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Abstract  

The Wu-Wentzcovitch semi-analytical method (SAM) is a concise and predictive formalism to calculate 
the high-pressure and high-temperature (high-PT) thermoelastic tensor (Cij) of crystalline materials. This 
method has been successfully applied to materials across different crystal systems in conjunction with ab 
initio calculations of static elastic coefficients and phonon frequencies. Such results have offered first-hand 
insights into the composition and structure of the Earth’s mantle. 

Here we introduce the cij package, a Python implementation of the SAM-Cij formalism. It enables a 
thermoelasticity calculation to be initiated from a single command and fully configurable from a 
calculation settings file to work with solids within any crystalline system. These features allow SAM-Cij 
calculations to work on a personal computer and to be easily integrated as a part of high-throughput 
workflows. Here we show the performance of this code for three minerals from different crystal systems at 
their relevant PTs: diopside (monoclinic), akimotoite (trigonal), and bridgmanite (orthorhombic). 

Keywords: thermoelasticity; acoustic velocity; diopside; akimotoite; bridgmanite 
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PROGRAM SUMMARY 

Program title: cij 

Developer's repository link: https://github.com/MineralsCloud/cij 

Licensing provisions:  GNU General Public License 3 (GPL) 

Programming language: Python 3 

Nature of problem (approx. 50-250 words): Experimental measurements of full elastic 

tensor coefficients under high-pressure and high-temperature conditions are challenging 

and susceptible to uncertainties. Computations of thermoelastic coefficients based on the 

conventional density functional theory (DFT) plus quasiharmonic approximation (QHA) 

or ab initio molecular dynamics (AIMD) methods are computationally extremely 

demanding, especially for materials with low symmetries because of the revaluation of 

free energy for strained configurations. 

Solution method (approx. 50-250 words): Based on a semi-analytical method proposed 

by Wu and Wentzcovitch [1], we developed a handy code that only needs static-state 

elastic coefficients and phonon vibrational density of states for several equilibrium 

configurations at different pressure points as input to calculate the thermal elasticity. This 

method avoids the reevaluation of free energy for strained configurations and can be 

applied to all crystal systems. 

Reference: 

[1]  Z. Wu, R.M. Wentzcovitch, Phys. Rev. B 83 (2011) 184115. 
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1. Introduction 

Elasticity is a fundamental property of solids that characterizes their mechanical response 

to external stress. Determination of elastic coefficients, especially at high pressures and 

temperatures (PT), has has wide applications in geophysics. However, despite recent 

methodological developments, measurement of the full elastic tensor at high PT has 

remained a challenging undertaking and susceptible to uncertainties [1,2]. Although 

computational methods are regularly resorted to as alternative, fully numerical ab initio 

approaches based on the density functional theory (DFT), such as DFT + QHA 

(quasiharmonic approximation) (e.g., Ref. [3,4]) or DFT + MD (molecular dynamics) 

(e.g., Ref. [5]), are computationally demanding, considering the numerous strained 

configurations involved, especially for crystals with low symmetry [6]. 

To overcome such a computational challenge, a semi-analytical method (SAM) was 

proposed to compute the thermoelastic tensor (Cij) (hereafter SAM-Cij) [7]. Compared to 

the traditional QHA approach, SAM-Cij adopts an analytical expression for the thermal 

part of Cij to circumvent the reevaluation of vibrational density of states (VDoS) for 

slightly strained configurations, which drastically reduces the calculation cost by at least 

one order of magnitude. This formalism offers an overall improved agreement with 

experimental measurements for high-𝑃𝑇 elasticity compared to the fully numerical 

approach [7]. Such improvement is possibly a benefit from the imposed isotropic thermal 

pressure. 

Other formalisms and codes have also been proposed to computationally resolve 

thermoelasticity, among which some are under active development [8–11]. One popular 

option is a quasi-static approximation (QSA), which assumes that thermal expansion 

accounts for the majority of thermal effects, and Cij vs. T can be approximated with Cij 

of the structure at 𝑇 as predicted by the QHA (e.g., see Refs. [8,10–12]). This 

approximation can work sufficiently well up to several hundred K and is helpful to study 

organic molecular crystals, organic semiconductors, and metal-organic crystals. 

