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Thermal conductivity in the vicinity of the quantum critical endpoint in Sr3Ru2O7
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Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through
the quantum critical endpoint at Hc = 7.85 T. A peak in the electrical resistivity as a function of
field was mimicked by the thermal resistivity. In the limit as T → 0 K, we find that the Wiedemann-
Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron
despite the destruction of the Fermi liquid state at quantum criticality. A significant change in
disorder (from ρ0(H=0T) = 2.1 µΩ cm to 0.5 µΩ cm) does not influence our conclusions. At finite
temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic
fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum
critical endpoint.

PACS numbers:

While classical phase transitions are theoretically well
understood, quantum phase transitions are in defiance of
theoretical understanding. At a quantum critical point
(QCP), the Fermi liquid ground state is destroyed by the
diverging quantum fluctuations associated with a par-
ticular phase transition. Given that the physics up to
very high temperatures can be dominated by the pres-
ence of a QCP, it is essential to try and understand the
nature of the fluctuations and excitations which exist at
a QCP. Part of the problem in understanding quantum
phase transitions is that, given nearly a hundred different
systems which show non-Fermi liquid behavior presum-
ably due to proximity to a QCP, there is very little com-
monality between various observables, such as resistivity,
susceptibility, and specific heat.[1] What is desperately
needed are very fundamental measurements of physical
properties in the vicinity of a QCP.

The Wiedemann-Franz law (WFL), which states that
thermal (κ) and charge (σ) conductivities are simply re-
lated through the expression κ/σT = L0, where L0 is
the Sommerfeld value of the Lorenz number (2.44×10−8

WΩ/K2), is precisely such a fundamental probe of
strongly correlated physics. At T = 0 the law is a conse-
quence of the fact that all fermionic excitations carry
charge e, while all of the possible bosonic excitations
have zero charge. Should a violation be expected at a
QCP? Experiments on established quantum critical sys-
tems, such as specific heat and resistivity on YbRh2Si2,
have been interpreted as observing the breakup of the
electron at a QCP,[2] which would naively imply a viola-
tion. In addition, theories of quantum criticality are also
suggesting that it may be possible to violate the WFL at
a QCP.[3, 4]

Experimentally, a verification of the WFL was ob-
served in CeNi2Ge2.[5] While this study was a singular

measurement at zero magnetic field and ambient pres-
sure, the belief is that this point in phase space lies in
close proximity to an antiferromagnetic QCP. Recently,
the WFL was also confirmed in the field tuned quan-
tum critical system CeCoIn5.[6] Another possibly rele-
vant system in which the WFL has been measured are
the high Tc cuprates.[7, 8] In this case a violation has
been observed in the field-induced normal state, which
may be related to an underlying QCP in the phase dia-
gram.

In this letter, we have chosen to study the WFL in
Sr3Ru2O7, a bilayer perovskite material.[9] The well-
known single layer compound Sr2RuO4 is believed to
be a spin triplet superconductor[10], while the infi-
nite layer compound SrRuO3 is an itinerant electron
ferromagnet[11]. When the magnetic field is applied in
the RuO2 planes of Sr3Ru2O7, a first order metamag-
netic transition is observed. The critical endpoint of this
line of first order metamagnetic transitions is systemat-
ically driven to zero temperature at H = 7.85 T by ro-
tating the magnetic field out of the plane[12]. Thus, the
term quantum critical endpoint(QCEP) is used when dis-
cussing Sr3Ru2O7. The use of magnetic field as a tuning
parameter in this stoichiometric system allows for a very
sensitive test of the Wiedemann-Franz law to be made
on a clean system. We present thermal and charge con-
ductivity data on Sr3Ru2O7, which demonstrate that the
integrity of the electron does survive in the vicinity of a
QCEP as the WFL is satisfied at all fields.

A second aspect of this study is that finite tempera-
ture thermal and charge conductivity data allow us to
comment on the nature of the fluctuations present in
this system. While the above circumstantial evidence
would suggest that ferromagnetic fluctuations are the
most relevant magnetic excitations here, neutron scatter-
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FIG. 1: (color online) High temperature thermal conductivity
at several fields along the c-axis including the critical field.
The heat current was applied in the ab-plane. The dashed
line is an estimate of the phonon conductivity obtained by
considering the WFL as discussed later in the text.

ing finds both antiferromagnetic and ferromagnetic fluc-
tuations of similar strength in zero field,[13] thus leaving
an open question as to what fluctuations may be relevant
for this metamagnetic QCEP. We find that the tempera-
ture dependence of the Lorenz ratio is in good agreement
with the standard picture of itinerant electron metamag-
netism, which thus implies that the relevant fluctuations
are ferromagnetic in nature.

Thermal conductivity was measured using a two ther-
mometer one heater setup described elsewhere[14]. The
absolute accuracy is limited by the uncertainty in the ge-
ometric factor of the sample (∼ 10 %), but the relative
changes between different fields is limited by the accu-
racy of the thermometer calibration which is ∼ 1% for
the temperature sweeps, and due to the magnetoresis-
tance of the thermometers can drift to as much as 5%
for the field sweeps. The Sr3Ru2O7 single crystals stud-
ied were grown in a floating zone furnace[15]. With the
exception of the data in figure 2(b)(which has a resid-
ual resistivity of 0.5 µΩ cm and was aligned ∼20◦ off
the c-axis) data is presented for a sample with a residual
resistivity of 2.1 µΩ cm, and was aligned with the field
parallel to within 5◦ of the c-axis. The transport was in
the ab-plane.

