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18 Abstract

19 The consequences of climate change for biogeographic range dynamics depend on the 

20 spatial scales at which climate influences focal species directly, and indirectly via biotic 

21 interactions. An overlooked question concerns the extent to which microclimates modify 

22 specialist biotic interactions, with emergent properties for communities and range dynamics. 

23 Here, we use an in-field experiment to assess egg-laying behaviour of a range-expanding 

24 herbivore across a range of natural microclimatic conditions. We show that variation in 

25 microclimate, resource condition, and individual fecundity can generate differences in egg-

26 laying rates of almost two orders of magnitude in an exemplar species, the brown argus 

27 butterfly (Aricia agestis). This within-site variation in fecundity dwarfs variation resulting from 

28 differences in average ambient temperatures among populations. Although higher 

29 temperatures did not reduce female selection for host plants in good condition, the thermal 

30 sensitivities of egg-laying behaviours have the potential to accelerate climate-driven range 

31 expansion by increasing egg-laying encounters with novel hosts in increasingly suitable 

32 microclimates. Understanding the sensitivity of specialist biotic interactions to microclimatic 

33 variation is therefore critical to predict the outcomes of climate change across species’ 

34 geographic ranges, and the resilience of ecological communities. 

35 Keywords: Aricia agestis, ectotherm, host shift, Lepidoptera, local adaptation, thermal 

36 biology
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37 Background

38 Responses to climate change occur through a combination of geographic range shifts [1,2] 

39 and in situ plastic and genetic changes that modify the phenology, behaviour or resource 

40 use of phenotypes [1,3,4]. These changes determine the abundance, distribution and 

41 persistence of species and their biotic interactions [1,5–8]. Where biotic interactions are 

42 specialised (e.g. feeding by many phytophagous insects), they create locally suitable habitat 

43 patches with steep ‘suitability gradients’ at patch edges [9], embedded within a matrix of 

44 unsuitable habitats which limit dispersal and colonization. Specialist interspecific interactions 

45 can therefore constrain range expansion [10,11]. 

46 The effects of climate change on how individuals encounter, select and exploit resources, or 

47 on resource quality itself, could alter range dynamics by smoothing or steepening existing 

48 suitability gradients, for example by promoting or precluding certain biotic interactions [12–

49 17]. Research on Lepidoptera host use suggests that range expansion itself promotes 

50 incorporation of novel hosts in herbivore diets [18,19], while egg shortfall related to the 

51 availability of suitable (micro)habitats and climatic conditions is an important limiting factor at 

52 species’ range margins [20,21]. Therefore, understanding how individuals’ behaviours are 

53 mediated by local conditions during species’ interactions such as host selection represents a 

54 critical step in predicting ecological and evolutionary outcomes of climate change, but is 

55 often overlooked [22–25]. Assessments of responses to environmental change also rarely 

56 account for the sub-daily and sub-metre temporal and spatial resolutions over which 

57 interaction partners and climate vary [26,27]. Such fine-scale variation influences individual 

58 behaviour, resource acquisition and fitness, understanding of which may be critical to predict 

59 broader ecological responses to climate change [28–35].

60 In this paper, we consider how the steepness of habitat suitability gradients may be modified 

61 by individual responses to variation in microclimate and resource condition. We use as a 

62 case study a specialist butterfly that has undergone a rapid range expansion associated with 

63 the evolution of its biotic interactions to exploit more widespread novel host plants [5,11]. 

64 Until the 1990s, the UK distribution of the brown argus butterfly (Aricia agestis, Lycaenidae) 

65 was largely restricted to calcareous grasslands, where it used the perennial common 

66 rockrose (Helianthemum nummularium, Cistaceae) as its main larval host [36]. Since then, 

67 populations have colonised formerly unsuitable regions by increasingly (and apparently 

68 exclusively) exploiting Geraniaceae, including the annuals Erodium cicutarium, Geranium 

69 dissectum and G. molle [5,11,14,37,38]. Studies suggest that warming has enabled 

70 increasing use of Geraniaceae and persistence of populations in areas that were previously 

71 too cool, coupled with evolutionary changes to increase the frequency of females using only 

72 Geraniaceae as hosts [5,11,14,37,39]. These analyses have focused on changes in coarse 

73 climate metrics (i.e. Central England Temperature). However, temperature variation at finer 

74 scales can dwarf that observed more broadly [26,40]. For example, ground-level 
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75 temperatures of south-facing grasslands in England can be >15 °C warmer than adjacent 

76 north-facing slopes [41]. Understanding how microclimate determines egg-laying behaviour 

77 in this species can therefore act as a model for the effects of warming on a biotic interaction 

78 that determines ecological and evolutionary range dynamics.