However, in geophysical applications, Cij usually needs to be accurately determined at 

several-thousand K, and this approximation has become less predictive [9]. Other 

formulations were also developed to calculate the thermoelastic tensor of  high-symmetry 
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materials, which usually have fewer independent Cij components [9]. These formalisms 

cannot avoid phonon or MD calculations for strained configurations. A similar approach 

[3,4] aimed at geophysical applications is nearly unfeasible for complex low-symmetry 

minerals of interest. In contrast, the SAM-Cij formalism has already been extensively 

tested for lower mantle minerals at their relevant conditions [13–20] and recently 

extended for low-symmetry crystals such as monoclinic and trigonal [21,22]. This 

method remains predictive up to the 𝑃𝑇 boundary of validity of the QHA (usually up to 

1500-2000 K). 

Here we introduce the cij package, a Python implementation of SAM-Cij. Unlike some 

other thermoelasticity calculation methods (such as Ref. [9,23]), this package is 

decoupled from a particular DFT software suite. As a standalone package, cij requires 

only total static energies, VDoS, and static Cij at a series of volume points as input, 

obtainable with most DFT software suites. One can initiate a SAM-Cij calculation from a 

single command and configure it within a single settings file to work with materials 

across different crystal systems. Since most cij calculations only need a few minutes to 

complete on a desktop-level computer, high-performance computing (HPC) setup is not 

imperative. Therefore, this package is easy to use on a personal computer and is ready for 

integration into high-throughput workflows. 

This paper is organized as follows: the next section briefly reviews the SAM-Cij method; 

Secs. 3 and 4 describe the structure and usage of cij; Sec. 5 shows its application to 

systems of different symmetries: diopside (monoclinic), bridgmanite (orthorhombic), and 

akimotoite (trigonal); Sec. 6 summarizes the paper. 

2. The SAM-Cij formalism 

2.1. Quasiharmonic thermal elasticity 

The isothermal elastic tensor elements, or elastic coefficients, 𝑐$%&'( ,  are second-order 

strain derivatives of the Helmholtz free energy 𝐹 [24] 

𝑐$%&'( =
1
𝑉 -

𝜕/𝐹
𝜕𝑒$%𝜕𝑒&'

1 +
1
2 𝑃

42𝛿$%𝛿&' − 𝛿$'𝛿%& − 𝛿$&𝛿%'7, (1) 
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the QHA Helmholtz free energy 𝐹(𝑒, 𝑇, 𝑉) under strain state 𝑒 is [25–28] 

𝐹(𝑒, 𝑉, 𝑇) = 𝑈<=(𝑒, 𝑉) +>
1
2

?@

ℏ𝜔?@(𝑒, 𝑉)

+ 𝑘E𝑇> ln
?@

F1 − exp G−
ℏ𝜔?@4𝑒$%, 𝑉7

𝑘H𝑇
IJ

(2) 

where 𝜔?@ are phonon frequencies of the 𝑚-th mode at the 𝑞-th wave-number. The first, 

second, and third terms on the r.h.s. of Eq. (2) are respectively the static total energy, 

𝑈<=(𝑒, 𝑉), the zero-point energy, 𝐸NOP(𝑒, 𝑉), and thermal excitation energy. The 

vibrational or phonon energy is 

𝐸OQ(𝑒, 𝑇, 𝑉) = 	𝐸NOP(𝑒, 𝑉) + 𝐸=Q(𝑒, 𝑇, 𝑉). (2T) 

The adiabatic elastic moduli 𝑐$%&'U  can be converted from the isothermal one, 𝑐$%&'( , as [29] 

𝑐$%&'U = 𝑐$%&'( +
𝑇
𝑉𝐶W

𝜕𝑆OQ

𝜕𝑒$%
𝜕𝑆OQ

𝜕𝑒&'
𝛿$%𝛿&' (3) 

where 𝑒$% (𝑖, 𝑗 = 1,2,3) are infinitesimal strains and 𝑆\](𝑒, 𝑇, 𝑉) is the phonon entropy at 

relevant strain state. 

