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Abstract
Osteoderms (OD) are mineralised dermal structures consisting mainly of calcium phosphate and
collagen. The sheer diversity of OD morphologies and their distribution within the skin of lizards
makes these reptiles an ideal group in which to study ODs. Nonetheless, our understanding of the
structure, development, and function of lizard ODs remains limited. The specific aims of this study
were: (1) to carry out a detailed morphological characterisation of ODs in three lizard species; (2)
to design and manufacture biomimetic sheets of ODs corresponding to the OD arrangement in
each species; and (3) to evaluate the impact resistance of the manufactured biomimetic sheets
under a drop weight test. Skin samples of the anguimorphs H. suspectum and O. ventralis, and the
skink C. zebrata were obtained from frozen lab specimens. Following a series of imaging and image
characterisations, 3D biomimetic models of the ODs were developed. 3D models were then printed
using additive manufacturing techniques and subjected to drop weight impact tests. The results
suggest that a 3D printed compound of overlapping ODs as observed in Corucia can potentially
offers a higher energy absorption by comparison with the overlapping ODs of Ophisaurus and the
non-overlapping ODs of Heloderma. Compound overlapping ODs need to be further tested and
explored as a biomimetic concept to increase the shock absorption capabilities of devices and
structures.

1. Introduction

Osteoderms (ODs) are mineralised structures that
form directly within the skin in a wide range of
tetrapods, including some frogs, many reptiles, and
some mammals (Bever et al 2005, Mead et al 2012,
Vickaryous et al 2015, Paluh et al 2017). These der-
mal elements consist mainly of calcium phosphate
and collagen, but vary in their histological structure,
their individual shape, and their distribution across
the head and body (e.g. Moss 1969, Zylberberg and

Castanet 1985, Vickaryous and Hall 2006, Laver et al
2020). ODs show particular diversity in lizards, where
they may be completely absent; restricted to certain
areas like the head; or distributed all over the body
as non-overlapping clusters, as a complete covering of
overlapping plates, or as spicular mineralisations that
thicken with age.

Considering the structural design classification
proposed to capture the diversity found in the materi-
als of a wide variety of animal taxa (i.e. fibers, helices,
gradients, layers, tubules, cellular structures, sutures,
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Figure 1. Ex vivo (a)–(c), Xray (d)–(f) and 3D reconstructed (g)–(i) samples of H. suspectum, O. ventralis and C. zebrata
respectively.

and overlapping structures), perhaps the majority of
single ODs fall under the gradients and layers clas-
sification (see e.g. Naleway et al 2015, San Ha and
Lu 2020, Ingrole et al 2021). However, there are ODs
that display characteristics of cellular structures and
some compound ODs that display elements of suture
structures. Moreover, depending on the species under
consideration, OD can be arranged on the body in
overlapping or non-overlapping sheets.

The sheer diversity of OD morphologies and their
distribution makes lizards an ideal group in which to
study ODs (see e.g. Williams et al 2021). Nonethe-
less, our understanding of lizard ODs is still very
limited. Whereas several authors have carried out
detailed histological analysis of ODs in lizards to try to
understand their developmental origin and biological
constituents (e.g. Moss 1969, Levrat-Calviac and Zyl-
berberg 1986, de Buffrénil et al 2010, Vickaryous et al
2015, Kirby et al 2020), only a few studies have charac-
terised their overall morphology (e.g. Costantini et al
2010, Maisano et al 2019). Even fewer studies have
characterised their mechanical properties (i.e. elas-
tic modulus and toughness) and biomechanics (e.g.
Broeckhoven et al 2015, 2017, Iacoviello et al 2020)
despite a significant body of literature on such charac-
terisation for other groups e.g. alligators, armadillos,

leatherback turtles, and a number of fishes (e.g. Chen
et al 2011, 2015, Sun and Chen 2013, Zhu et al 2013).
Moreover, a better understanding of these structures
in lizards has the potential to lead to the development
of bioinspired and biomimetic structures and devices
(e.g. Yang et al 2013, Wen et al 2014, Chintapalli et al
2014, Chen et al 2018).

