The Rise of Metallurgy in Eurasia

Evolution, Organisation and Consumption of Early Metal in the Balkans

Edited by
Miljana Radivojević, Benjamin W. Roberts, Miroslav Marić, Julka Kuzmanović Cvetković and Thilo Rehren
Miljana Radivojević holds the Archaeomaterials Lectureship at the UCL Institute of Archaeology (UK), where she graduated in Archaeometallurgy. She has spent more than 20 years publishing on early metallurgy in the Balkans and southwest Asia and the role of aesthetics in the invention of novel technologies. She continues to explore the evolution of metallurgy across most of prehistoric Eurasia as a means of uncovering the histories of metalsmiths, and the societies and environments they lived in.

Benjamin Roberts has spent over 20 years researching and publishing on European Copper and Bronze Age archaeology and frequently metallurgy and metal objects across Europe. He co-edited with Chris Thornton *Archaeometallurgy in Global perspective: Methods and Syntheses* (2014) and is currently leading Project Ancient Tin. Prior to joining the Department of Archaeology at Durham University, he was the Curator for the European Bronze Age collections in the British Museum.

Miroslav Marić is a specialist in the Neolithic-Bronze Age of the central Balkans at the Institute for Balkan Studies, Serbian Academy of Sciences and Arts, Serbia. He is the field director of the Gradište Iđoš project. His research interests include settlement archaeology, landscape archaeology, the Neolithic and Bronze Age of the Balkans, and radiocarbon dating.

Julka Kuzmanović-Cvetković was the Senior Custodian (now retired) at the Homeland Museum of Toplica in Prokuplje, Serbia. She spent more than four decades excavating the site of Pločnik, and developed a unique open air archaeo-park on the site that attracts tourists from the region, and across the globe.

Thilo Rehren is the A.G. Leventis Professor for Archaeological Sciences at the Cyprus Institute in Nicosia, Cyprus. In 1999 he was appointed to a Chair in Archaeological Materials at the UCL Institute of Archaeology in London, UK. Following a five-year secondment to establish UCL Qatar as a postgraduate training and research Centre of Excellence in Museology, Conservation and Archaeology he joined the Cyprus Institute in 2017. He places particular emphasis on the integration of archaeological, scientific and historical information, and on investigating the correlation and cross-fertilisation between different crafts and industries in the past.
The Rise of Metallurgy in Eurasia

Evolution, Organisation and Consumption of Early Metal in the Balkans

Edited by
Miljana Radivojević, Benjamin W. Roberts, Miroslav Marić, Julka Kuzmanović Cvetković and Thilo Rehren
To the memory of Borislav Jovanović, our colleague, friend and inspiration