 

2.2. Grüneisen parameters 

Computing the strain derivatives in Eq. (1) requires knowledge of the variation of mode 

frequencies 𝜔?@ w.r.t. strains 𝑒$%, namely strain Grüneisen parameters, 𝛾?@
$% 	

𝜕𝜔?@
𝜔?@

= −𝛾?@
$% 𝑒$%. (4) 

SAM-Cij avoids the expensive frequency calculations for strained configurations by 

deriving analytical relationships between the mode average of 𝛾?@
$% (𝑉) and the mode 

average of volume-Grüneisen parameters, 𝛾?@(𝑉), which can be readily obtained from 

phonon calculations under hydrostatic compression. The derivation makes QHA thermal 

stresses hydrostatic, which is only an approximation for anisotropic materials but has the 

beneficial effect of producing the thermal component of Cij under this desirable stress 
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condition. The mode-averaged strain-Grüneisen parameters necessary for longitudinal 

and off-diagonal Cij calculations are given by 

𝛾$$ =
𝑒`` + 𝑒// + 𝑒aa

3𝑒$$
𝛾	, (5) 

where the averages are over all 𝑞𝑚 vibrational modes �̅� = `
ad
∑ 𝛾?@?@ ; 𝑒$$ (𝑖 = 1,2,3) are 

longitudinal lattice strains produced under static hydrostatic compression. They express 

the crystal anisotropy ignored in the isotropic approximation. Similarly, their products 

and derivatives are given by 

𝛾$$𝛾%% =

⎩
⎪
⎨

⎪
⎧1
5
(𝑒`` + 𝑒// + 𝑒aa)/

𝑒$$𝑒%%
(𝛾)/ if	𝑖 = 𝑗

1
15
(𝑒`` + 𝑒// + 𝑒aa)

𝑒$$𝑒%%
(𝛾)/ if	𝑖 ≠ 𝑗

(6) 

𝜕𝛾$$

𝜕𝑒%%
=

⎩
⎪
⎨

⎪
⎧1
5
(𝑒`` + 𝑒// + 𝑒aa)/

𝑒$$𝑒%%
𝑉
𝜕𝛾
𝜕𝑉 if	𝑖 = 𝑗

1
15
(𝑒`` + 𝑒// + 𝑒aa)

𝑒$$𝑒%%

/

𝑉
𝜕𝛾
𝜕𝑉 if	𝑖 ≠ 𝑗

(7)	

where 𝛾/ooo = `
ad
∑ 𝛾?@/?@ , 𝑉 pq

pW
ooooo = `

ad
∑ 𝑉 pqrs

pW?@ . 

2.3. Thermal elastic coefficients 

The thermoelastic coefficients can be analytically expressed using mode-averaged strain-

Grüneisen parameters, their products, and derivatives. The isothermal elastic coefficients 

𝑐$%&'( (𝑉, 𝑇) = 𝑐$%&'<= (𝑉) + 𝑐$%&'
OQ (𝑉, 𝑇) are the sum of static and phonon contributions (Eqs. 

1-2). 𝑐$%&'<= (𝑉) is obtained by straightforward static DFT calculations of stress vs. strain 

relations. In the next two sub-sections, we show how SAM-Cij evaluates 𝑐$%&'
OQ (𝑉, 𝑇) for 

longitudinal (𝑐$$$$
OQ , 𝑖 = 1,2,3), off-diagonal (𝑐$$%%

OQ , 𝑖, 𝑗 = 1,2,3, 𝑖 ≠ 𝑗) or shear (𝑐$%&'
OQ , 𝑖 ≠ 𝑗 

or 𝑘 ≠ 𝑙) elastic coefficients. 

2.3.1. Longitudinal and off-diagonal elastic coefficients 

For longitudinal and off-diagonal terms of the elastic tensor, Eq. (1) reduces to 
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𝑐$$%%( =
1
𝑉 -

𝜕/𝐹
𝜕𝑒$$𝜕𝑒%%

1 + 𝑃(𝑉, 𝑇)41 − 𝛿$%7. (8) 

The phonon contribution terms are therefore 

𝑐$$%%
OQ (𝑉, 𝑇) = 𝑐$$%%

NOP(𝑉) + 𝑐$$%%=Q (𝑉, 𝑇) + 41 − 𝛿$%7𝑃OQ(𝑉, 𝑇), (9) 

where the phonon contribution to the pressure is 𝑃OQ(𝑉, 𝑇) = 𝑃(𝑉, 𝑇) − 𝑃<=(𝑉). 