To the best of our knowledge there is no
biomimetic/bioinspired study based on lizard ODs.
However, there have been several studies on other
groups (see review by Yang et al 2013). Given the
common view that ODs are a natural armour protect-
ing the internal organs, several authors have explored
a range of bio-inspired and biomimetic applications
based on ODs (and scales [e.g. Wen et al 2014, Chin-
tapalli et al 2014]). Perhaps the earliest classical exam-
ples are the armour used by Scythian, Roman and
Japanese warriors, where individual OD/scale like ele-
ments were sewn or laced to a backing to make a pro-
tective sheet (Yang et al 2013). See also recent reviews
of various bio-inspired structures and materials for
energy absorption application (e.g. San Ha and Lu
2020, Ingrole et al 2021).

The specific aims of this study were: (1) to carry
out a detail morphological characterisation of ODs in
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Figure 2. A summary of various parameters characterised
in (a) H. suspectum, (b) O. ventralis and (c) C. zebrata
respectively.

three lizard taxa in which the ODs are arranged dif-
ferently; (2) to design and manufacture biomimetic
sheets of ODs corresponding to each species; and (3)
to evaluate the impact resistance of the manufactured
biomimetic sheets under a drop weight test. This is a
preliminary study considering the diversity that exists
in the structure and arrangement of lizard ODs and
their potential.

2. Materials and methods

Skin samples of H. suspectum, O. ventralis and
C. zebrata were obtained from cadaveric tissues
donated by the Pathology Laboratory of London Zoo
(cause of death unknown but showing no outward
signs of injury or disease). Following a series of
imaging and image characterisations, 3D biomimetic
models of ODs were developed. 3D models were then
3D printed using additive manufacturing techniques
and were then subjected to a drop weight impact
test.

Imaging and characterisation. Dissected skin
samples (figures 1(a)–(c)) were washed five times
in distilled water, and then left to dry. An initial
2D x-ray was carried out to identify the ODs using
a Nomad Pro 2 x-ray system (Kavo Kerr Group
Corp., USA). The samples were then imaged using
micro-computed tomography (microCT) Nikon XT
H 225 scanner (Nikon Metrology Ltd., UK) at the
University of Cambridge Zoology museum CT lab.
Voxel resolution was 10, 47 and 11 (micron) for
Heloderma, Ophisaurus and Corucia respectively.

MicroCT images were imported into an image
processing software and were manually segmented
(Avizo 9.2.0, Thermo Fisher Scientific Inc., USA). 3D
solid models of single OD were developed for Helo-
derma (n = 8), Ophisaurus (n = 4) and Corucia
(n = 8). The 3D models were exported to a computer
aided design (CAD) software (Solidwork 2018, Das-
sault Systèmes SOLIDWORKS Corp., USA) for fur-
ther measurements. Various measurements were car-
ried out to characterise the morphology of the ODs.
See figure 2 for details of the measured parameters.

Biomimetic development and manufacturing.
Biomimetic 3D CAD models of ODs were developed
based on the results of structural analysis mimicking
the main morphological features of the OD sheets.
For manufacturing accuracy, the complex morphol-
ogy of the ODs was simplified while maintaining the
overall features and patterns. Two sheets of ODs were
designed per species i.e. with or without a protective
upper cover. The protecting cover mimicked the
stratum corneum, the keratinized outer layer of the
lizard skin. Aside from the absence or presence of
the protecting cover, each sheet consisted of a hard
component mimicking the mineralized osteoderm,
and a soft base mimicking the stratum compactum
of the skin in which the OD is embedded.

3D models of the OD sheets were manufactured
using a multi-material printer Objet Connex500
(Stratasys, MN, USA). The plane resolution (XY) was
600 × 600 DPI with minimum printable thickness
of 0.5 mm. The superficial and deep covering layers

3
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Figure 3. Biomimetic designed and manufactured sheets of OD corresponding to (a) H. suspectum, (b) O. ventralis and (c) C.
zebrata respectively.

of OD sheets, mimicking the soft tissues, were
manufactured using a ‘rubber-like’ material
(FLX9060_DM, E = 0.78 MPa) while the ODs
were manufactured using a ‘hard’ material
(RGD8715_DM, E = 2.3 GPa). All sheets were
printed in 50 mm × 50 mm × 18 mm (length
× width × max. height) and had the same base
thickness of 4 mm. Considering the relationships
that exist between the various morphological features
of the three chosen species, two alternative sheets of
ODs were developed for Heloderma. In one of these, a

single OD was developed matching the overall height
(18 mm) of the OD sheet for other species. The
second Heloderma sheet had multiple ODs but the
overall height of the sheet was less than that of the
other two species (see figure 3). Note the sheets were
manufactured in their entirety in one step and it is
possible that support materials are trapped between
the layers. However, we consider this should be
minimal. In addition, the lacunae of the Ophisaurus
ODs were not included in the biomimetic designed
and manufactured sheets of this species.
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Figure 4. Schematic of the experimental set up used for
the weight drop testing.