79 We test the extent to which within-site microclimatic temperature variation affects egg-laying 

80 behaviour of individual butterflies on the novel host G. dissectum. We show that individual 

81 responses to variation in microclimate and the condition of host plants can generate 75-fold 

82 differences in egg-laying rates. These exogenous drivers of expressed fecundity could 

83 therefore have important impacts on broader-scale host use and range dynamics, by 

84 smoothing or steepening habitat suitability gradients at range margins.

85 Methods

86 Experimental approach

87 We carried out experiments on wild-caught female brown argus between 5th August and 7th 

88 September 2017 to test how natural microclimatic variation mediates in situ egg-laying 

89 behaviours on G. dissectum, a Geraniaceae species widely used as a larval host in recently 

90 established populations [14]. We established 25 experimental cages (Figure 1a) in the dune 

91 system of Holkham National Nature Reserve (Norfolk, UK), in locations chosen to represent 

92 the local range of slopes and aspects (Appendix 1). At 30 minute intervals, we measured in-

93 cage ground-level temperatures (two dataloggers per cage), ambient temperatures (single 

94 datalogger with Stevenson screen 1.5 m above ground) and ground-level air temperatures 

95 (29 individual dataloggers at randomly-selected locations across the site) (Appendix 1). 

96 Cages contained ≥95% bare ground, no natural host plants, and two greenhouse-grown 

97 G. dissectum (‘experimental hosts’) per cage (Figure 1a; Appendix 1). Ground albedo and 

98 degree of thermal coupling between ground and air temperature will therefore have been 

99 similar between cages, and representative of microclimates in open dune areas [42], where 

100 A. agestis lay eggs on wild Geraniaceae at this site. Differences between cages in slope, 

101 aspect and topographic shading likely caused large variation in net radiation absorbed by the 

102 ground, thereby generating large variation in cage temperatures (microclimates) for a given 

103 ambient temperature. In-cage microclimates were representative of the range and averages 

104 of ambient and ground-level temperatures experienced at the site (Figure 1b; Appendix 1).  

105 All experimental hosts were watered daily and, though our experimental focus was on 

106 microclimatic temperature variation, we monitored host condition and phenophase every two 

107 days, to quantify temporal variation in plant traits that may influence acceptability for egg-

108 laying. Host plant condition was visually assessed on a scale of 0–3 (poor–high quality for 

109 egg-laying, following [36]; see Appendix 1 for details and justification), and phenophase was 

110 recorded on a four-point scale describing whether the plant was in leaf, bud, flower or had 
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111 set seed. Average plant condition within cages was maintained at ≥2.0 by replacing plants 

112 that deteriorated to category 2, and plants were typically replaced before flowers were visible 

113 (<5% of cage exposures included one flowering plant). This was achieved by growing 240 

114 plants in four cohorts over a six-week period, so all plants used were similar in age, condition 

115 and phenophase. Adult female butterflies were captured and housed individually in mesh 

116 pots overnight prior to individual release into experimental cages (see Appendix 1 for 

117 husbandry). 

118 Females were individually assigned to cage exposures each morning, in a pseudo-

119 randomised manner to control for order effects (Appendix 1). A total of 109 females were 

120 exposed to host plant and thermal environments during 433 cage exposures. To avoid 

121 including data from unmated females, we use data from those 43 females which laid during 

122 at least one exposure. These females experienced 251 exposures (5.8 ± 2.8 (SD) exposures 

123 each) lasting on average 7 h 49 m (± 47 m (SD)) per exposure. After each exposure, all 

124 experimental hosts were systematically searched for eggs; because there were only two 

125 plants per cage it was possible to find all eggs, which were removed to avoid double 

126 counting. Plant phenophase and the condition of the focal leaf and plant were recorded for 

127 each egg-laying location. Post-exposure, butterflies were housed overnight in mesh pots 

128 before release into a new cage on the following days. We consider data from all exposures 

129 occurring between the hours of 07:30–18:30 which included at least six hours of favourable 

130 weather (Appendix 1). 