(1930 – 2015)
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Authors</td>
<td>v</td>
</tr>
<tr>
<td>Foreword by Evgeniy N. Chernykh</td>
<td>xi</td>
</tr>
<tr>
<td>Foreword by Barbara S. Ottaway</td>
<td>xiii</td>
</tr>
<tr>
<td>Foreword by Stephen J. Shennan</td>
<td>xiv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xvii</td>
</tr>
<tr>
<td>Part 1 Introduction</td>
<td></td>
</tr>
<tr>
<td>Chapter 1 The birth of archaeometallurgy in Serbia: a reflection</td>
<td>3</td>
</tr>
<tr>
<td>Julka Kuzmanović Cvetković</td>
<td></td>
</tr>
<tr>
<td>Chapter 2 The Rise of Metallurgy in Eurasia: Evolution, organisation and consumption of early metal in the Balkans: an introduction to the project</td>
<td>7</td>
</tr>
<tr>
<td>Thilo Rehren, Miljana Radivojević and Benjamin W. Roberts</td>
<td></td>
</tr>
<tr>
<td>Chapter 3 Balkan metallurgy and society, 6200–3700 BC</td>
<td>11</td>
</tr>
<tr>
<td>Miljana Radivojević and Benjamin W. Roberts</td>
<td></td>
</tr>
<tr>
<td>Chapter 4 The Vinča culture: an overview</td>
<td>38</td>
</tr>
<tr>
<td>Benjamin W. Roberts, Miljana Radivojević and Miroslav Marić</td>
<td></td>
</tr>
<tr>
<td>Chapter 5 Introduction to Belovode and results of archaeometallurgical research 1993–2012</td>
<td>47</td>
</tr>
<tr>
<td>Miljana Radivojević</td>
<td></td>
</tr>
<tr>
<td>Chapter 6 Introduction to Pločnik and the results of archaeometallurgical research 1996–2011</td>
<td>60</td>
</tr>
<tr>
<td>Miljana Radivojević</td>
<td></td>
</tr>
<tr>
<td>Chapter 7 Excavation methodology for the sites of Belovode and Pločnik</td>
<td>77</td>
</tr>
<tr>
<td>Miroslav Marić, Benjamin W. Roberts and Jugoslav Pendić</td>
<td></td>
</tr>
<tr>
<td>Part 2 Belovode</td>
<td>81</td>
</tr>
<tr>
<td>Chapter 8 Belovode: landscape and settlement perspectives</td>
<td>83</td>
</tr>
<tr>
<td>Miroslav Marić</td>
<td></td>
</tr>
<tr>
<td>Chapter 9 Belovode: geomagnetic data as a proxy for the reconstruction of house numbers, population size and the internal spatial structure</td>
<td>94</td>
</tr>
<tr>
<td>Knut Rassmann, Roman Scholz, Patrick Mertl, Kai Radloff, Jugoslav Pendić and Aleksandar Jablanović</td>
<td></td>
</tr>
<tr>
<td>Chapter 10 Belovode: excavation results</td>
<td>108</td>
</tr>
<tr>
<td>Miroslav Marić, Benjamin W. Roberts and Miljana Radivojević</td>
<td></td>
</tr>
<tr>
<td>Chapter 11 Belovode: technology of metal production</td>
<td>123</td>
</tr>
<tr>
<td>Miljana Radivojević and Thilo Rehren</td>
<td></td>
</tr>
<tr>
<td>Chapter 12 Pottery from Trench 18 at Belovode</td>
<td>152</td>
</tr>
<tr>
<td>Neda Mirković-Marić, Marija Savić and Milica Rajičić</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 13 Chronological attribution of pottery from Trench 18 at Belovode based on correspondence analysis ... 170
Miroslav Marić and Neda Mirković-Marić

Chapter 14 Belovode: technology of pottery production ... 186
Silvia Amicone

Chapter 15 Figurines from Belovode .. 199
Julka Kuzmanović Cvetković

Chapter 16 Ground and abrasive stone tools from Belovode ... 205
Vidan Dimić and Dragana Antonović

Chapter 17 Bone industry from Belovode ... 215
Selena Vitezović

Chapter 18 Chipped stone industry at Belovode ... 221
Elmira Ibragimova

Chapter 19 Chemical and technological analyses of obsidian from Belovode 233
Marina Milić

Chapter 20 Archaeobotanical evidence of plant use at the site of Belovode 236
Dragana Filipović

Chapter 21 Animal remains from Belovode ... 249
Ivana Dimitrijević and David Orton

Chapter 22 Belovode: past, present and future ... 259
Benjamin W. Roberts and Miljana Rađivojević

Part 3 Pločnik .. 263

Chapter 23 Pločnik: landscape and settlement perspectives ... 265
Miroslav Marić

Chapter 24 Pločnik: geomagnetic prospection data as a proxy for the reconstruction of house numbers, population size and the internal spatial structure .. 271
Knut Rassmann, Roman Scholz, Patrick Mertl, Jugoslav Pendić and Aleksandar Jablanović

Chapter 25 Pločnik: excavation results .. 281
Miroslav Marić, Jugoslav Pendić, Benjamin W. Roberts and Miljana Rađivojević

Chapter 26 Pločnik: technology of metal production ... 301
Miljana Rađivojević and Thilo Rehren

Chapter 27 Pottery from Trench 24 at Pločnik ... 317
Neda Mirković-Marić, Marija Savić and Milica Rajičić

Chapter 28 Chronological attribution of pottery from Trench 24 at Pločnik based on correspondence analysis .. 345
Neda Mirković-Marić and Miroslav Marić