Combining Eqs. (2) and (4), the zero-point term becomes 

𝑐$$%%
NOP 	=

ℏ
2𝑉>

𝜕/𝜔?@(𝑉)
𝜕𝑒$$𝜕𝑒%%?@

	 =
ℏ
2𝑉> -𝛾?@$$ 𝛾?@

%% −
𝜕𝛾?@$$

𝜕𝑒%%
+ 𝛿$%𝛾?@$$ 1

?@

𝜔?@. (10) 

The thermal contribution 𝑐$$%%=Q  is 

𝑐$$%%=Q (𝑉, 𝑇) =
𝑘E𝑇
𝑉 >

𝜕/[ln(1 − 𝑒yzrs)]
𝜕𝑒$$𝜕𝑒%%?@

=
𝑘E𝑇
𝑉 >[

?@

− 𝑄?@/
𝑒zrs

(𝑒zrs − 1)/
𝛾?@$$ 𝛾?@

%%

+
𝑄?@

(𝑒zrs − 1)
-𝛾?@$$ 𝛾?@

%% −
𝜕𝛾?@$$

𝜕𝑒%%
+ 𝛾?@$$ 𝛿$%1]

(11) 

where 𝑄?@ = ℏ}rs
&(

. These two expressions are then simplified by using the mode-

averaged values given in Eqs. (5-7) (see Ref. [7] for details). The pU
p~��

 term necessary to 

compute Eq. (3) is given by 

𝜕𝑆
𝜕𝑒$$

= 𝑘H>𝑄?@/
?@

𝑒zrs
(𝑒zrs − 1)/

𝛾?@$$ . (12) 

2.3.2. Shear elastic moduli 

For the elastic tensor components that have not been addressed so far, SAM-Cij employs 

axis rotations to convert shear strains back to longitudinal or off-diagonal ones discussed 

above. To solve for 𝑐$%&', this SAM-Cij implementation applies a symmetric strain, 𝜂$%&', 

in a rotated crystal system with components given by 

𝜂��
$%&' = �1 − 41 − 𝛿$�𝛿%�741 − 𝛿%�𝛿$�741 − 𝛿&�𝛿'�741 − 𝛿'�𝛿&�7�𝜉. (13) 
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For example, 

𝜂/a/a(��) = �
0 0 0
0 0 𝜉
0 𝜉 0

� 𝜂/a`/(��) = �
0 𝜉 0
𝜉 0 𝜉
0 𝜉 0

� 𝜂```a(`�) = �
𝜉 0 𝜉
0 0 0
𝜉 0 0

�. 

It is always possible to find a rotation matrix, 𝑇, that diagonalizes the symmetric tensor 

𝜂$% , i.e., a real orthonormal matrix 𝑇 that gives 𝑇y` 𝜂$%&'  𝑇 = 𝜂$�%�&�'�, where 𝜂$�%�&�'� is 

diagonal. The rotation matrix 𝑇 here is the matrix of the orthrnomal eigenvectors of 𝜂$%&', 

and 𝜂$�%�&�'�  has corresponding eigenvalues of of 𝜂$%&'  along its diagonal. Under this 

rotation, the invariance of strain energy gives: 

> 𝑐��q�
��q�

 𝜂��
$%&'  𝜂q�

$%&' = > 𝑐��������
����

 𝜂����
$�%�&�'�  𝜂����

$�%�&�'� , (14) 

where 𝛼, 𝛽, 𝛾, 𝛿, 𝛼T, 𝛽T = 1,2,3. 

We note that the r.h.s. of the Eq. (14) contains longitudinal or off-diagonal terms only, 

which can be analytically resolved as is discussed in subsection 2.3.1 with rotated strains  

𝑇$�$  𝑒$% 𝑇%%� = 𝑒$�%�	(𝑖, 𝑗, 𝑖T, 𝑗T = 1,2,3) containing negligible off-diagonal terms when 

𝑒``: 𝑒//: 𝑒aa ≈ 1: 1: 1. 

The l.h.s. of Eq. (14), being a little more complicated, will fall into one of two scenarios: 

1. For 𝑐$%$%-like terms (𝑖 ≠ 𝑗), the only term we have on the l.h.s of Eq. (14) is the 
unknown term, so the equation is solvable. 

2. For other 𝑐$%&' , the l.h.s. is a combination of 𝑐$%$%-like terms (𝑖 ≠ 𝑗) (solved in 
situation 1), 𝑐$$%%-like terms (solved analytically in subsection 2.3.1), and the 
unknown term 𝑐$%&' . So, again, this is solvable. 

