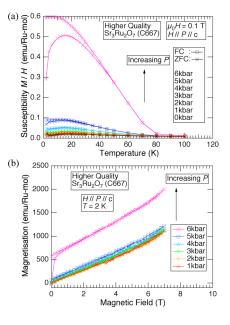
Ferromagnetism Induced by Uniaxial Pressure in the Itinerant Metamagnet Sr₃Ru₂O₇

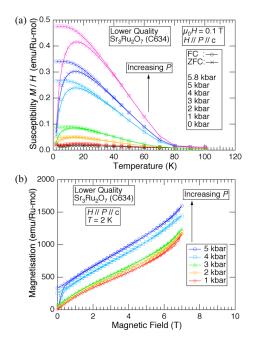
Hiroshi Yaguchi^a, Robin S. Perry^{a,b*}, and Yoshiteru Maeno^{a,b}

^a Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan ^b International Innovation Center, Kyoto University, Kyoto 606-8501, Japan


Abstract. We report a uniaxial-pressure study on the magnetisation of single crystals of the bilayer perovskite $Sr_3Ru_2O_7$, a metamagnet close to a ferromagnetic instability. We observed that the application of a uniaxial pressure parallel to the c-axis induces ferromagnetic ordering with a Curie temperature of about 80 K and critical pressures of about 4 kbar or higher. This value for the critical pressure is even higher than the value previously reported (~ 1 kbar), which might be attributed to the difference of the impurity level. Below the critical pressure parallel to the c-axis, the metamagnetic field appears to hardly change. We have also found that uniaxial pressures perpendicular to the c-axis, in contrast, do not induce ferromagnetism, but shift the metamagnetic field to higher fields.

Keywords: Sr₃Ru₂O₇, metamagnetism, ferromagnetism, uniaxial pressure, ruthenate **PACS:** 74.62.Fj, 74.70.Pq, 75.30.Kz

There has been increasing interest in the family of Ruddlesden-Popper type ruthenates $Sr_{n+1}Ru_nO_{3n-1}$ $(n \ge 1)$ since the discovery of superconductivity [1] involving spin-triplet pairing in Sr_2RuO_4 (n = 1). $SrRuO_3$ $(n = \infty)$ shows a ferromagnetic metallic ground state with a Curie temperature of 160 K [2]. In this context, $Sr_3Ru_2O_7$ (n = 2) is intermediate and an itinerant paramagnet close to a ferromagnetic instability [3]. In fact, metamagnetism has been reported in Sr₃Ru₂O₇ [4] and its metamagnetism field is 7.8 T and 5.6 T for $H \parallel c$ and $H \parallel ab$, respectively [5]. Importantly, with improving sample quality [6], the H-T phase diagram in the vicinity of the quantum critical (end) point associated with the metamagnetic transition [7] has been revealed to be more complex and richer [8]. Also ferromagnetism is known to be induced by a uni-axial pressure along the c-axis [9].


We investigated uniaxial pressure effects on the magnetism of $Sr_3Ru_2O_7$. The crystals used were chosen from two batches (C667 and C634), grown by a floating-zone method [6], with different magnetic impurity levels. We used a uni-axial pressure cell with a SQUID (superconducting quantum interference device) magnetometer equipped with an automated background subtraction programme (MPMS, Quantum Design). The cell is piston-cylinder type, and is made of CuBe apart from the cylinder being made of oxygen-free copper to reduce the background signal. Applied pressures were determined from the force

applied to the samples at room temperature, which was confirmed to show a reasonable agreement with lowtemperature pressure determined by the superconducting transitions of tin and lead [10].

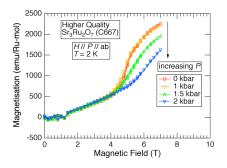

FIGURE 1. (a) Temperature dependence of the magnetic susceptibility at 0.1 T and (b) M-H curve at 2 K for the higher quality $Sr_3Ru_2O_7$ under uni-axial pressure along the c-axis.

