, and the conductance is quantized taking
values of Ne?/h, where N is the number of non-communicating edge
states at the Fermi level.” The large distance between the states at the
two edges results in an infinitesimal probability of electron tunneling
between the two and the remarkable accuracy of the quantization.

The development of growth techniques, particularly modulation
doped Molecular Beam Epitaxy (MBE), allowed the formation of
much lower disorder structures and a correspondingly higher mobility
of the 2DEG formed at the interface of GaAs/AlGaAs. The materials
advancement led to the discovery of the interaction based Fractional
Quantum Hall Effect (FQHE) when the disorder element was substan-
tially reduced.” Use of low disorder GaAs/AlGaAs heterostructures
makes possible a detailed study of one-dimensional (1D) electron
transport. The simplest method of obtaining a 1D system is by
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electrostatically confining the electron/hole gas by split or patterned
gates, initially used in silicon,”'” but more successfully with the GaAs
heterostructure.'”'* The flexibility of using split and patterned
Schottky gates allows a constriction, termed a quantum point contact
or quantum wire, to be formed in which the confinement can be
altered by negative gate voltages (positive if holes are confined); as the
confinement potential is relaxed, the 1D channel becomes wider, and
the quantized levels drop in energy, so changing the conductance by
2¢’/h as they populate. The quantized conductance is N2e*/h, where N
is the number of allowed 1D subbands, and the factor 2 is due to spin
degeneracy. The quantization occurs in the ballistic regime where the
sample length is less than the elastic scattering mean free path, of sig-
nificance, for later work, the length is also less than the inelastic, phase
coherence length. Early work showed the 1D conductance quantiza-
tion with high mobility electrons in GaAs heterostructures;' ' now
this effect has been observed in other materials."” '

1D conductance quantization, measured in the two-terminal
mode, is not accurate as in the case of the QHE, as positive and nega-
tive momentum states are spatially coincident enhancing any back-
scattering, and measurements of resistance will include the 2D regions
between the quantum wire and the Ohmic contacts. The basic feature
of one-dimensionality giving rise to the quantization is that the density
of states of a level at the Fermi energy in 1D can be written as
N(E) = 1/hv, where v is the Fermi velocity. The conductance due to a
narrow band of states traveling at the Fermi velocity v is then 1/h,
which leads to the conductance quantization; the transition between
the spin degenerate and single spin cases is most easily achieved by the
application of a parallel magnetic field. A perpendicular magnetic field
will further squeeze the energy levels leading to depopulation'' and
the limiting case of the QHE in a narrow 2DEG.

Figure 1 shows a timeline of the evolution of ballistic quantum phe-
nomena in the transport of 2D/1D electrons. It is shown that the Integer
and Fractional QHEs were discovered in 1980 and 1982, respectively,"*
and the 1D density of states and quantum correction in 1986; the quanti-
zation of conductance in a 1D quantum wire was demonstrated in 1988.
The following year, in 1989, non-linear transport in 1D quantum wire
was experimentally observed based on the theoretical prediction by
Glazman and Khaetskii,” which initiated the concept of subband spec-
troscopy in 1D systems. One of the most surprising manifestations of
many body physics, the 0.7 conductance anomaly,” was investigated in
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FIG. 1. A timeline of the evolution of ballistic transport phenomena in the transport
of the 2D/1D systems.
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detail in 1996, and in 2009, experimental demonstration of the 1D
Incipient Wigner Lattice was performed;” this effect contained many
intriguing associated phenomena™>*’ that subsequently led to the discov-
ery of non-magnetic fractional quantized conductance in 1D systems,
based on holes™ (2018) and electrons™ (2018-2019). It was almost
36 years between this discovery and that of the FQHE principally due to
advancement in fabrication technology, availability of high-quality mate-
rial, and refinement in the ability to manipulate electron wavefunctions at
the boundary of the 1D-2D transition.

In this article, we provide our perspective of recent developments
in the quantum physics of 1D systems and future possibilities in the
field. Figure 2(a) shows the evolution of the 1D physics based on the
control of the carrier concentration and confinement with the ability
to manipulate many body effects within the system. Some of the effects
highlighted in this figure will be discussed in this Perspective.

The theory of quantization of conductance results in integer values
of conductance and is unable to explain a feature that occurs below
2¢?/h; this can be in the form of conductance structure often a plateau
and is termed the 0.7 although it can occur anywhere between 0.6 and
0.8 in units of 2e*/h.”**® A striking aspect of the 0.7 is that the application
of a parallel magnetic field, B, causes the feature to drop smoothly to
¢’/h, indicative of a complete spin polarization; a similar effect will occur
with a perpendicular magnetic field, but as this rapidly leads to the QHE,
so a parallel magnetic field configuration is preferred. A spin splitting at
zero B is found below both the first and second 1D subbands accompa-
nied by an enhanced g value. Subsequent calculations also pointed to the
existence of a zero B lifted spin degeneracy;” ' the direction of which
can be slowly varying on the timescale of transport through the 1D
region. This can give rise to a spin dependent back-scattering.