A recursive algorithm is currently implemented to solve these shear terms. 
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3. The cij distribution 

3.1. The distribution content 

The cij package is written in Python 3. After decompressing the cij.zip zip file, one 

sees the Python source code in the cij sub-folder, input for three examples in the 

examples sub-folder, documentation in the docs sub-folder, and the installation script 

setup.py. The cij package runs on all major platforms supported by the qha package 

[27]. 

The Python code is organized into several modules. A description of essential modules 

and scripts are shown in Table 1. 

3.2. Installation 

The package can be installed with the pip package manager. One can directly install the 

package by typing in "pip install cij" or manually install the package by 

downloading the zip file "cij.zip" and execute "pip install cij.zip" at the 

directory of the downloaded file. The package should be ready for use after installation. 

3.3. Program Execution 

After preparing the input files (to be discussed in Sec. 4), one can navigate to the 

directory that contains the YAML settings file (hereafter settings.yaml) and execute 

"cij run settings.yaml" to perform the calculation. This command invokes the 

main.py script under the cij/cli directory. The flowchart in Fig. 1 will help understand 

the procedure of a SAM-Cij calculation. 

3.4. Output files and plotting 

A typical thermoelasticity calculation for an orthorhombic crystal with the cij 

command-line program finishes in less than one minute on a desktop computer. Each 

output variable specified in the output section of settings.yaml will be saved to a 

separate file with the same tabular (𝑇, 𝑉)- or (𝑇, 𝑃)-grid format as in the qha code [27]. 

The available output variables are listed in Table 2. 
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The cij package provides three utilities to inspect calculation results right out-of-the-

box: cij plot converts a data table to a PNG plot; cij extract extracts data from the 

original (𝑇, 𝑃) table files and prepares data table with multiple variables at specified 𝑇 or 

𝑃 for further analysis, e.g., table with 𝑐$%’s, 𝐾, and 𝐺 vs. 𝑃 at 300 K; cij extract-

geotherm extracts data and creates a data table along 𝑃𝑇 of a geotherm. 

3.5. Documentation 

Detailed documentation of this program will be available online at 

https://mineralscloud.github.io/cij/. The source of this documentation is located in the 

docs sub-folder and can be built locally with Sphinx. 

4. Input files 

At the beginning of a calculation, the cij run program reads the settings.yaml file 

and two input data files that contain phonon data (hereafter input01) and static elasticity 

data (hereafter elast.dat). Instructions on how to prepare these files are given below 

(see Secs. 4.1 to 4.3). 

4.1. The calculation settings file (settings.yaml) 

The settings.yaml file is home to all calculation settings. One needs to specify 

calculation parameters, such as thermal EoS fitting parameters, phonon interpolation 

settings, input data location, and output variables to store. The available parameters and 

their detailed descriptions are listed in Table 3. 

4.2. QHA input data file (input01) 

The QHA input data file contains the static energies and phonon frequencies at various 

volume points. The general structure of this file is identical to the one used by the qha 

program as described in Ref. [27], but the number of formula units (nm) and atoms (na) 

need to be additionally appended to the end of the fourth line, after the number of 

volumes (nv), 𝑞-points (nq), and modes (np). The ordering of phonon mode frequencies 

should be matched between different volume points according to the mode symmetry to 
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ensure proper interpolation, as described in Appendix B. The package also includes a cij 

modes utility that plots the interpolated frequencies vs. volume at a given 𝑞-point. 

4.3. The static elasticity input data (elast.dat) 

The static elasticity input data file tabulates the static elastic coefficients (𝑐$%<=, 𝑖, 𝑗 =

1	to	6) and axial length along three axes in Cartesian coordinates (𝑎$$, 𝑖 = 1,2,3) at a 

series of volume points. This file format is specified in Table 4. The required elastic 

tensor components for each crystal system can be found in Ref. [30–32]. To compute 

aggregate elastic moduli, i.e., 𝐾 and 𝐺, and acoustic velocities using the Voigt-Reuss-Hill 

(VRH) method, unless all non-zero terms are listed, one needs to either specify the crystal 

system in settings.yaml or manually preprocess elast.dat with the cij fill utility 

to generate a new elast.dat that contains all non-zero terms. Column names in the 

static elastic coefficients table are invoked to compute the aggregate moduli and their 

ordering does not matter. The three columns of lattice parameters, lattice_a, 

lattice_b, and lattice_c, are required for all crystal systems and are not implied by 

the symmetry option provided in the settings file. 