Chapter 29 Pločnik: technology of pottery production .. 362
Silvia Amicone
Chapter 36

Pločnik: past, present and future

Benjamin W. Roberts and Miljana Radivojević

Introduction

The 2012 and 2013 excavations and subsequent post-excavation analyses by The Rise of Metallurgy in Eurasia project team at the site of Pločnik built upon nearly a century of discoveries and excavations led initially by the National Museum of Belgrade (Grbić 1929; Stalio 1960, 1962, 1964, 1973) and co-led latterly by the National Museum Belgrade and Museum of Toplica, Prokuplje (Kuzmanović Cvetković 1998; Šljivar 1996, 1999, 2006; Šljivar and Kuzmanović Cvetković 1997a, 1998a, 1998b; Šljivar et al. 2006). This later phase of work across 23 trenches (see Chapter 6) has, as at Belovode, yet to be fully published with the only detailed analysis being done on the metallurgical remains (Radivojević 2012; 2015; Chapter 6) together with a small programme of radiocarbon dating (Radivojević and Kuzmanović Cvetković 2014: 17–18). The evidence for copper metal production at Pločnik comprises only two droplets of smelting or melting activity (Radivojević and Rehren 2016: 220; see Chapter 6) and rectangular firing structures with copper minerals, metal artefacts and casting debris in association, as excavated in Trenches 20 and 21 (see Chapter 6, Figure 8) (Radivojević et al. 2013: 1033, Figure 2; Šljivar and Kuzmanović Cvetković 2009a: 61). However, the importance of selecting the site of Pločnik for The Rise of Metallurgy in Eurasia project lay primarily in the extensive evidence for metal artefacts from the moment of its discovery and the potential to explore questions around Vinča metal consumption practices. The metal artefacts known from the site ranged from copper beads to the famous discovery of massive copper metal implements which have been found from1928 onwards (Grbić 1929; Šljivar 1996, 1999; Šljivar et al. 2006; Šljivar and Kuzmanović Cvetković 1996–2009; Stalio 1964; see Chapter 6). Most recently, archaeometallurgical analyses revealed a tin-bronze foil from an undisturbed context at Pločnik dated to an occupation horizon of c. 4650 BC, making it the earliest known tin-bronze artefact anywhere in the world (Radivojević et al. 2013). As at Belovode, the absence of a detailed publication meant that further questions relating to evidence for early metal primary or secondary production and metal consumption could not be explored. The same methodological approach used at Belovode to investigate in detail the archaeological context of early metallurgy and metal at Pločnik, encompassing geophysical and aerial survey (see Chapters 24 and 39), systematic excavation and sampling, followed by extensive post-excavation analyses, was employed. As at Belovode, the entire excavation archive is made available online for current and future scholars (see Appendix A).

On metallurgy

As detailed in Chapter 25, Trench 24, was placed between two previous Trenches (20 and 21) which had produced rectangular firing structures and metallurgical finds including the earliest known tin bronze metal (Radivojević et al. 2013; Radivojević and Kuzmanović 2014). The evidence for copper metallurgy excavated in Trench 24 encompasses several stages in the chaîne opératoire of metal production including ore selection and melting and/or refining. The archaeological context of the metallurgical evidence is far more precisely documented, radiocarbon dated and contextualised than in earlier excavations at the site and serves to build upon the results and interpretations of earlier archaeometallurgical research.

The recovery of mainly green coloured malachite minerals and ores from throughout the stratigraphic sequence of Trench 24—albeit at a lower frequency than at Belovode—highlights the ubiquity of copper bearing minerals and ores throughout both of these Vinča culture settlement sites. The presence of green-and-black and green-yellow minerals in Horizon 1 and occasional occurrence of blue azurite provides further evidence for the careful selection of minerals and ores by their colours for specific uses at different times in the occupation of the site. Whilst neither copper smelting slag nor slagged sherds were excavated at Pločnik by The Rise of Metallurgy in Eurasia project, a copper metal bead was found in association with a kiln (F15) in Horizon 3 that provides the earliest secure radiocarbon dated evidence for metal at the site, contemporary with the start of the Gradac ceramic phase (see Chapter 26). In addition, a copper metal ring was found in association with a stone rectangular-shaped burnt structure (F3) in Horizon 1, thought to be a kiln or furnace, but this could only be partially excavated due to its location in the corner of the trench. Furthermore, the extensive concentration of ground stone tools found at Pločnik,
which has been interpreted as a workshop/production area (F9) in Horizon 1, also encompassed two tools thought to have been used in the hammering and thinning of metal objects (see Chapters 31 and 45). The new evidence at Pločnik not only confirms the presence of secondary metal production activities at the site such as melting and/or refining and possibly also hammering/thinning but also provides secure radiocarbon dates for a copper metal object and subsequently a potential firing structure, confirming the contemporary appearance of the Gradac Phase and metallurgy at the site.