Testing. A drop weight impact test was carried
out on the manufactured sheets, see schematic rep-
resentations in figure 4. In brief, the manufactured
sheets were placed on a hard surface. Weights of 50 g,
100 g and 200 g were then dropped onto the sheets
from an initial height of H1; the weights collided
with the sheets and bounced back. The bounce
back height was recorded using a high-speed cam-
era (Phantom Miro M320S). Total energy absorbed
during the impact test was calculated and divided by
the initial potential energy of the weights to obtain
the total energy absorption ratio using the following
equation

Energy Absorption Ratio (EAR)

=
mgH1 − mgH2

mgH1
=

H1 − H2

H1
.

The transmitted impact load that the OD sheets
and underlying hard surface were subject to during
the drop weight test was measured for the weights.
This was carried out using a thin film force sensor
RP-S40-ST with 40 × 40 active area (Shenzhen Film
Sensor Technology Co., Ltd., China) connected with
an ELEGOO UNO R3 Board (ELEGOO Inc., China)
and placed under the 3D printed samples and over
a hard surface during the drop weight test. Detailed
functions for data acquisition were programmed and
verified in Arduino IDE (Arduino Software Inc.,
Italy).

3. Results

Morphological characterisation. Tables 1–3 sum-
marises the morphological measurements made for
the ODs considered in this study.

The ODs of H. suspectum had a ‘tile’-like arrange-
ment without any overlapping. Each OD had a near-
circular base with outer diameters of ca 2.4–2.7 mm
depending on the exact measurement points (see D1
and D2 in table 1 and figure 2(a)). Three radiating
levels were identified. The center of the OD had the

highest point with a single frustrum-like morphol-
ogy. A similar morphology was repeated in a circular
pattern at two lower levels of slightly lower thickness.
The OD heights measured at levels 1–3 (see P1–P3 in
figure 2(a)) were 0.79 ± 0.06 mm, 0.69 ± 0.07 mm
and 0.41 ± 0.02 mm respectively.

O. ventralis ODs had an overlapping arrangement.
Each single OD had a ‘smooth’gliding surface (where
it is overlapped by an adjacent OD) and a sculptured
free (overlapping) surface (see figure 2(b)). Both the
smooth and sculptured parts of the OD were com-
parable in length, width and thickness. For example,
the average width of the smooth and sculptured parts
was 2.09 ± 0.12 mm and 2.45 ± 0.16 mm respec-
tively (table 2). The overall length of each OD (i.e. the
combined length of the smooth and sculptured parts)
was ca 8 mm. Their thickness varied and was depen-
dent on the point of measurement e.g. varying in the
range of 0.28 ± 0.03 mm (at measurement point 5
in the smooth part) to 0.73 ± 0.07 mm (at measure-
ment point 2 in the smooth part). ODs overlapped at
44.45◦ ± 2.16◦ (see figure 2(b)).

C. zebrata ODs are compound, in that they are
composed of several elements (osteodermites) form-
ing a distinctive morphology. These ‘fan’ shaped
ODs consisted of several ‘rectangular’ peripheral
osteodermites (here categorised into three types see
figure 2(c)) tightly connected to one another and sur-
rounding a varied number of more ‘rounded’ cen-
tral osteodermites. The maximum diameter of the
rounded osteodermites was 0.9 ± 0.08 mm with the
overall maximum length and width of the compound
OD ((a) and (b) as outlined in figure 2(c)) in the
range of 8.77–9.82 mm and 4.74–5.07 mm (table 3).
The thickness of each OD was highest at its center
(i.e. where the rounded osteodermites were located)
in the range of 0.19–0.24 mm (table 3). The thick-
ness gradually decreased toward the edges of the com-
pound OD (i.e. the outer edges of the ‘rectangular
osteodermites) in the range of 0.09 ± 0.01 (see e.g.
measurement point S in figure 2(c)).

Manufacturing and testing. Designed and manu-
factured individual ODs and sheets of ODs based on
H. suspectum, O. ventralis and C. zebrata are shown
in figure 3. Testing these sheets with a soft cover
demonstrated that their energy absorption can be
load dependent (figure 5(a)). Moreover, the sheets
mimicking H. suspectum showed a reduction in the
energy absorption, regardless of the number of ODs,
when increasing the drop weight load from 50 to
200 g. The opposite result was obtained for the sheets
mimicking O. ventralis and C. zebrata ODs (for the
loads considered in this study) with the sheets mim-
icking the Corucia ODs showing the highest energy
absorption ratio at 200 g (figure 5(a)).