The observations that the 0.7 occurs due to the partial spin polariza-
tion in the ground state in a 1D channel would appear to contradict the
theorem of Lieb and Mattis™ that the ground state of an infinite 1D sys-
tem must be non-magnetic. It is not clear if this theorem holds in the
presence of an applied voltage or for a nanostructure that is quasi-1D.
Evolution of the conductance plateaus with the dc source-drain voltage
and magnetic field indicates that nearby the 0.7, the two spin levels split,
with an occupied lowest level and a non-degenerate upper spin level
pinned above the source chemical potential. Current in the channel is
now due to the transmission of the lower spin level giving 0.5(2¢’/h) and
partial transmission of the upper spin level; a consequence is an enhanced
g value that increases with population of the lowest level. Eventually, as
the carrier concentration increases, the upper level is pulled below the
source chemical potential, and the normal 2¢*/h plateau is obtained. As
the temperature decreases, so the upper spin level moves down in energy
to become close to, and eventually at, the source potential, so becoming
degenerate, resulting in the increase and eventual disappearance of the 0.7
into the 2¢°/h plateau at the lowest temperature.”

The 0.7 decreases toward the fully spin-polarized value of 0.5 as
the carrier concentration is reduced resulting in suggestions that there
is an absence of the upper spin level. In a similar manner, it has been
suggested that as the fully spin polarized value is obtained for longer
channels, there is an absence of minority spin carriers that can
tunnel;”” the result is the formation of an enhanced spin gap.

Thermopower measurements have been taken on the 0.7 struc-
ture. The thermo-electric power exhibited by 1D devices has shown
that there is a general agreement with the Mott formula (n2k§—eT .0G/
GO, where  is the chemical potential, G is the conductance, kg is the
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FIG. 2. (a) The evolution of 1D physics in the quantum transport of quantum wires as a function of tuning the confinement potential. It is shown here how a variety of 1D states
emerge out when the interaction between the 1D electrons and the externally applied potential confining them are varied. (b) The emergence of 1D Wigner lattice as a function

of the changing carrier concentration and confinement potential.

Boltzmann constant, and e is the electron charge) for the integer quan-
tized plateau. The thermopower exhibited by 1D devices shows a peak
corresponding to each riser in quantized conductance agreeing with
the Mott formula.’® However, at low carrier concentrations, there are
deviations associated with many body effects as a flat 0.7 plateau might
be expected to show a zero, or minimal, thermopower, as found and
predicted for integer plateaus, due to the lack of dependence of con-
ductance on the carrier concentration. On the contrary, the thermo-
power is high, indicating a breakdown of the underlying conditions
leading to the Mott formula.” It is possible that as spin polarized elec-
trons emerge toward the cold end of the sample, in a thermopower
measurement, there will be a transition to the spin degenerate situation
and a decrease in the Fermi energy. The heat emission due to this pro-
cess will raise the temperature of the cold end and produce an increase
in measured thermopower. Significantly for understanding the 0.7, a
thermal conductance plateau was found at 0.5 when the conductance
was in the region of the 0.7 indicating the formation of a spin gap.”’

Other investigations include compressibility which produced
results on the behavior of the 0.7 in agreement with that expected for a
spontaneous spin polarization and not in accordance with Kondo pre-
dictions.” Measurements showed a reduction in shot noise on both
integer and 0.7 plateaus; the Fano factor indicated two different chan-
nels of transport; these could be identified as the two unequally popu-
lated spin channels expected for a spin polarization.”” An interesting
aspect of the behavior of higher integer plateaus was found when a
crossing of opposite spin levels was induced by a parallel magnetic field
and a spontaneous spin polarization was found.”’ A theory of the pro-
cess'' had success in accounting for the behavior, in particular a break-
away conductance plateau that differed according to whether it was
approached from high or low magnetic fields; this hysteresis arose from
the exchange between spin populations induced by the magnetic field.

It has been suggested that the 0.7 may be a Kondo peak due to
the formation of a localized state in the channel caused by backscatter-
ing."*" It is known that resonance features in the conductance are
strong in the presence of back scattering,"* and these can be produced

by impurities. The discussion on whether the 0.7 arose from a localized
state in the channel®’ or another mechanism was investigated using
conventional split gate channels with the ends of the gates slightly
curved to reflect carriers and produce a bound state. The results
showed that moving the conducting channel to one side enhanced
back-scattering and produced an excellent example of a Kondo peak
in conductance; however, this was superimposed on the 0.7, showing
that the two had different physical origins. In the absence of the
imposed back-scattering, a Kondo peak was entirely absent.”” A simi-
lar conclusion that the 0.7 is fundamental and not related to localized
states was obtained by scanning probe measurements.”® Scattering in
the channel due to impurities or defects can produce considerable
mesoscopic structure in the conductance,”” which can then give rise to
localization and a Kondo structure.'® These results indicate the neces-
sity of utilizing clean disorder free channels for the observation of
spontaneous spin polarization, which has also been observed in hole
systems.”” Recent theory has proposed that there is a spin polarization
that slowly rotates as carriers progress through the channel; this effect
can explain the experimental findings including the observed zero bias
anomaly.””*"”" It has been known for some time that in one-
dimension, all states are Anderson localized.””” Essentially, the prob-
ability of an electron being forward scattered, and diffusing through a
1D device decreases to zero as the system size increases. However, the
devices used in studies described here are of order 1 ym in length, and
unless the sample is deliberately disordered, the number of scattering
events is limited. This can be of order 1 or 2 as in Smith et al"’
Consequently, the only effect of localization in the characteristics of
the conductance is the Kondo effect described earlier.