5. Examples 

Here we show the high-𝑃𝑇 elasticity of three important minerals in geophysics: diopside, 

akimotoite, and bridgmanite. These materials' thermoelastic properties have been well-

studied with SAM-Cij in Ref. [14,15,21,22]. Here, we revisit these minerals using the 

new cij package to demonstrate its reliability. 

5.1. Diopside 

Diopside, the primary host of Ca in the upper mantle, is a rock-forming pyroxene mineral 

with a chemical composition of MgCaSi/O�. Its structure belongs to the monoclinic 

crystal system, with a 𝐶2/𝑐 space group. The elastic tensor of diopside contains 13 

independent terms. Results shown here use the local-density approxiamation (LDA) for 

exchange-correlation functional [33]. Details of these DFT calculations are given in 

Ref. [22] and Appendix A. 
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Isobaric and isothermal equations of state (EoS) for diopside are shown in Figs. 2 (a, b). 

LDA + QHA reproduces the EoS measured at high-𝑃 [34], high-𝑇 [35], and high-𝑃𝑇	[36] 

with sufficient accuracy. The calculated thermal expansivity 𝛼 in Fig. 2 (c) shows no 

obvious superlinear 𝑇 dependence up to 1500 K at high pressurs. However, at 0 GPa, an 

inflection point develops gently at ~1000 K. At higher pressures inflection points develop 

at approximately 𝑇 = 1170 + 37	𝑃 (𝑇 in K, 𝑃 in GPa). At pressures higher than these, 

the validity of the QHA might be questionable.   

Fig. 3 shows the 𝑃𝑇 dependence of individual elastic coefficients of diopside. The nine 

elastic coefficients of orthorhombic systems increase with 𝑃 and decrease with 𝑇,  while 

the other four, 𝑐`�, 𝑐/�, 𝑐a�, and 𝑐�� decrease with 𝑃 and increase with 𝑇. In terms of 𝑃-

dependence, our results in Fig. 3 (a–c) are consistent with 300 K measurements from 

Ref. [34]. There are somewhat significant discrepancies for off-diagonal and shear 𝐶$% 

terms, but after contrasting them with the 2–3% experimental uncertainties and a 

significant overestimation of  24% seen in previous MD simulations [37], the 

discrepancies are relatively insignificant. The comparison between the calculated and 

measure [37] 𝑇-dependence of 𝐶$% terms made in Fig. 3 (d–f) shows good agreement up 

to 1000 K, except that 𝑐aa is systematically underestimated by ~10 GPa, and 𝑐/a has 

contradictory 𝑇-dependence against Ref. [35]. At 𝑇 > 1000 K, measurements [35] 

continue to change linearly with 𝑇, while our results start deviating. This is likely caused 

by anharmonic effects and this behavior is consistent with that of the inflection point in 

the QHA thermal expansion coefficient shown in Fig. 2 (c). 

Fig. 4 shows positive 𝑃 dependence, and negative 𝑇 dependence of the VRH averaged 

adiabatic bulk and shear moduli (𝐾U and 𝐺) and compressional and shear velocities (𝑣O 

and 𝑣<). Our results agree well with high-𝑃𝑇 ultrasonic measurements on polycrystalline 

samples from Ref. [36]. Compared to Ref. [34,35], the similar deviating behavior seen in 

Fig. 3, which is likely caused by anharmonicity, is also observed here at 𝑇 beyond that of 

the inflection points in the QHA thermal expansion coefficient shown in Fig. 2 (c). 
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5.2. Akimotoite 

MgSiOa akimotoite is a high-𝑃 polymorph of pyroxene and can be stable at transition 

zone and uppermost lower mantle conditions in the Earth [38]. It has an ilmenite-like 

structure and has an 𝑅3‾  space group with trigonal symmetry. Its strong elastic anisotropy 

predicted by static calculations [39] makes akimotoite an outstanding candidate for the 

source of large acoustic-wave anisotropy observed at the bottom of the transition zone 

[40,41]. A recent study [21] used SAM-Cij to investigate the 𝑃𝑇 dependence of its 

anisotropy. Its elastic properties are fully described by 7 independent elastic tensor 

components. DFT details are described in Ref. [21] and Appendix A. 