When considering the impact of the soft cover
placed over the OD sheets, all manufactured sheets
showed a reduction in their energy absorption ratio
without this cover (figure 5(b)). The differently
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Table 1. A summary of morphological characterisation of the H. suspectum, ODa ,b.

Average max. Average min. Average max.
External parameter (Unit: mm) diameter (D1) diameter (D2) peak height (H)

Value 2.74 ± 0.09 2.41 ± 0.13 0.84 ± 0.07

Internal parameter (Unit: mm) Level 1 Level 2 Level 3

Average peak height (P) 0.79 ± 0.06 0.69 ± 0.07 0.41 ± 0.02
Average bottom thickness (B) 0.55 ± 0.04 0.52 ± 0.05 0.34 ± 0.03
Ratio of peak heights of three levels (P1:P2:P3) 1:0.88:0.53
Ratio of bottom thicknesses of three levels (B1:B2:B3) 1:0.95:0.61
Average max. Area (L∗W) of frustum-like structure (FLS) (mm2) 0.77 ± 0.04 0.4 ± 0.03 0.18 ± 0.03
Average number of frustum-like structure 1.00 6 ± 0.82 10.00

aThe average values are based on the eight three-level Heloderma OD samples.
bThe average area of FLS is defined as the max. length ∗ max. width where the geometry of FLS is roughly regarded as parallelogram or
rectangle.

Table 2. A summary of morphological characterisation of the O.
ventralis ODa.

Unit: mm Parameter Range or Value

Smooth part 1

Max. Width (a) 2.09–2.36
Min. Width (b) 1.71–2.12
Average width (W1) 2.09 ± 0.12
Average length (L) 3.99 ± 0.24
Width/length ratio (R1) 0.52
Average thickness 1 0.51 ± 0.03
Average thickness 2 0.73 ± 0.07
Average thickness 3 0.29 ± 0.03
Average thickness 4 0.63 ± 0.06
Average thickness 5 0.28 ± 0.03

Rough part 2

Max. Width (A) 2.17–2.94
Min. Width (B) 2.01–2.69
Average width (W2) 2.45 ± 0.16
Average length (L) 3.99 ± 0.24
Width/Length ratio (R2) 0.61
Average thickness 1 0.52 ± 0.05
Average thickness 2 0.63 ± 0.03
Average thickness 3 0.30 ± 0.02
Average thickness 4 0.61 ± 0.09
Average thickness 5 0.29 ± 0.02

Interface part 3 Average width (W3) 0.47 ± 0.03
Average degree (θ) 44.45 ± 2.16

aThe average values are based on the eight Ophisaurus OD samples.

designed sheets showed varying levels of reduction
in their energy absorption ratio, with the multiple
OD H. suspectum sheet showing the highest drop in
its energy absorption ratio when the soft cover was
absent (ca 7.5% see figure 5(b)).

The forces recorded under each of the sheets dur-
ing the weight drop test showed an increase with
each increase in the weight dropped (figure 5(c)). For
example, the forces recorded under the single H. sus-
pectum sheet ranged from 1.3N at 50 g to 13.3 at 200 g.
At the 200 g weight drop, the forces measured under
the single H. suspectum sheet were highest, followed
by similar forces under the O. ventralis and C. zebrata
sheets, with the lowest recorded forces being for the
multiple OD H. suspectum sheet (figure 5(c)).

4. Discussion

This preliminary investigation highlights the mor-
phological variation that exists between the ODs
of three lizard species. Biomimetic ODs were
designed and manufactured as 50∗50 mm sheets
of ODs using additive manufacturing technique.
These were then subjected to a simple weight
drop test. Although the findings are preliminary,
the study as a whole demonstrates how natural and
physical sciences can come together to design and
develop new biomimetic sheets, in this case based on
ODs in lizards.