There are several other spin effects in addition to the 0.7. One of
the characteristics of a Luttinger liquid is that the strong interaction
gives rise to a separation of charge and spin transports and spin-
charge separation.”* *° However, in a low-density system, the mutual
repulsion keeps carriers widely separated; the exchange interaction is
minimized and is less than the thermal energy; consequently, the spin
direction is random and no longer has a defined value.”” Such a spin
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incoherent Luttinger liquid has been identified by a suppression of the
2¢°/h plateau to e*/h as the spin quantum number is no longer opera-
tive, and states must be singly occupied.”

A characteristic of an unequal spin population is as with the 0.7 a
tendency to ferromagnetic behavior; an enhanced and oscillating g
value was found as levels were filled in the presence of a magnetic field.
This effect is essentially a magnified version of the behavior in the
absence of a magnetic field when the spin repulsion is due to the
exchange only.” "

When the applied source-drain voltage, Vg, is small, there is no
difference between the conductance (I/Vq), and the differential con-
ductance (dI/dVyy), the integer plateaus appearing at 2Ne*/h, N=1,
2, 3, .... However, as V4 increases, so the plateaus in conductance
disappear, but with differential conductance, the integer plateau in
2¢%/h occurs at e*/h and then 2¢%/h, a relationship which can be
derived simply.””®> The two plateaus are separated in energy by
eV,a/2, reflecting the lifting of the momentum degeneracy, which
allows a direct measurement of the energy in the channel as a func-
tion of gate voltage. When the momentum degeneracy is completely
lifted and electrons flow in one direction, a plateau at e*/h would be
expected, but this drops to level out at e2/2h, ie., 0.25(2e2/h). Such a
result implies that both the spin and momentum degeneracy are
removed, and the stream of electrons possesses ferromagnetic order-
ing although no defined direction. Alternatively, the measurement of
the conductance, rather than the differential, is proportional to the
band filling that reflects the repulsion between the spin levels. The
spin polarization in the non-linear regime has been directly observed
and utilized for spin filtering and control in an electron focusing
experiment.”

Quantum calculations’”*” have shown that a single row of elec-
trons will become progressively distorted as the interaction (confine-
ment potential) increases (decreases), to form a zig-zag array, eventually
splitting into two separate rows, from right to left as confinement weak-
ens, Fig. 2(b), ie, a transition from bonding to anti-bonding states. The
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two lines of electrons are similar to the lines considered for cold atoms
and ladder compounds,(’g‘m and rotational chiral currents may result
from such a configuration. Matveev, Meyer, and co-workers”"”” investi-
gated the different exchange processes in which the spectator electrons
are allowed to relax. As the interaction increases, the nature of the
ground state varies from a two-particle exchange based on a particle in
each row to a four-particle ring; however, the energies of the different
rings are close, making difficult a precise determination of the ground
state. The transition from one row to a zig-zag is predicted to occur
when the separation, in units of the Wigner-Seitz radius, r;, is less than
0.78, and the resultant zig-zag is stable until r, is 1.75 when more rows
form. Eventually, the zig-zag configuration gives way to a more complex
arrangement of many rows to form a Wigner Lattice, a conclusion also
reached by classical calculations;” here, the stablhty has been investi-
gated as a function of confinement potential.”" The calculations showed
that the only allowed second order transition between one and two rows
is for a parabolic confinement potential.

By locating a gate over the channel separated by a dielectric from
the split gates, it is possible to provide a flexible control by directly
altering the carrier concentration as well as the width of the 1D chan-
nel. Experiments21 >3 at a low 2D carrier concentration, <5 X 10'°
cm 2, and an electron mobility of ~4 x 10° cm?/V's showed that as
the confinement weakened, the 2¢*/h plateau either completely (cross-
ing) or partially disappeared (anticrossing). These two effects are
shown in Figs. 3 and 4. The device schematic is shown in the inset of
Fig. 3(a). Figure 3(a) shows the effects of weakening confinement
where the left-hand corresponds to strong confinement with the car-
rier concentration (initially 2 x 10'" cm™?) reduced by the top gate
voltage, Vg, with weaker confinement, for each successive plot of con-
ductance vs split gate voltage, V,. When the split gate threshold volt-
age is near —3.1V, the ﬁrst plateau at 2e*/h has weakened
considerably compared to the plateau at 4¢’/h. Moving further to the
right, the first plateau is restored, but as seen, the curves become much
closer, which indicates a stronger coupling to the split gates; this is

44 42 40 38 36 34 32 30 28

ng (V)

FIG. 3. (a) Conductance characteristics of a 1D device as a function of applied top gate voltage [—6.0 (left) to —9.2 V (right)]. Inset shows schematic of a top gated, split gate
device defined over a GaAs/AlGaAs heterostructure; here, split gates are shown in orange, the top gate in blue, and the dielectric separating them is shown in gray. (b) A trans-
conductance plot (dG/dVs,) of data shown in (a) illustrated as a colorplot, where dark regions represent the conductance risers and the red regions are the conductance

plateaus.