Figure 1 presents the raw thermal conductivity data
at, above, and below the critical field of Hc = 7.85 T.
In zero field, the thermal conductivity has a peak at ap-
proximately 5 K which vanishes as one reaches the criti-
cal field. At still higher fields, the peak begins to return,
albeit much more slowly. Comparison with the limited
specific heat data on single crystals shows a qualitatively
similar behavior [9, 16]. C/T has a peak at zero field,
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FIG. 2: (color online) A comparison of heat (κ/T ) and charge
(L0/ρ) conductivities at several fields versus T at low temper-
ature. These quantities extrapolate to the same value at T =
0 if the Wiedemann-Franz law is to be satisfied. Solid lines
are fits to ρ = ρ0 + AT 2. The dashed line for Hc is a lin-
ear fit below 0.8 K.(b) Comparing two samples with different
amounts of disorder. Sample #2 has been rotated by 20◦ with
respect to the c-axis which mainly changes the value of the
critical field.

which is heavily suppressed close to the critical field. At
this point the specific heat begins to diverge, indicative
of non-Fermi liquid behavior. Theoretical work is needed
to evaluate how the changing electronic structure affects
both the number of carriers and the scattering rate, both
of which enter into the thermal conductivity.

We now turn our attention to the low temperature end
of the data. By plotting κ/T vs T the intercept repre-
sents the fermionic contribution to the thermal conduc-
tivity resulting from a constant density of states in the
limit that scattering is dominated by elastic scattering.
From the resistivity data (plotted as L0/ρ for compari-
son with the WFL) we can see in figure 2(a) that we have
clearly reached that limit below 1 K. As there is almost
no temperature dependence we can reliably extrapolate
our results to T = 0, where we find that the WFL (which
states that κ/σ T = L0) is satisfied to within 5% at all



3

1.0

0.5

0.0

 L
 /

 L
0

1050
 H (T)

 0.4 K
 0.85 K

12

10

8

6

κ 
/ 
T

 ,
 L

0
 /
 ρ

 (
m

W
 /
 K

2
c
m

)

1050 H (T)

κ / T   0.4 K

L
0
 / ρ  0.4 K

κ / T  0.85 K

L
0
 / ρ 0.85 K

FIG. 3: (color online) Verification of the Wiedemann-Franz
law from field sweeps of the Lorenz number. Inset: Field
sweeps of heat (κ/T ) and charge (L0/ρ) conductivity at low
temperature.

fields.The phonon conductivity does not have a zero tem-
perature intercept in κ/T and hence does not enter into
the discussion at this time.

The lack of temperature dependence at all fields also
allows us to comment on the elastic scattering from fi-
nite temperature field sweeps. As a result, in the inset
to figure 3 we plot κ/T and L0/ρ as a function of field
at low temperatures. The lowest temperature curves are
clearly a good approximation to the T=0 value for the
residual elastic scattering. The resistivity shows a pro-
nounced peak (dip in L0/ρ) at the critical field, the origin
of which is unknown.[17] Clearly, however, the thermal
conductivity data tracks this dip. To see how precisely
the thermal conductivity tracks the charge conductivity
we plot the Lorenz ratio (L/L0=κ/σTL0) in the main
panel of figure 3. The fact that the WFL is satisfied is
again demonstrated by the fact that this quantity equals
1 at all fields. The slow drift in the value of the Lorenz
number is due to calibrating the magnetoresistance of the
thermometers used to measure the temperature gradient
in the sample. The sharper bump at the critical field
likely results from the new phase which emerges to ”pro-
tect” the QCEP [18]. The slight enhancement observed
in L at finite temperature in this protected phase may
result from either a reduction in inelastic scattering or
a shift to large angle scattering upon entering this new
phase.

As disorder can dramatically modify the behavior at a
QCP, we investigate its effects by also measuring a higher
purity crystal[18] shown in figure 2(b). This is particu-
larly true of the phase which protects the QCEP. In zero
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FIG. 4: (color online) (a) Temperature dependence of the elec-
tronic contribution to the Lorenz ratio L(T ), which is consis-
tent with the standard picture for itinerant electron metam-
agnetism. (b) The thermal resistance WSF ≡ 1/κel −ρ0/L0T
attributed to scattering off of spin fluctuations.

field one can observe the factor of 4 increase in purity
relative to the sample presented in figure 2(a), although
at the critical field the change in elastic scattering is not
nearly as great. The field is also applied slightly off the
c-axis which has the added advantage that the resistive
anomaly associated with the phase which protects the
QCEP is enhanced. This anomaly is mimicked in the
thermal data and at T=0 we find that this phase also
obeys the WFL to within 5%.