Fig. 5 (a, b) shows the 𝑃𝑉𝑇 EoS of akimotoite. Our LDA + QHA EoS has compatible 𝑃𝑇 

dependence compared to measurements at high-𝑃 [42] and at high-𝑃𝑇 [43]. The  

systematic 1% overestimation in volume compared to measurements [42,43] is common 

for LDA results and can be easily reconciled with EoS corrections, if necessary [44,45]. 

The present LDA results are also compared to high-𝑃𝑇 generalized gradient 

approximation (GGA) [46] + MD EoS results from Ref. [47] after their proposed EoS 

correction. The comparatively superior agreement of the LDA + QHA EoS with 

measurements (less than 2 GPa difference) over their uncorrected GGA + MD EoS (a 

−6.7 GPa shift in 𝑃 necessary to match experimental data in Ref. [48]) justifies the 

choice of LDA to study thermoelasticity. This has been the case since the first elasticity 

calculations [3,4]. Fig. 5 (c) shows the 𝑇 dependence of 𝛼 at various 𝑃’s. The inflection 

points in 𝛼 vs. 𝑇 at ~ 1500–2000 K (approximated by 𝑇 = 22.5	𝑃 + 1400, 𝑇 in K, 𝑃 in 

GPa) and the 𝛼’s superlinear dependence of 𝑇 beyond this boundary suggest that the 

QHA may be unreliable and anharmonicity might start impacting these results. Beyond 

this boundary, results should be treated with caution. 

Fig. 6 shows the akimotoite’s elastic coefficients 𝑐$%	 as functions of 𝑃 and 𝑇. Here, 𝑐``, 

𝑐`/, 𝑐`a, 𝑐aa and 𝑐��, increase with  𝑃 and decrease with 𝑇; 𝑐`� and 𝑐/� decrease with 𝑃 

and increase with 𝑇. The only major conflict here is the inverted sign of 𝑐`� in Ref. [42], 

which, according to Ref. [42] is caused by differences in crystal setting; once inverted, 

their results and ours are consistent. Other than that, our results agree well with 300 K 

Brillouin spectroscopy measurements in Ref. [42,48]. The smaller 𝑐`` and 𝑐��, and 
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slightly larger 𝑐`a have discrepancies comparable with experimental uncertainties. The 

aforementioned EoS correction [44,45], if applied, would increase 𝑐`` and 𝑐��, which 

mitigates the discrepancies further. 

Fig. 7 shows the 𝑃𝑇 dependence of 𝐾U, 𝑣O, 𝐺 and 𝑣<. Compared to Ref. [42], our 300 K 

𝐾U and 𝑣O values agree soundly, but 𝐺 and 𝑣< depart downwards from measurements by 

~2 % when compressed. A similar feature in the 𝑃-dependence exists in a previous LDA 

calculation [39], so this is a consistent LDA prediction. The earlier reports of stiffer 𝐾U 

and 𝐺, and faster 𝑣O and 𝑣< measured at high-𝑃𝑇 with ultrasound [43] compared to both 

our results and Ref. [42], it is likely caused by a partially transformed sample, according 

to Ref. [42]. These measurements in Ref. [43] are, thus, deemed unreliable. Nevertheless, 

the 𝑇-gradient of their 𝐾U and 𝑣O are mostly aligned with ours but the that of their 𝐺 and 

𝑣< are slightly larger than to ours. 

5.3. Bridgmanite 

MgSiOa-perovskite (Mg-Pv) is the Mg-endmember of bridgmanite, the most abundant 

mineral in the Earth's lower mantle. The thermal 𝐶$% tensor of Mg-Pv calculated with 

SAM-Cij was used as a reference for comparison with its iron-bearing counterparts to 

understand the effect of alloying and iron spin-crossover [14,15,49]. Experimental 

determination of the thermal 𝐶$% tensor, especially at high-𝑃𝑇, is involved with 

substantial certainties [2]. High-𝑃𝑇 experimental data for pure Mg-Pv has not been 

published yet. 

Mg-Pv has a Pbmn space group with orthorhombic symmetry. 9 individual elastic 

coefficients are required to describe its elastic properties. Calculations reported here were 

carried out with LDA. Calculation details are described in Ref. [14] and Appendix A. 