Appl. Phys. Lett. 119, 110502 (2021); doi: 10.1063/5.0061921
© Author(s) 2021

119, 110502-4


https://scitation.org/journal/apl

00.3» //////////////////[ //////////

Applied Physics Letters PERSPECTIVE

scitation.org/journal/apl

-8.8¢
91

e
38 3.6 34 32 3

375 -35 -325 -3 275 25 28 26
ng(V) ng V)
45f ] ' / T6h -
. i (C) B=12T ' . B=12T d
Yo, 4 1 78 &
\_/35’ ‘ ‘8’
g 3 e
=] 2 5 t > '82 [
o “- ~
Z15: 861
§ 1t 8.8t
0.5} 9t
R I i g
375 -35 325 -3 275 25 38 36 34 32 -3 28 2.6
V_(V) VvV (V)
Sg sg

FIG. 4. (a) Conductance characteristics of a different 1D device as a function of top gate voltage [~—7.5 (left) to —9.2V/ (right)]. (c) Conductance characteristics in the pres-
ence of in-plane magnetic field of 12 T showing Zeeman splitting and crossing of the ground state with the higher subbands as the confinement weakens. (b) and (d) show
transconductance plots represented as grayscale plots for the data in (a) and (c), respectively, where gray regions represent the conductance risers, and the dark, black

regions are the conductance plateaus. Adapted from Ref. 22.

expected if the electron wavefunction were to be more laterally
extended across the channel. Interpretation of the data is simplified by
the examination of the colorscale plot, Fig. 3(b), obtained from the
transconductance (the gradient of the conductance) of the data in
Fig. 3(a); here, the black lines correspond to the risers between pla-
teaus, and the red corresponds to the plateaus. In the region of strong
confinement, top left, there are clear plateau regions between the black
lines; the first narrows as the confinement is progressively weakened—
moving toward bottom right. At a point near —3.1 V corresponding to
the transition in the conductance, there is an anticrossing of the energy
levels and a transition in the ground state. Measurements on another
sample, Fig. 4, show that the first plateau has completely disappeared
[Fig. 4(a)]; the transition may be an anticrossing smeared by disorder
or a crossing; the former ground state subsequently crosses the second
excited state as seen in both conductance plot and the colorscale plot,
Fig. 4(b), of transconductance of data in Fig. 4(a). Such measurements
have been repeated in the presence of a 12T magnetic field in the
plane of the 2D electron gas; the anticrossing is very clear, albeit all the
values of conductance are reduced by a factor of 2 due to lifting of spin
degeneracy [Figs. 4(c) and 4(d)]. However, there is considerable com-
plexity in a series of crossings and anticrossings, which arises from the
added variable of spin doubling the number of levels.”* Such results
have been observed with many different samples” ** with different
preparation conditions and from different semiconductor growth

centers. We conclude sample independence although high disorder
can obscure observation.

A further series of measurements, Fig. 5, was conducted on GaAs
based 1D quantum wires where the top gate was grounded to simplify
the electrostatics. In this measurement, the split gates were asymmetri-
cally biased moving from left to right in the conductance plot.”” It was
noticed that the effect that was produced by the symmetrical confine-
ment potential in Figs. 3 and 4 was reproduced by applying an asym-
metric confinement potential even in the absence of a top gate voltage.
As seen, the plateau at 2e*/h was significantly weakened on enhancing
the asymmetry in applied confinement potential, and at around Vp
~ —3.1 V (Vp, voltage on one of the split gates, see Fig. 5 caption for
further details), so resulting in anticrossing of the ground and first
excited states. A different sample where there was no physical top gate
present over the split gates was also measured; a colorplot of the trans-
conductance data is shown in Fig. 6. Dual anticrossing (AX) effects
were observed, and expected, when the confinement potential was var-
ied from highly asymmetric to symmetric to again highly asymmetric
by independently controlling voltages on the split gates.””

In these measurements, it was shown that in a wide 1D quantum
wire, manipulating the confinement potential results in tailored many
body effects that produce an Incipient Wigner Lattice when the 1D
system is near the transition to 2D. It is termed an Incipient Wigner
Lattice as the electron repulsion determines the particular
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FIG. 5. Conductance characteristics measured by sweeping voltage on gate B, Vg,
as a function of increasing negative offset voltage (AVsg = —0.1V) on gate A, so
that Vs ranges from —0.4 (left) to —5.8V (right). Here, the confinement potential
was made highly asymmetric by holding gate B at a fixed voltage, while gate A was
being swept. The inset shows a device schematic where split gates are shown in
yellow and a top gate over the split gates in orange. Adapted with permission from
Kumar et al., Appl. Phys. Lett. 118(12), 124002 (2021). Copyright 2021 American
Institute of Physics.