On communities

Understanding of the scale and duration of the community who lived at Pločnik has been significantly advanced by The Rise of Metallurgy in Eurasia project. However, as one area of the site is occupied by a village and the site has also been partially destroyed by the construction of a railway line and the erosion processes of the river Toplica, even the extensive geophysical and aerial surveys undertaken could only cover c. 60% (16 ha) of the site. Hence, whilst the geophysical survey revealed c. 300 anomalies identified as burnt houses in at least three major groups, this was only in the northern area of the settlement. The overall reconstruction of the Vinča settlement area is thought to be c. 26 ha and spans at least four to five major house groupings (see Chapter 24). There are potentially larger houses which demonstrate more variation in size than at Belovode. As at Belovode, earlier and much larger estimations of the Vinča settlement at Pločnik must be revised downwards (contra Šljivar and Kuzmanović Cvetković 1998a). The estimation of the population of the community living at Pločnik, based on house groupings (see Chapter 24) and mathematical modelling (see Chapter 38 and 40), suggests c. 600–1250 people during the later Vinča phases.

The excavation and radiocarbon dating of the entire stratigraphic sequence at Trench 24 identified 39 features across activity Horizons 1–5, which were radiocarbon dated and subsequently modelled (see Chapter 37), as well as detailed sub-divisions according to stratified ceramic typo-chronologies based on c. 14500 diagnostic ceramic fragments (Chapter 42). This provides a far more precise relative and absolute chronology for the occupation of the site spanning c. 5200–4400 BC than had previously been achieved. It not only spans the Vinča culture but enables a temporal and typological refinement of the tripartite Gradac ceramic phase (see Chapters 37 and 42) and reveals the late dating of the final phases of activity at Pločnik, overlapping with the Bubanj-Salçuta-Krivodol (BSK) communities of the Middle Chalcolithic in the Central and Eastern Balkans, potentially confirming continuities rather than collapses in the southern Vinča culture communities (cf. Radivojević and Grujić 2018).

The recovery and analysis of the charred plant assemblage provides the first archaeobotanical evidence of plant use and crop husbandry at the site (see Chapter 34). The excavations revealed the by-products of food preparation and plants following their burning, discard and probable spreading and re-distribution. The overall assemblage demonstrated that the community at Pločnik consistently cultivated primarily einkorn, emmer and ‘new type’ hulled wheat. Whilst lentils and peas may also have been grown, the continued presence of wild fruits highlights the importance of food sources beyond the domesticated crops. In certain excavated contexts, it was possible to identify the residues of specific activities such as the fine-sieving of hulled and free-threshing wheat and disposal of by-products (F39). The recovery and analysis of the animal bone assemblage represents the first archaeozoological evidence from the site of Pločnik (see Chapter 35). As with the archaeobotanical assemblage, it is comparable to evidence found at other—admittedly more distant—Vinča culture settlement sites. The excavations revealed an increasing shift towards cattle, a decreasing emphasis on the hunting of wild fauna, and no clear evidence for an age-at-death pattern that would indicate intensive milk production. The subsistence evidence revealed at Pločnik compares well with that at other Vinča culture sites and provides the foundations for further research in this formerly neglected area (see Chapters 50 and 51).