131  Analysis

132 We modelled egg-laying probability per exposure using logistic regression with ‘lme4’ [43]. 

133 For exposures in which eggs were laid, hourly egg-laying rate was modelled using a gamma 

134 GLMM (log link) with ‘glmmTMB’ [44]. 

135 For both analyses we considered female ID as a random intercept term (to account for 

136 individual variability due to factors such as age) and mean cage temperature (during the 

137 appropriate exposure for each cage) as a candidate random slope term representing among-

138 individual variation in thermal sensitivity. As candidate fixed effects, we considered cage 

139 temperature (mean temperature of the relevant cage during the exposure) and its quadratic 

140 term, exposure number (whether it was the individual’s 1st, 2nd, etc. exposure), study day 

141 and cumulative eggs laid in prior exposures as scaled continuous predictors, and mean host 

142 plant condition and phenophase as ordered factors (with three and five factor levels 

143 respectively; Appendix 1). We also tested for a host condition-cage temperature interaction. 

144 We constructed candidate model sets by considering all plausible parameter combinations, 

145 estimated parameters using maximum likelihood, and used AIC-based model selection to 

146 determine model parsimony (see Appendix 1 for details and diagnostic checks). Random 

147 effects significance was tested with likelihood ratio tests, and power to detect random slopes 
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148 was tested with simulation-based power analyses (Appendix 1). We used R version 3.5.1 

149 [45–47].

150 Results

151 Egg-laying probability increased as a function of in-cage temperature (Table 1; Figure 1c), 

152 such that the odds of laying increased by 27% per 1 °C temperature increase. There was 

153 also a negative effect of study day (Table 1; Figure S4); candidate models showed limited 

154 support for positive effects of exposure number and host condition. There was no support for 

155 effects of prior laying experience or host phenology in models of egg-laying probability or 

156 rate (Table 1). 

157 Egg-laying rate increased as a function of in-cage temperature and host condition (Figure 

158 1d): by ~12% per 1 °C (Figure 1e), and by a factor of ~7.9 on good vs poor condition hosts 

159 (Figure 1f). This equates to an egg-laying rate that is ~75 times higher on the best condition 

160 hosts in the warmest microclimate than on the poorest condition hosts in the coolest 

161 microclimate. Candidate models showed limited support for a positive effect of exposure 

162 number and a negative effect of study day (Table 1).  

163 The random effect variance (Table 1) demonstrates between-individual variation in egg-

164 laying probability (LRT = 9.016, p = 0.003) and rate (LRT = 10.903, p < 0.001). There was no 

165 support for inclusion of random slopes regarding temperature for laying probability (LRT = 

166 0.065, p = 0.968) or rate (LRT = 0.974, p = 0.615): females differed in their fecundity overall 

167 but not in their sensitivity to temperature. Power analyses demonstrated low power to detect 

168 random slopes (5.6% in a model of laying probability; Appendix 1).

169 Discussion

170 We assessed egg-laying on a novel host across a temperature range that is representative 

171 of natural microclimates, but wider than the mean ambient temperature range typically 

172 experienced by the range-expanding brown argus butterfly across England [11]. Our data 

173 show that individual responses to variation in microclimates and host plant condition can 

174 combine to generate differences in egg-laying rates that are almost two orders of magnitude 

175 greater than population-average differences in egg-laying rates observed between host 

176 species [14].

177 Egg-laying females were remarkably sensitive to small variations in host condition, a factor 

178 we sought to minimise in our experiment. This is the first time such discrimination has been 

179 shown in the Geraniaceae hosts used in the brown argus’ range expansion, and 

180 complements a previous [36] demonstration that females select lush green leaves (with thick 

181 mesophylls and high nitrogen content) when laying on the traditional perennial host, 

182 H. nummularium. Compared to H. nummularium, the condition of wild Geraniaceae hosts 

183 appears more temporally variable [48]. As annuals, Geraniaceae may be less reliable 
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184 resources in terms of quality and availability at a fine spatial scale, even though they are 

185 more widely distributed at larger scales [37,49]. In this context, the bottom-up influences of 

186 plant phenotypic variation can provide a strong mechanistic basis for understanding 

187 population dynamic responses to global change in herbivores and plants [3,50,51]. 