The presence of exotic fermionic excitations which do
not carry charge±e (such as charge 0 spinons) or charged
bosonic excitations would result in a violation of the
WFL. The verification of the WFL in the T → 0 K limit
proves that such excitations do not exist here.

For charge ±e quasiparticles, the WFL is valid only
when heat and charge transport are affected equally, as
is the case for elastic processes dominant in the T → 0 K
limit. As temperature is increased, inelastic scatter-
ing dominates the elastic scattering of quasiparticles.
Thus, a finite temperature study of the Lorenz num-
ber may also shed light on to the nature of the ex-
citations relevant to the non-Fermi liquid behavior ob-
served at the critical field. The strength of such a study
was exemplified in CeRhIn5 where thermal measurements
found quantitative agreement with the antiferromagnetic
spin fluctuation spectrum measured by inelastic neutron
scattering.[19]

Figure 4(a) shows the temperature dependence at a few
fields including the critical field. A phonon conductivity
term of κph = 0.03(mW/K3cm)T 2 independent of field
for phonons being scattered by electrons was subtracted
from the thermal conductivity data, to give purely the
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electronic contribution to L. This choice of phonon sub-
traction is the minimum necessary to place Lel in the
physically allowable parameter range 0 ≤ Lel ≤ L0, but
the conclusions drawn from these data are insensitive to
the amount of phonon conductivity assumed. Interest-
ingly, the effect of small angle inelastic scattering be-
comes stronger as one approaches the critical field as
signified by the increasingly rapid suppression of L at
low temperatures. This is consistent with the divergence
of the quasiparticle-quasiparticle scattering at Hc, as de-
duced from the T 2 coefficient of resistivity.[6, 17] As a re-
sult, the minimum in L(T ) naturally also moves to lower
temperature. The puzzling observation is that the mag-
nitude of the dip in L(T ) is gradually suppressed as the
critical field is approached. This is partially a result of
the increase in elastic scattering about the critical field.
However, the effect is still present if the elastic scatter-
ing is removed Linel = (κ/T −κ/T (T = 0))(ρ−ρ(T = 0)
(not shown). In CeRu2Si2, a heavy fermion metamag-
netic system, the T → 0 limit was not explored, but at
finite temperature the behavior in L(T ) was similar to
that observed here.[20]

Theoretically, heat and charge transport properties
have been calculated for a nearly ferromagnetic metal.[21]
It was found that as the Stoner parameter α is enhanced
the deviation of the Lorenz number from the Sommer-
feld value L0 is reduced. Thus, in this picture our data
would indicate that the Stoner parameter increases as
the critical field is approached. This is precisely what
happens in the standard picture for itinerant electron
metamagnetism.[22] By applying a magnetic field, the
spin-up and spin-down bands are pushed in opposite di-
rections. When a peak in the density of states exists near
the Fermi level, then a metamagnetic transition will oc-
cur when the peak in one of the spin-split bands is pushed
through the chemical potential. The Stoner parameter α,
which is equal to the density of states at the chemical po-
tential times the interaction term U , is thus maximal at
the metamagnetic transition, which is in agreement with
our field dependence of L(T ). Furthermore, the thermal
resistance due to spin fluctuationsWSF ≡ 1/κel−ρ0/L0T
shown in figure 4(b) strongly resembles that of the cal-
culations done by Ueda and Moriya,[21] further empha-
sizing the point that the behavior in L(T ) is not solely
due to a change in the elastic scattering.

This simple model of metamagnetism remarkably re-
produces many aspects of the observations seen in
Sr3Ru2O7 in addition to the behavior in the Lorenz
number. It is natural to anticipate a peak in the den-
sity of states from a Van-Hove singularity in this two-
dimensional system. Fine tuning of U and the initial form
of the density of states in a Stoner model as described can
provide a fair explanation of the magnetization[23] and
specific heat data[24]. In addition, it has been conjec-
tured that the unidentified phase protecting the QCEP
may be a result of a type of Pomeranchuk instability of

the Fermi surface,[25, 26] or alternatively from nanoscale
charge inhomogeneity,[27] as the van-Hove singularity
passes through the chemical potential. In fact, the van-
Hove singularity is one possible microscopic origin for
the effective action used by Millis et al.[28] It should be
pointed out that the renormalization group treatment
of this action has proven quite successful in explaining
the thermal expansion data[29] among other experimen-
tal observations.

In conclusion we have observed the verification of the
Wiedemann-Franz law in Sr3Ru2O7 in the limit as T → 0
at all fields including the field at which a quantum crit-
ical end-point occurs, which implies that there is no
breakdown of the electron at the QCEP. More precisely,
there are no additional fermionic carriers of heat (such
as spinons) other than those which carry charge e. This
further supports the notion that the QCEP in Sr3Ru2O7

can be described in the Hertz-Millis formalism for quan-
tum criticality. It will be interesting to see if the WFL is
still satisfied in other quantum critical systems in which
the Hertz-Millis theory fails. Finally, the finite temper-
ature data are consistent with the standard picture for
itinerant electron metamagnetism, and, as a result, one
should expect that the ferromagnetic fluctuations are re-
sponsible for the observed non-Fermi liquid behavior at
the quantum critical endpoint.
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