Morphology. There is a remarkable diversity in
the morphology and arrangement of ODs in lizards
(Vickaryous and Sire 2009, Williams et al 2021). What
underlies this variation is largely unknown, but is
likely the result of a combination of natural selec-
tion and developmental constraints. The three species
investigated in this study have very different lifestyles:
H. suspectum is a large, slow moving, ground-living
lizard; O. ventralis is a limbless lizard that moves
both above and below ground; and C. zebrata is a
large, slow-moving herbivorous lizard that lives in the
tree canopy and rarely comes to the ground. If OD
are largely protective, the slow-moving, ground liv-
ing Heloderma might be predicted to have the most
extensive armour of the three, rather than the reverse.
However, Heloderma spends up to 90% of the day
under cover and generally avoids open areas. More-
over, it has a venomous bite, a feature it advertises
to potential predators (e.g. coyotes, badgers, raptorial
birds) through its black and pink/red warning col-
oration (e.g. Beck 2005). Predation pressure is there-
fore likely not high. However, Heloderma does engage
in aggressive male-male combat, involving a mixture
of biting, clawing, and wrestling (Beck and Ramirez-
Bautista 1991), and this may help to explain its more
flexible osteodermal covering. Ophisaurus and Coru-
cia on the other hand both have a dense covering of
overlapping ODs, but the morphological difference

6
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Table 3. A summary of morphological characterisation of the C. zebrata ODa,b.

Unit: mm Parameter Range or Value

External dimension

Length (b) 8.77–9.82
Width (a) 4.74–5.07
Average length/width ratio (R1) 1.89 ± 0.04
Secondary length (c) 5.37–7.26
Secondary width (d) 1.66–1.67

Large-edge osteodermite

Type 1
Max. length (e) 1.45–2.00
Min. length (f ) 0.64–1.10
Average width (g) 1.8 ± 0.05
Average area (A1) (mm2) 2.33 ± 0.02
Average max. thickness (h) 0.19 ± 0.01
Average min. thickness (i) 0.08 ± 0.01

Type 2
Max. length (m) 2.56–2.90
Tip width (n) 1.19–1.48

Small-edge osteodermite

Type 3
Max. Length (o) 0.98
Min. Length (p) 0.69
Average width (q) 1.14 ± 0.07
Average area (A2) (mm2) 0.95 ± 0.04
Average max. thickness (r) 0.2 ± 0.00
Average min. thickness (s) 0.09 ± 0.01

Inside bulges

Average max. diameter (j) 0.9 ± 0.08
Average min. diameter (k) 0.74 ± 0.11
Average area (A3) (mm2) 0.53 ± 0.02
Height (l) 0.19–0.24

aThe average values are based on the four size 1 Corucia OD samples.
bThe calculation method for the area of edge OD-ites (A1 and A2) are same with that for
trapezoid, e.g. large-edge OD-ite, the A1 = (e + f )∗g/2; the A3 is the product of max.
diameter (j) and min. diameter (k).

between these ODs of Ophisaurus and Corucia is strik-
ing, those of Corucia being compound with poten-
tially higher energy absorption. O. ventralis has a long,
slender flexible body and can move much faster than
Corucia (and Heloderma). Nonetheless, it has a wide
range of mammalian (e.g. pig, bobcat, racoon), avian
(e.g. hawks, wading birds) and reptilian (e.g. elapid
and viperid snakes) predators (e.g. Durso and Mid-
dleton 2019). This raises questions as to the function
of its osteodermal cover that can probably only be
answered by field observations of predation events.
The same applies to Corucia. There is unfortunately
relatively little information on Corucia in the wild
(e.g. Hagen 2011). This arboreal lizard rarely comes
to the ground and is well camouflaged among the
foliage of the canopy. Moreover, it is mainly active at
night and remains in refugia within the trees by day,
an activity pattern that would give it some protection
against the raptorial birds that are recorded as being
among its major predators (along with snakes and
introduced arboreal rats). How well the ODs might
protect Corucia from raptor talons or a bite from
a large rat is unclear, and nothing has been written
about agonistic encounters with conspecifics. In the
present study we did not investigate the potential vari-
ability of the aforementioned ODs at the nano-scale
i.e. in terms of their biochemical composition that
could have been adapted in response to the external
loading environment imposed on these species.

Manufacturing and testing. A unique contribu-
tion of this study was the biomimetic design and
development of 3D printed sheets of ODs informed
by the morphological characterisation of ODs in the
three species considered. Although this was a pre-
liminary study, there are two points that are worth
highlighting.