188 A methodological concern is that cage experiments may eliminate use of long-distance, pre-

189 alighting cues for egg-laying site choice such as habitat structure or odour plumes of plant 

190 volatile compounds (e.g. [52]). Such cues could have altered the acceptability of the host 

191 plants with which the butterflies were confined (for example, relative to other host species). 

192 However, observations of eggs laid on natural hosts by free-flying brown argus suggest 

193 similar preferences regarding host condition [48]. These observations suggest either that the 

194 cage experiments do not introduce cue bias, or that long-distance and short-distance cues 

195 are well-correlated, as observed in some other species [53]. Furthermore, G. dissectum is 

196 often preferred in direct choices between host species, though population-level host species 

197 preference varies between sites [14].

198 The odds and rate of egg-laying increased dramatically with microclimatic temperature (by 

199 27% and 12% per 1 °C, respectively). Warming may therefore increase population growth 

200 through increased fecundity, provided suitable hosts are available. At ecological margins, 

201 warming also increases the distribution and connectivity of microhabitats that are suitable for 

202 egg laying [21]. Microclimatic variation could thereby drive range expansion at a faster rate 

203 than ambient temperatures would predict, and may account for recent range expansions by 

204 temperature-sensitive species across previously unsuitable landscapes [11,54,55]. 

205 Behavioural thermoregulation in ectotherms (e.g. basking), allows some thermal 

206 independence from the environment. However, many species (including the brown argus) 

207 are more dependent on microhabitat selection and their immediate thermal environment for 

208 thermoregulation [30]. Fine-scale temperature variation in the immediate proximity of 

209 resources may therefore have important effects on population responses to climate change 

210 [28–30,56,57].

211 In our experiment, the relationship between egg-laying rate and host condition did not vary 

212 with temperature. Though this experiment did not address inter-species host preferences, 

213 these results suggest that warming alone may not explain the concurrent host and range 

214 shifts observed in this species. Given the odds and rate of egg-laying increase dramatically 

215 with microclimatic temperature, warmer summers may increase the likelihood of females 

216 encountering and sampling alternative hosts in newly favourable microclimates, increasing 

217 the probability of host shifts during range expansion [18]. Larvae grow 10% larger and faster 

218 on Geraniaceae than on H. nummularium [5,58], provided temperatures are high and 

219 relatively stable. This may combine with increased fecundity to promote establishment and 

220 growth of populations using the novel host plants, once threshold temperatures are reached. 
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221 Beyond the potentially beneficial effects of warming on herbivore population growth, further 

222 warming may generate maladaptive behaviours. For example, if host condition is correlated 

223 with local temperature or moisture regimes then high egg-laying rates under warm, dry 

224 conditions may increase herbivore mortality through exposure to poor condition, desiccated 

225 hosts. Inflexible preferences for plants growing in drought-stressed habitats were 

226 maladaptive for Melitaea cinxia butterflies in an extremely dry year, reducing population 

227 persistence [59]. Given the capacity for behavioural responses to the environment to 

228 become maladaptive as climates change, there is a need for better understanding of genetic 

229 variation among individuals and the potential for the evolution of novel behaviours [35]. With 

230 this in mind, although we found significant among-individual variation in fecundity (random 

231 intercepts), our experiment had insufficient power to detect significant among-individual 

232 variation in behaviour [60,61]. 

233 Here, we show how biotic interactions can be determined by individual responses to 

234 variation in microclimate and resource condition. Spatial variation in microclimate may 

235 therefore be crucial in determining the steepness of habitat suitability gradients, which 

236 regulate rates of range expansion in fragmented landscapes [62]. Advances in modelling 

237 fine-scale spatial and temporal variation in microclimate can increasingly reveal when 

238 climatic conditions acting on individuals or biotic interactions regulate such range expansions 

239 [40,63,64]. Such approaches may permit a mechanistic understanding of range shifts, and 

240 higher resolution models of species distributions [48,65,66]. Incorporating robust evidence of 

241 the effects of microclimate and biotic interactions on range dynamics may thus improve 

242 understanding and prediction of ecological responses to climate change.
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451 Table 1. Summary of AIC analyses for GLMMs of egg-laying probability (LP) and rate (LR). 