Figure 1 shows the temperature dependence of the magnetic susceptibility at 0.1 T and the M-H curve at 2 K for the higher quality Sr₃Ru₂O₇ (C667) with a residual resistivity ρ_0 below 1 $\mu\Omega$ cm, typically about $0.5 \mu\Omega cm$, under uni-axial pressure along the c-axis. Clearly, ferromagnetic ordering is induced at a critical pressure between 5 and 6 kbar. The Curie temperature is about 80 K, at which a very abrupt increase in the occurs. We have magnetisation also made measurements on the lower quality Sr₃Ru₂O₇ (C634) with ρ_0 of 2-3 $\mu\Omega$ cm and observed ferromagnetism induced with a considerably lower critical pressure of ~ 4 kbar and a similar Curie temperature of about 80 K, as shown in Fig. 2. In either case, the metamagnetic field is barely affected below the critical pressure, so that the pressure-induced ferromagnetic transition appears to be first order. In a previous report [9], ferromagnetism was induced by a uni-axial pressure along the c-axis with a critical pressure of about 1 kbar, which is much lower than the values obtained in the present study. Taking these facts together, it is inferred that the critical pressure is rather sample-dependent and possibly very sensitive to the impurity level.

FIGURE 2. (a) Temperature dependence of the magnetic susceptibility at 0.1 T and (b) M-H curve at 2 K for the lower quality $Sr_3Ru_2O_7$ under uni-axial pressure along the c-axis.

We have also briefly investigated the effects of uniaxial pressure perpendicular to the c-axis using another sample from the higher quality Sr₃Ru₂O₇ (C667). The direction of the applied field is different, so that the metamagnetic field at zero pressure in this configuration is consistent with the reported value of about 5.6 T [5]. Figure 3 shows that, in contrast to uniaxial pressure along the c-axis, the metamagnetic field moves substantially to a higher magnetic field.

FIGURE 3. *M*-*H* curve at 2 K for the higher quality $Sr_3Ru_2O_7$ under uni-axial pressure parallel to the ab-plane.

In summary, uniaxial pressure parallel to the c-axis induces ferromagnetic ordering with a Curie temperature of about 80 K and critical pressures considerably higher than the value reported (~ 0.1 kbar) [9], which might be attributed to the difference of the impurity level. Below the critical pressure parallel to the c-axis, the metamagnetic field appears to hardly change. In contrast, uniaxial pressure perpendicular to the c-axis does not induce ferromagnetism, but shifts the metamagnetic field towards higher fields.

ACKNOWLEDGEMENTS

We thank Dr. N. Takeshita for technical advices and valuable discussions. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and 21 COE program on "Center for Diversity and Universality in Physics" from the MEXT of Japan.

REFERENCES

- * Present address: Department of Physics and Astronomy, the University of St. Andrews, UK.
- 1. Y. Maeno et al., Nature 372, 532 (1994).
- P. B. Allen et al., Phys. Rev. B 53, 4393 (1996); L. Klein et al., J. Phys. Condens. Matter 8, 10111 (1996).
- 3. S-I. Ikeda et al., Phys. Rev. B 62, R6089 (2000).
- 4. R. S. Perry et al., Phys. Rev. Lett. 86, 2661 (2001).
- 5. S. A. Grigera et al., Phys. Rev. B 67, 214427 (2003).
- 6. R. S. Perry and Y. Maeno, J. Crystal Growth 271, 134 (2004).
- 7. S. A. Grigera et al., Science 294, 329 (2001).
- R. S. Perry *et al.*, *Phys. Rev. Lett.* **92**, 166602 (2004); S. A. Grigera *et al.*, *Science* **306**, 1154 (2004).
- 9. S-I. Ikeda et al., J. Phys. Soc. Jpn. 73, 1322 (2004).
- 10. T. F. Smith and C. W. Chu, Phys. Rev. 159, 353 (1967).