Ve(V)

configuration of the electrons as would occur in a 2D Wigner Lattice.
Normally, discussion of the behavior of a confined system assumes
that there is a lateral quantization of the wavefunctions arising from
the spatial confinement. However, if the system width is W, then the
ratio of Coulomb energy to confinement energy is ~W; so at large
widths, and especially low carrier concentrations, the energy levels are
determined by the Coulomb effects. As the system width increases,
confinement weakens; the wavefunction with two centers of charge
drops in energy faster than the original ground state where the charge

AX1

Anticrossing = AX

Vg + Ag (V)
A

5 4 3 2 4
Va(V)

FIG. 6. A colorplot of transconductance data [see Fig. 3(a) in Ref. 75 for conduc-
tance plot] showing the evolution of two sets of anticrossing of the ground and first
excited states, one at V and Vg + AVsg (—3.3 and —2.0V) and the other at Vs
and Vg + AVgg (—1.6 and —4.5V). Adapted with permission from Kumar et al.,
Appl. Phys. Lett. 118(12), 124002 (2021). Copyright 2021 American Institute of
Physics.
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is peaked in the center.”””” This results in the new ground state being
formed from the original first excited state although it would be
expected that the node would disappear on reducing the energy.

Electron focusing has been used to observe the splitting of the
ground state into two corresponding to the formation of the Incipient
Wigner Lattice. Focusing comprises injection of electrons into a 2D
electron gas subjected to a weak transverse magnetic field, which bends
the injected electrons around and focusses them into a narrow detec-
tor.”® The first resonance occurs when the magnetic field is given by
B =2hky/eL, where kg is the Fermi wavevector, L is the separation of
the injector and detector, and e is the electron charge, so that the sepa-
ration of injector and detector equals the cyclotron diameter. The
assumption is that the electrons are injected from a central point
although with broadening; if the electrons are now injected from two
points, then the resonance peak is split into two. The situation is
shown in Fig. 7, where in (a), an experimental diagram shows the
injector and detector, and (b) and (c) illustrate the focusing results (see
Fig. 7 and caption for further details). The top plot in Fig. 7(c) shows
the resonance focusing signal taken with the injector in strong confine-
ment regime; the consecutive plots on going down correspond to a
gradually weakened symmetric confinement potential. The central line
of electrons splits into two as the confinement weakens, which results
a split in the focusing peak, Fig. 7(b).”” The distance between the two
injection points is obtained from the known parameters and is approx-
imately 3/4 of the channel width. Such behavior is fully consistent with
the establishment of a zig-zag. By applying bias to the detector, it is
possible to introduce a spin selectivity to the resonance, which has
been used to probe spin texture.””

Now we discuss the theory of fractional quantization of conduc-
tance in the 1D/2D systems, followed by a mechanism based on the
1D zigzag chain of electrons. The recent experimental results on non-
magnetically induced fractional quantization of conductance in the 1D
channel will subsequently be discussed. The first theory of non-
magnetically induced fractional charges was by Su, Schrieffer, and
Heeger (SSH)”® (see for a review), was constructed for 1D polymer
chains where an alternation in the bonding arrangement could pro-
duce a defect with charge /2. However, as polymer chains are highly
disordered, this prediction has not been observed, although in many
respects, a ladder compound can be envisaged as two chains that are
connected.”””” Tt has been suggested that the Anomalous Hall effect
and Quantum Spin Hall effect in Topological Insulators could produce
fractional charges. At present, these have not been observed.””

Thouless et al.*’ considered a band structure with a magnetic
field applied and showed the existence of the Integer QHE without
Landau levels, an example of the Hofstadter Butterfly. Subsequently,
Haldane®' discussed a half filled honeycomb band structure with zero,
net magnetic field arising from a field which reversed every plaquette;
the Integer QHE was predicted as a consequence of the breaking of
time reversal symmetry. A detailed consideration of Chern insulators
has evolved” based on band insulators in which quantization, both
integer and fractional, is predicted as a function of the Chern number,
which is essentially a path integral around a unit cell. This is essentially
the equivalent of the Landau index in a continuum model. Fractional
quantization in these materials in the asbsence of magnetic field has
not yet been observed.

Calculations and simulations using lattice models have resulted
in predictions of odd denominator fractions in the absence of a
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FIG. 7. Imaging the zigzag Wigner crystallization formed in a 1D channel using transverse electron focusing. (a) Schematic of a focusing device consisting of a confinement-
tunable quantum wire, as injector, on the left, formed by a pair of split gates (shown in yellow) and a top gate (shown in pink) separated by a SiO, insulator. A pair of split gates
on the right act as a detector. (b) lllustration of the focusing peaks and their corresponding cyclotron motions. A single row of electrons will produce a single peak as shown in
(i) when focused into the detector, whereas electrons in a double row are focused into the detector at two different magnetic fields [(ii) and (iii)], giving rise to a split in the focus-
ing peak. (c) Electron focusing graph when the confinement was tuned from being strong, the top trace, to weak, the bottom trace, which is the regime where the 1D electrons
have localized in the 1D Wigner lattice. Adapted with permission from Ho et al., Phys. Rev. Lett. 121(10), 106801 (2018). Copyright 2018 American Physical Society.

magnetic field.”*’ The tight-binding calculations were based on a
high ratio of bandgap to bandwidth, typically 20 to 50; the electron
energy was flat with increasing numbers of carriers. Wavefunction
overlap only reached as far as second nearest neighbors, and in that
respect, the system resembled Landau Levels where the principal
energy in the system is the electron—electron repulsion with limited
hopping distance. The various models all reached similar conclusions
in which a square lattice with flat bands showed minima in energy at
1/3 and 1/5 filling factors.” Similar behavior has been found with
hard core bosons®” and, in principle, higher temperatures than the liq-
uid Helium range are possible.