452 Showing models with ΔAIC ≤ 6, including the best AIC model (MAIC), selected model (Mfinal) 

453 and null model (Mnull). Parameter estimates (with standard errors) are shown for the intercept 

454 (β0), study day (D), exposure number (E), mean cage temperature (T) and mean host 

455 condition (Q). Q is an ordered factor with orthogonal polynomial contrasts: estimates are 

456 presented for the linear (QL) and quadratic terms (QQ). Variance of the female ID random 

457 intercept term is denoted VRE. LL is the log-likelihood.

Model parameters
Model β0

βC

D
βC

E T
βC

QL
βE

QQ
βQ
βT

VRE
FI
FS

LL ΔAIC

LPAIC
0.194

(0.351)
-0.877
(0.253)

0.334 
(0.212)

1.090
(0.197)

0.866 
(0.647)

0.035 
(0.462) 0.716 -133.71 0.00

LPa
0.616 

(0.215)
-0.855 
(0.247)

0.306 
(0.209)

1.023 
(0.190) – – 0.712 -135.74 0.06

LPfinal
0.587

(0.213)
-0.648 
(0.203) – 1.006

(0.188) – – 0.736 -136.83 0.25

LPnull
0.542

(0.195) – – – – – 0.664 -162.12 46.83

LRAIC
-0.231
(0.189)

-0.241 
(0.118)

0.205 
(0.103)

0.428
(0.084)

1.593
(0.351)

-0.331
(0.243) 0.223 -248.84 0.00

LRfinal
-0.207
(0.196) – – 0.441

(0.085)
1.458

(0.345)
-0.276
(0.241) 0.279 -251.12 0.57

LRnull
0.649

(0.126) – – – – – 0.266 -269.38 31.08

458

459 Figure legends

460 Figure 1. (a) Experimental cage with two greenhouse-grown Geranium dissectum and 

461 iButton dataloggers. (b) Daily minimum, mean and maximum temperature across all cages 

462 (In-cage), compared with daily average across 29 iButtons distributed randomly at ground 

463 level around the site outside of cages (Ground), and ambient temperature measured at 1.5 

464 m above ground (Ambient) (c) Probability of egg-laying increases with mean cage 

465 temperature (model LPfinal). Point clouds indicate exposures during which eggs were (1) and 

466 were not (0) laid, lines represent among-female variation. (d) Mean egg-laying rate grouped 

467 by host condition and mean cage temperature (range = 13.7 – 34.3 °C; grouping for display 

468 only) during the relevant exposure; bar labels show sample size. (e) Marginal effects of 

469 mean cage temperature on egg-laying rate; lines show among-female variation (model 

470 LRfinal), points show raw data. (f) Egg-laying rate grouped by host condition, showing 

471 marginal effects (model LRfinal), 95% confidence intervals, and raw data (coloured points).
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Figure 1. (a) Experimental cage with two greenhouse-grown Geranium dissectum and iButton dataloggers. 
(b) Daily minimum, mean and maximum temperature across all cages (In-cage), compared with the daily 

average across 29 iButtons distributed randomly at ground level around the site outside of cages (Ground), 
and ambient temperature measured at 1.5 m above ground (Ambient) (c) Probability of egg-laying increases 

with mean cage temperature (model LPfinal). Point clouds indicate exposures during which eggs were (1) 
and were not (0) laid, lines represent variation among females. (d) Mean egg-laying rate grouped by host 

condition and mean cage temperature (range = 13.7 – 34.3 °C; grouping for display only) during the 
relevant exposure; bar labels show sample size. (e) Marginal effects of mean cage temperature on egg-

laying rate; lines show variation among females (model LRfinal), points show raw data. (f) Egg-laying rate 
grouped by host condition, showing marginal effects and 95% confidence intervals (model LRfinal), and raw 

data (coloured points). 

387x387mm (236 x 236 DPI) 

Page 17 of 15

http://mc.manuscriptcentral.com/bl

Submitted to Biology Letters

View publication statsView publication stats

https://www.researchgate.net/publication/353681328