First, two sheets of ODs were developed based on
the structure and arrangement of Heloderma ODs.
Although the multiple OD sheet was naturally more
comparable with the sheets for the other two lizards,
keeping the original morphology of Heloderma skin
meant that this sheet was thinner overall than the
other two sheets. This led to a greater flexibility of
the sheet compared to the other two thicker sheets.
On the other hand, the overlapping nature of the
OD components within the Ophisaurus and Coru-
cia sheets meant that during the impact testing, the
gaps between overlapping ODs gave these sheets their
flexibility. It is also possible that the compound ODs
of Corucia can indeed provide greater flexibility than
those of Ophisaurus. However, despite the results
(figure 5(a)) showing a higher energy absorption for
Corucia over Ophisaurus, this is provisional, given
that the printed sheet did not model the collagen
fibers that connect the osteodermites within these
compound ODs in life.

Secondly, we manufactured the ODs out of a
rather ‘hard’ material with a uniform elastic modulus
higher than that of their superficial and deep covers

7
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Figure 5. A comparison between the energy absorption ratio of the 3D printed sheets (a) with and (b) without the soft cover and
(c) the measured reaction forces.
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(see figure 3). Our ongoing histological investi-
gations show that single ODs are a composite
structure with non-homogeneous material proper-
ties (e.g. Moss 1969, Zylberberg and Castanet 1985
Vickaryous and Hall 2006, Iacoviello et al 2020).
Manufacturing such functionally graded structures is
possible with advanced additive manufacturing tech-
niques, and would be a future step in investigating the
contribution of different tissues to impact resistance
in sheets of ODs.

Limitations. There were several limitations within
this study, notably: (1) the morphological character-
ization was focused on ODs from a specific region
of the body (dorsal neck). There is some variabil-
ity in the morphology of ODs in different regions
of the body. Nonetheless, as far as possible we char-
acterized the OD from comparable body regions in
the three species studied. (2) Only one sheet of ODs
was manufactured and only one experiment (weight
drop) was carried out. A key follow-up experiment
would include additional sheets to characterise any
variability between printed sheets. (3) Other experi-
ments such as puncture testing should be run. (4) The
lacunae of the Ophisaurus OD, as well as the joints
between osteodermites in Corucia, and other internal
structures that might be present within the single ODs
(see e.g. Iacoviello et al 2020) were not included in
the biomimetic designs and manufactured sheets con-
sidered in this study. These might impact the energy
absorptions of individual ODs and can be further
investigated in future studies.

In summary this study presented a macroscopic
morphological characterisation of ODs in three lizard
species and focused on the design and testing of three
biomimetic OD sheets. Given the preliminary nature
of the testing carried out, caution is needed when
interpreting the findings of this study. Nonetheless it
suggests that compound overlapping ODs as found in
Corucia permit a higher energy absorption by com-
parison with overlapping simple ODs as observed in

Ophisaurus. This concept can be further tested and
explored where shock absorption is required.
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Appendix

A series of experiments identical to the drop weight
experiment described in the main text was carried
out on additional baseline manufactured sheets as
shown in figure A1(a). Due to supply issues beyond
our control we had to manufacture the additional
sheets from slightly different materials. For compar-
ison, we manufactured a Corucia sheet as described
in the main text from the new materials, and com-
pared the results with those from the original print,
here referred to as ‘Corucia (original print)’. The
measurements obtained from the ‘Corucia (original
sheet)’ and the re-printed ‘Corucia’ sheet were very
similar (compare the blue lines in figures A1(b) and
(c)). The results of these additional tests confirmed
that the biomimetic designed Corucia sheets had
higher energy absorption characteristics by compar-
ison with a three-layered sheet, a one layer rigid sheet
(18 mm) and one layer rubber-like (18 mm) sheet (see
figures A1(a)–(c)).
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Figure A1. (a) 3D printed samples. Note ‘Corucia (original print)’ refers to the sample presented in the main text that was
compared with samples from the other two lizard species. The other samples included here were 3D printed from slightly
different materials, due to supply issues beyond our control. The rubber-like material (i.e. FLXA2060_DM) had an almost
identical elastic modulus to the one used in the main text (i.e. FLX9060_DM) and the rigid opaque material (i.e.
RGDA8455_DM) had an elastic modulus 13% lower than the one used in the main text (i.e. RGD8715_DM). (b) A comparison
between the energy absorption ratios of all samples shown in figure A1(a) that were tested under drop weight impact experiments
identical to those described in the main text. (c) A comparison between the measured reaction forces of all samples shown in
figure A1(a) that were tested under drop weight impact experiments identical to those described in the main text. Note, all sheets
had the same 50 mm × 50 mm (length × width) square shape.
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