Ring exchange was considered in relation to the FQHE shortly
after its discovery, ” and it was suggested that such a process in the 2D
electron gas could explain the fractional quantization. This suggestion
created discussion as in the absence of a quantizing magnetic field,
ring exchange could increase the electron energy, rather than produce
a minimum,”’ and it was not pursued further in that context. It was
suggested that the dominant exchange was due to the large number of
electrons participating, and that this could lead to a fractional charge.
Prior to this, ring exchange was known to play an important role in
the properties of quantum solids such as helium 3, where it was first
shown that an odd number of particles in the exchange process leads
to a spin polarized configuration. The system was regarded as com-
prising cavities, atoms, separated by ducts through which exchange
tunneling occurred.”” In a similar way, an optical field produces cyclic
currents and edge states in a cold atom ensemble.” It is possible that a
cyclical ring current is a way of lowering the ground state energy by
reducing the effects of the confinement, which determines the ground
state; the correlated motion produces a cyclic current around the ring,
resulting in a lowering of the energy and a gapped state at particular
fractional conductance values. There is a certain resemblance here to
the vortex state in the FQHE. Figure 8 shows this situation, where the
prevailing rotation is clockwise, although it could be opposite, and the
two triangles could be in anti-phase. This suggestion is clearly different
from the continuum in which the FQHE is found or the lattice theories

as the existence of a zigzag configuration can allow a cyclical motion
of the carriers. The implications of such a model are that the electrons
form their own lattice due to both decreased confinement and the
electron—electron interaction. Tunneling through the ducts could
create a cyclic current and decreased confinement energy leading to a
gap at the Fermi energy.

1D hole conduction in high mobility germanium grown on ger-
manium-silicon”* showed that at very low values of the carrier con-
centration (2D density ~ 10'°cm ), the first and second integer
plateaus disappear and are replaced by fractional plateau at/near (1/
2)e’/h and (1/16)e*/h. In the presence of a high parallel magnetic field,
the plateau at (1/2)e*/h dropped to (1/4)e’/h, indicating that it was
spin degenerate at zero magnetic field, and the plateau at (1/16)e’/h
strengthened, implying that it was spin polarized at zero field.
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FIG. 8. An illustration of cyclic current in a zigzag 1D electron configuration leading
to observations of non-magnetic fractional quantized conductance.
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FIG. 9. The emergence of fractional conductance plateaus in a tunable confinement potential in a top gated, split gate device. The main plot in (a) and the main and inset plots
in (b) show fractional conductance states at 1/2, 1/6, and 2/5, respectively, in an asymmetrically confined 1D quantum wire, and the inset in (a) shows the 1/2 fractional state in

a symmetric confinement potential. Adapted from Ref. 25.

A search for such non-magnetic fractionally quantized conduc-
tance was performed with high mobility GaAs based heterostruc-
tures”””* with low values of electron carrier concentration and a tuned
asymmetry in the confinement potential. This was successful for 2D
values of the carrier concentration near ~10'* cm™?, which is much
lower than that normally used for investigations into 1D behavior. For
weak, symmetric confinement a plateau at (1/2)e*/h was present; how-
ever, if the confinement potential were asymmetric and weak, then
additional fractional plateaus emerged, of which the most prominent
and stable were 2/5, 1/2, and 1/6. In Fig. 9(a), the main figure shows
1/2 obtained in an asymmetric confinement potential, and the inset
shows 1/2 obtained in a symmetric confinement potential, the only
fraction in this configuration. The 2/5 and 1/6 that are shown in Fig.
9(b) were obtained with an asymmetric confinement potential. A 2/3
plateau was frequently found with a slight slope, and a plateau was
often present near 3/5 but slightly below the exact fractional value.
The flatness of the most stable plateaus from the various samples mea-
sured was found to be 1 in 10* over the plateau length for the flattest
parts of the 1/6, 1/2, and 2/5 states, as shown in Fig. 10. The length
and absolute error from the accurate value of plateaus for these
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FIG. 10. Conductance characteristics of a top-gated split gate device as a function
of asymmetry and width of the confinement potential. At Vi; = —0.36V, the offset
or asymmetry between the split gates, AVsg, was incremented from ~0.65 (left) to
0.97 V (right) in steps of 10 mV, so widening the channel and flattening the confine-
ment. Moving from left, a highly stable fraction at 1/6, was seen with subsequent
evolution of fractional states at 1/2, 2/5, 3/5, and 2/3. A horizontal offset of 4 mV
was set between the consecutive traces for clarity. Adapted from Ref. 25.

fractions is over 2 (error 0.8%), 3.3 (error 0.2%), and 3.4mV (error
0.2%). In Fig. 10, sweeps from left to right is for an enhancement in
the asymmetry in the applied confinement potential. The 1/6 frac-
tional state is well estabalished and the curves cluster around the 1/6
until the asymmtry in the confinement potential is further enhanced
and resonant type structure similar to theory in Fig. 2(a) in Ref. 95 is
found. One consistent feature of the fractional results is the disappear-
ance of the 1 and 2 integer plateaus, indicating that the interaction is
determining the electron states when confinement is weak.