A large rectangular wattle and daub house structure (F1, 2, 4, 5, 6 and 10) in Horizon 1 provided a major focus for the excavations at Pločnik. Beyond radiocarbon dates that place it at the very end of the Vinča culture sequence (see Chapter 37), the structure revealed evidence of a construction technique of pedestals for load-bearing beams that is currently specific only to the site of Pločnik. In contrast, the preservation in the daub outline of a sub-structure of parallel rows of split timbers demonstrated that the floor construction is evidenced elsewhere (see Chapter 25). The assemblage from inside the house structure was relatively limited, comprising a small number of ceramic vessels, a polished stone axe and metal fragments/droplet, evidence of plant use and crop husbandry at the site (see Chapter 34). The excavations revealed the by-products of food preparation and plants following their burning, discard and probable spreading and re-distribution. The overall assemblage demonstrated that the community at Pločnik consistently cultivated primarily einkorn, emmer and ‘new type’ hulled wheat. Whilst lentils and peas may also have been grown, the continued presence of wild fruits highlights the importance of food sources beyond the domesticated crops. In certain excavated contexts, it was possible to identify the residues of specific activities such as the fine-sieving of hulled and free-threshing wheat and disposal of by-products (F39). The recovery and analysis of the animal bone assemblage represents the first archaeozoological evidence from the site of Pločnik (see Chapter 35). As with the archaeobotanical assemblage, it is comparable to evidence found at other—admittedly more distant—Vinča culture settlement sites. The excavations revealed an increasing shift towards cattle, a decreasing emphasis on the hunting of wild fauna, and no clear evidence for an age-at-death pattern that would indicate intensive milk production. The subsistence evidence revealed at Pločnik compares well with that at other Vinča culture sites and provides the foundations for further research in this formerly neglected area (see Chapters 50 and 51).

The presence of the partially excavated stone rectangular-shaped burnt structure (F3), thought to be a kiln or furnace, and the concentration of large ground
The production of ceramics is extensively evidenced at Pločnik with the repeated repairing and re-use of kilns (F11, F14, F15 and F32) in Horizons 2, 3 and 4 and potentially in Horizon 1 (F3), in certain cases potentially over a long period. The analysis of the pottery production techniques demonstrated that the craftspeople were not always able to control the firing atmospheres and whilst they were able to achieve c. 750°C, they rarely exceeded c. 850°C (see Chapters 29 and 43). The association of a copper bead with a kiln (F15) in Horizon 3 (see Chapter 26) highlights that whilst the pyrotechnological conditions of the Vinča ceramics might not have been easily transferable for copper smelting, they were certainly sufficient for copper melting, refining or manipulating, and that this may well have been performed by the same craftspeople in the same place. The production of chipped stone tools occurred across three different chaîne opératoires, in cream tabular flint, pebble flint and local river gravel sources. The thick blades were retouched to produce end-scrapers or drills, the fine blades and bladelets were used in composite tools and the flakes were made into scrapers or tranchets (see Chapters 33 and 47). The evidence for bone tool production is limited as end-scrapers or drills, the fine blades and bladelets were used in composite tools and the flakes were made into scrapers or tranchets (see Chapters 33 and 47).

Further work

The excavations at Pločnik in 2012 and 2013 by The Rise of Metallurgy in Eurasia project comprised only a single trench, initially measuring 5 x 5 m and subsequently extended to encompass the large rectangular wattle and daub burnt structure (F1, F2, F4, F5, F6 and F10) in Horizon 1. The project aimed to excavate and analyse a complete material, structural and environmental sequence at Pločnik that would include further metal artefacts and metallurgical remains in order to understand metal production and consumption in context. The 39 features spanned wattle and daub rectangular structures, kilns, finds concentrations, pits, and dwelling dugouts. These results enabled the project to largely achieve the original aims but also created new avenues of investigation for further work.

1. Whilst the project has made significant contribution to establishing the spatial scale of settlement at Pločnik, it is now clear that there are at least four major groupings of burnt houses whose chronologies have yet to be determined. Further targeted excavations and sampling would enable a far clearer sense of where and when increases and decreases and settlement activity and demographics occur. The western and southern borders of the settlement could be more precisely defined with further geophysical survey and excavation.