Figure 11 shows the emergence of the 2/5 in (a) and 1/5 in (b)
states as a function of decreasing operating temeprature from 2 to
0.02K. The 2/5 emerges at ~300 mK, whereas the 1/5 emerges close
to 400 mK, only a small change in the carrier concentration is required
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FIG. 11. (a) Temperature dependence of the 2/5 fractional state observed in the
absence of a magnetic field in a highly asymmetrically defined quantum wire.
Adapted with permission from Kumar et al., Appl. Phys. Lett. 115(12), 123104
(2019). Copyright 2019 American Institute of Physics. (b) Temperature dependence
of the 1/5 fractional state observed in a different cooldown to the one shown in Fig. 10.
Traces have been offset horizontally in both (a) and (b) for clarity.

Appl. Phys. Lett. 119, 110502 (2021); doi: 10.1063/5.0061921
© Author(s) 2021

119, 110502-8


https://scitation.org/journal/apl

Applied Physics Letters PERSPECTIVE

to switch between the two states. Figure 12(a) is taken from Ref. 95
based on the simulated emergence of the 2/5 as the temperature is
reduced from right to left. The horizontal axis in this figure is /A,
where u is the electrochemical potential, Fermi energy, and A is the
fractional gap at the Fermi energy; the similarity between theory and
experiment is apparent here. On the formula of Shavit and Oreg, ” the
number of electrons involved is 3 and 1 for 2/5 and 2 and 1 for 1/5;
consequently, the two fractions are closely related and behave in a sim-
ilar manner as in Fig. 11.

As previously mentioned, the principal theory of relevance to the
experiments shown here is that of Shavit and Oreg,”” who have
proposed an explanation of the observed non-magnetic odd denomi-
nator fractions. They considered the role of momentum conserving
coherent backward and forward scattering between two separate lines
of carriers, which, in this case, would correspond to the zigzag. The
formula they derived for the plateau values is, in units of e’/h (n;
— m)/(my* + n,7), as illustrated in Fig. 12(b), where n; and #, are the
numbers of particles coherently scattered between bands, so that back-
scattering in one is counterbalanced by forward scattering in the other
and n,k, = nyk,, where k; and k, are the corresponding wave vectors.
We immediately see why asymmetric confinement is necessary, so
that n; and n, differ resulting in many fractions; the 2/5 is strong for
small numbers of electrons. Weaker plateaus are observed above 1/2,
which would correspond to larger numbers of carriers participating a
more improbable process. This formula does not predict even frac-
tions, which may have a similar origin as in the FQHE, where they are
postulated to result from Bosonic pairing in a BCS model.”*"”

Insight into the Shavit and Oreg formula can be obtained by con-
sidering the scattering process; when the interaction between the two
bands is sufficiently strong, they become entangled. If the respective
densities of states at the Fermi energy of the two bands are N; and N,
then n,/N; = 1,/N,, which follows from the inverse proportionality of
momentum and density of states in 1D. The probability of backscatter-
ing in the N, band is then N/(N,* + N,H)2, arising from the entan-
glement of the two bands, and similarly for the N, band, the
probability of forward scattering is No/(N;* + N,H)V% the probability
of the process occurring involving both events is then N;NL/(N;?
+ N,?). The scattering directions can be reversed giving a degeneracy
of 2, so making use of the relationship n,/N; = n,/N,, we obtain the
probability, P =2mn,/(n;> + n,°). The conductance G is given by
Te?/h, where T is the transmission coefficient, normally in ballistic
transport T ~ 1, but in the presence of the backscattering,

(a) » (b)

b=
&

2
5

FIG. 12. (a) Theoretically simulated conductance for the time reversal invariant
nanowire with plateaus at 2/5 (oz/v/2mA) and at different temperatures (left to
right), (T/A)=0.1, 0.2, 0.3, 0.4, and 0.5. Plots are shifted horizontally for clarity.
(b) Two-band dispersion with an example of a backscattering process that con-
serves momentum when the chemical potentials are such that nik;=noks.
Adapted with permission from Shavit and Oreg, Phys. Rev. Lett. 123(3), 036803
(2019). Copyright 2019 American Physical Society.
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conductance becomes (1 — P) in units of e*/h giving G=1 — 2n;n,/
(1> + n,%). This can be rewritten as (1, — n,)*/(n,> + n,%), which is
the result of Shavit and Oreg.”

The process of forming the fractions on this model is based on
the controlled separation of the carriers as the confinement weakens,
and they start to form the zigzag, i.e., a wavefunction with two centers
of charge. The carriers do not then behave independently but are cou-
pled or entangled, so resulting in the fractionalization. If the separation
of the two rows increases further, then the entanglement breaks down,
and the situation may resemble ballistic transport in each row with
scattering. When rows are close with strong confinement, they form
the normal single wavefunction and a conductance of 2¢*/h.