2. The complete sequence of activity at Pločnik, including pre- and post- Vinča culture activity requires further definition. Only the western area of Trench 24 could be excavated to the natural soil to expose the complete sequence of occupation at the site, revealing in the process a complex pit structure (F38), potentially comparable to late Starčevo and early Vinča period pits in the central Balkans (see Chapter 25). Given the broader debates around the Starčevo-Vinča transition and the subsequent Vinča-Bubanj-Salčuta-Krivodol (BSK) transition, the evidence for activities and their dating at Pločnik would make the site a priority for further investigation.

3. The organisation of subsistence activities is not well understood with the archaeobotanical and archaeozoological sampling and analyses representing a major development at the site as well as a significant development in the region. Further targeted excavations for additional samples and, in particular...
taking advantage of the extensive stratigraphy exposed for over 300 m along the river Toplica, would enable a far more detailed picture of subsistence practices throughout the site.

4. The organisation of craft production at Pločnik—and in particular the interconnections of stone, ceramic and metal production spatially and temporally across the site—require far more detailed excavation and post-excavation analyses. Whilst metallurgical remains and metal artefact fragments are indeed associated with the partially excavated burnt rectangular stone structure (F3), a feature type also found in earlier largely unpublished excavations, the activities relating to the feature (type) remain incompletely defined.

5. There has been relatively little survey and fieldwork in the landscape surrounding the site of Pločnik, whether to explore the potential sources of different materials used at the site (stone, copper minerals and ores, graphite etc.), the management of the land for arable or pastoral agriculture or the presence of smaller and potentially contemporary Vinča sites.

The bibliographic reference for this chapter is:

Biehl, P. and A. Marciniak. 2000. The construction of hierarchy: rethinking the Copper Age in Southeastern Europe, in M. Diehl (ed.) *Hierarchies in

Bogosavljević, V. 1995. Mining hammerstones of Prljusa-Mali Šturac site, in P. Petrović and S.

Borojević, K. 2003. New plant evidence from the Middle and Late Neolithic in central Balkans. Paper presented at the 16th Conference of the International Work...

Chernykh, E.N. 2008b. The ‘steppe belt’ of stockbreeding cultures in Eurasia during the Early Metal Age. Trabajos de Prehistoria 65: 73–93.

Chernykh, E. N. 2021. The Cultures of Homo: Challenging essays about humankind’s multi-million years history. Moscow: TAUS.

Dimitrijević, S. 2013b Petrološka, trasološka i funkcionalno-tipološka studija glačanog i abrazivnog kameno oruda sa lokaliteta Lađarište kod Vrnjačke Banje, Odeljenje za arheologiju Filozofskog fakulteta, Univerzitet u Beogradu, Beograd.

G

Serbian Academy of Sciences and Arts and Centre for Archaeological Research, Faculty of Philosophy.

Garašanin, M. 1994/1995. Die Gradac-Stufe der Vinča-

Gurova, M. 2012. 'Balkan flint'—fiction and/or trajectory to Neolithization: evidence from Bulgaria. Bulgarian e-journal of Archaeology.

Bibliography

Bibliography

K

Kassebaum, T. 2019. Aggregation or Separation: (Re) considering Approaches Used in the Analysis of Sheep (Ovis aries) and Goat (Capra hircus) Faunal Remains. Unpublished MSc dissertation, University of York.

Kienlin, T.L. 2010. Traditions and Transformations: Approaches to Eneolithic (Copper Age) and Bronze Age Metalworking and Society in Eastern Central Europe and the Carpathian Basin (British Archaeological Reports International Series 2184). Oxford: Archaeopress.

BIBLIOGRAPHY

BIBLIOGRAPHY

Liu, R., G. Dong, M. Ma, and A.M. Pollard 2020a. Introduction to the Special Issue: Correlating changes for environmental, technological and societal transformation in prehistoric eastern Asia. The Holocene 31: 165-168.

M

Maniatis, Y. and M.S. Tite 1981. Technological examination of Neolithic and Bronze Age pottery from central and southeast Europe and from the Near East. Journal of Archaeological Science 8: 59–76.

Late Neolithic settlement mound Bordoš near Novi Bečej, Serbian Banat, in a multiregional context - Preliminary results of geophysical, geoarchaeological and archaeological research. Rada Muzeja Vojvodine 56: 53–77.

BIBLIOGRAPHY

BIBLIOGRAPHY

BIBLIOGRAPHY

Schier, W. and V. Nikolov (eds). 2016. Der Schwarzmeeerraum vom Neolithikum bis in die Frühfeuersteinzeit (6000–600

Skakun, N., Э. Ибрагимова and В.Терёхина. 2015. Некоторые результаты комплексного изучения материалов поселений Беловоде и Плочник, Неолитические культуры Восточной Европы: хронология, палеэкология, традиции. Материалы Международной научной конференции, посвященной 75-летию Виктора Петровича Третьякова. Санкт-Петербург.

Tringham, R. and D. Krstić. 1990c. Conclusion: Selevac in the wider context of European prehistory, in
BIBLIOGRAPHY

U

BIBLIOGRAPHY

Y

Z

Miljana Radivojević holds the Archaeomaterials Lectureship at the UCL Institute of Archaeology (UK), where she graduated in Archaeometallurgy. She has spent more than 20 years publishing on early metallurgy in the Balkans and southwest Asia and the role of aesthetics in the invention of novel technologies. She continues to explore the evolution of metallurgy across most of prehistoric Eurasia as a means of uncovering the histories of metalsmiths, and the societies and environments they lived in.

Benjamin Roberts has spent over 20 years researching and publishing on European Copper and Bronze Age archaeology and frequently metallurgy and metal objects across Europe. He co-edited with Chris Thornton Archaeometallurgy in Global perspective: Methods and Syntheses (2014) and is currently leading Project Ancient Tin. Prior to joining the Department of Archaeology at Durham University, he was the Curator for the European Bronze Age collections in the British Museum.

Miroslav Marić is a specialist in the Neolithic-Bronze Age of the central Balkans at the Institute for Balkan Studies, Serbian Academy of Sciences and Arts, Serbia. He is the field director of the Gradište Iđoš project. His research interests include settlement archaeology, landscape archaeology, the Neolithic and Bronze Age of the Balkans, and radiocarbon dating.

Julka Kuzmanović-Cvetković was the Senior Custodian (now retired) at the Homeland Museum of Toplica in Prokuplje, Serbia. She spent more than four decades excavating the site of Pločnik, and developed a unique open air archaeo-park on the site that attracts tourists from the region, and across the globe.

Thilo Rehren is the A.G. Leventis Professor for Archaeological Sciences at the Cyprus Institute in Nicosia, Cyprus. In 1999 he was appointed to a Chair in Archaeological Materials at the UCL Institute of Archaeology in London, UK. Following a five-year secondment to establish UCL Qatar as a postgraduate training and research Centre of Excellence in Museology, Conservation and Archaeology he joined the Cyprus Institute in 2017. He places particular emphasis on the integration of archaeological, scientific and historical information, and on investigating the correlation and cross-fertilisation between different crafts and industries in the past.
The Rise of Metallurgy in Eurasia is a landmark study in the origins of metallurgy. The project aimed to trace the invention and innovation of metallurgy in the Balkans. It combined targeted excavations and surveys with extensive scientific analyses at two Neolithic-Chalcolithic copper production and consumption sites, Belovode and Pločnik, in Serbia. At Belovode, the project revealed chronologically and contextually secure evidence for copper smelting in the 49th century BC. This confirms the earlier interpretation of c. 7000-year-old metallurgy at the site, making it the earliest record of fully developed metallurgical activity in the world. However, far from being a rare and elite practice, metallurgy at both Belovode and Pločnik is demonstrated to have been a common and communal craft activity.

This monograph reviews the pre-existing scholarship on early metallurgy in the Balkans. It subsequently presents detailed results from the excavations, surveys and scientific analyses conducted at Belovode and Pločnik. These are followed by new and up-to-date regional syntheses by leading specialists on the Neolithic-Chalcolithic material culture, technologies, settlement and subsistence practices in the Central Balkans. Finally, the monograph places the project results in the context of major debates surrounding early metallurgy in Eurasia before proposing a new agenda for global early metallurgy studies.