It is interesting to note that the fractions found using GaAs could
correspond to the fractional charges fe, where the conductance is given
by (fe)e/h, as in the FQHE. However, the results for the Ge based 1D
quantum wire”* may be most easily explained on the basis of a con-
ductance given by (fe)*/h, where fis given by 1/2 and 1/4, and the 1/2
may correspond to two 1/4 charges that are paired. The difference in
the two situations may result from the hole ground state comprising p
orbitals resulting in a strongly coupled line.””

The differential ac conductance with a dc source-drain voltage
that is varied between 0 and ~—3 mV in the presence of a small signal
ac has been used to determine energy levels in a quasi-1D system. The
dc voltage drives the system non-Ohmic, and the ac conductance is
G, =dI/dVy;. When the dc voltage is sufficient to lift the momentum
degeneracy, the result is that G, takes one half of the Ohmic or linear
value. This has been used to investigate energy levels in the integer
regime, as the decrease in potential of the 1D subband is given by
eV,a/2; this can be correlated with the shift in split gate voltage neces-
sary to obtain the plateaus. In the presence of a magnetic field, this
technique allows extraction of the Lande g value. The non-Ohmic con-
ductance has been measured for a number of fractions, and the reduc-
tion by a factor of 2 has been observed. This suggests that the system is
behaving in the same way as in the integer regime. Figure 13 shows
the results when a fractional value of 1/2 was found in the Ohmic, lin-
ear regime; the data have been moved horizontally for clarity.”” The
initial rise occurs before the current is unidirectional. The source-
drain dc voltage is stepped from 0 on the right to —3mV on the left.
The non-Ohmic plateaus do not quite reach the expected 1/4 possibly
due to a change in the carrier concentration, but the main conclusion
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FIG. 13. The effect of dc source-drain bias on the differential conductance corre-
sponding to the fractional conductance 1/2 in a symmetrically confined, low density,
1D quantum wire. The source-drain bias, Vsg, was incremented from 0 (right) to
—3mV (left) in steps of —0.1 mV. Adapted from Ref. 25.
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is that the fractional conductance behaves in the same manner as does
the integer.

To determine if all the observed fractional plateaus arise from
quantum states rather than, for example, a transmission effect, the dif-
ferential conductance was measured with a measuring signal of 10 uV
ac in the presence of 1-3mV dc. In all cases, the predicted halving of
the Ohmic value was obtained. In both Ohmic and non-Ohmic mea-
surements, plateaus of different values but with positive or negative
gradient can be found. For example, as shown in Ref. 25 in the pres-
ence of a parallel magnetic field, the plateaus shift, and the gradient
can increase or decrease, making it important to determine what con-
stitutes a quantum state. A true topological quantum state will main-
tain its quantized value with changes in the potential environment
until the change is sufficiently large to remove the state. We note pla-
teaus in the QHE and FQHE only become flat as the temperature
decreases and the magnetic field approaches a particular value; here,
the confinement potential produces a similar effect, i.e., the fractional
gradient decreases with the approach to the quantized value.
Consequently, flatness and accuracy are linked, and a highly accurate
value signifies a true quantum state. In addition to the flatness, the
data we present here are free of fluctuations and random telegraph sig-
nals giving further confidence in the absence of impurity effects.

If current flow is unidirectional, then forward moving electrons
will be backscattered into empty states, but there are no backward
moving electrons to be scattered into forward moving states. This diffi-
culty implies that there may be a Umklapp processes involved, or the
entanglement process is more complex than envisaged to result in
cyclical motion of the electrons.

Earlier results presented here show how the ground state changes
as the confinement potential is weakened, and a zigzag forms. If this
occurs at a low carrier concentration, then the carriers form an
entangled entity as they separate, which behaves as if possessing frac-
tional charge. Futher investigations on thermal properties and shot
noise to elucidate the effective charge will give a greater understanding
of these states.

In conclusion, the field of 1D ballistic transport has matured in
the past three decades since its early beginnings with the development
of split gate confinement and a variety of new effects have been discov-
ered, in particular the many body aspects.” The ballistic transport in
1D has been well established in III-V compound semiconductors, par-
ticularly GaAs, and could be extended into a new class of high quality
materials, such as InSb and InAs as well as 2D materials (graphene,
bilayer and twisted graphene, silicene, etc.) and topological materials
for many body physics. The variety of rich physics the 1D field has to
offer can be studied in a range of materials for establishing the robust-
ness of the effects, particularly, the fractional quantized conductance
in the absence of magnetic field. One of the striking observations
found recently was the self-organization of electrons/holes in the tran-
sition between 1D and 2D, resulting in the formation of a zigzag lattice
exhibiting fractional conductance plateaus. This unexpected manifes-
tation of interaction effects within the 1D channels indicates that
quasi-particles so formed may possess fractional charge—previously
only found with the FQHE in 2D systems. The recent experimental
results and theory pose further challenges and require new experi-
ments for the estimation of precise electronic charge at the fractional
conductance plateaus as well as investigations of entanglement and
non-Abelian statistics associated with these fractional states. The

PERSPECTIVE scitation.org/journal/apl

physics and technology of 1D quantum structures has much to offer
both for fundamental quantum physics of condensed matter and for
applications in quantum information schemes.
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