Figs. 8 (a, b) show the 𝑃𝑉𝑇 EoS of Mg-Pv. LDA + QHA reproduces the EoS obtained 

with XRD-DAC measurements at high-𝑃 [50–52] and high-𝑃𝑇 [51,53,54] faithfully. 

Compared to our LDA + QHA EoS, GGA + MD simulations [5] report a roughly less 

than 5% overestimated 𝑉 of 𝑃, 𝑇, due to GGA’s under-binding. The reliable compression 

curves here allow us to proceed to calculate 𝐶$% at high-𝑃𝑇.  Fig. 8 (c) plots 𝛼 as a 
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function of 𝑇 at several 𝑃’s. Emperically defined by the non-superlinear dependence of 𝛼 

on 𝑇, the region outlined by p
��

p(�|�
= 0, the black line, corresponds to the 𝑃𝑇-range of 

QHA validity [4,55]. The 𝑃𝑇 validity range generally resembles that of Ref. [55] and 

small variations on this boundary are caused by numerical errors in high-order 𝑇-

derivatives, interpolation, and different choices of 𝑃𝑇-grids.    

Fig. 9 shows elastic coefficients 𝑐$% of Mg-Pv as functions of 𝑃	and 𝑇. These 𝑐$%’s 

increase almost linearly with 𝑃 and decrease linearly with 𝑇. Our results agree well with 

those in Ref. [56] determined at ambient conditions. GGA + MD calculations from 

Ref. [5] disagree more with measurements. The scarcity of high-𝑃 or high-𝑇 

measurements of elastic coefficients on pure Mg-Pv single-crystal does not allow further 

comparisons here, which shows why SAM-Cij results are crucial. 

Fig. 10 shows the 𝑃𝑇 dependence of VRH-averaged 𝐾U, 𝐺, as well as 𝑣<, and 𝑣O. Derived 

from 𝐶$%, these properties show uniformly positive 𝑃-dependence and negative 𝑇-

dependence. Our results can be verified against 300 K and 2700 K ultrasonic 

measurements from Refs. [52,57] up to 100 GPa. Although Refs. [51,53] suggest a 

slightly larger 𝑃𝑇-gradient within a narrower 𝑃𝑇 range, i.e., 0–20 GPa, up to 1200 K, the 

inconsistencies among these measurements are either comparable or more significant 

than their deviation from our results. Compared to the MD simulations in Ref. [5], our 

SAM-Cij calculation is not only less time-consuming, but also offer much-improved 

consistency with experimental measurements. 

6. Conclusion 

In summary, this paper presented cij, an easy-to-use Python package that calculates 

thermal Cij, elastic moduli, and acoustic velocities for crystalline materials at high-𝑃𝑇 

based on the SAM-Cij formalism. The code presented here is tested on three minerals 

with different crystal symmetry. Consistency between our high-𝑃𝑇 results with 

measurements highlights the performances of the code. 
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Appendix A. DFT details 

All DFT calculations were performed using the Quantum ESPRESSO [58] and the LDA 

exchange-correlation functional [33]. Detailed calculation parameters for these three 

minerals are described in the next three subsections. 

Diopside 

Calculations on diopside were performed using norm-conserving pseudopotentials. For 

Mg, the pseudopotential was generated using the von Barth–Car’s method [59,60], for Si 

and O the Troullier-Martins method [61] was used, for Ca, an ultrasoft pseudopotential 

[62] was used. The plane-wave kinetic energy cutoff was 70 Ry. Structural optimizations 

at 7 different 𝑃s were performed using variable cell-shape damped molecular dynamics 

(VCS-MD) [63,64] with a 2 × 2 × 2 𝑘-point mesh. Dynamical matrices for optimized 

structures were obtained using density functional perturbation theory (DFPT) [65] on a 2 

× 2 × 2 𝑞-point mesh grid. Force constants obtained from these dynamical matrices were 

later interpolated to an 8 × 8 × 8 mesh grid to obtain the VDoS. Strains of ±0.5% and 

±1% magnitude are applied to obtain static elastic constants at each pressure. 

Akimotoite 

For akimotoite, the pseudopotential of Mg was generated using the Barth–Car’s method, 

and the pseudopotentials of O and Si were generated using Troullier-Martins’ method. 

The plane wave cutoff energy was 70 Ry. The structure of akimotoite were optimized 

using the VCS-MD. with a 4 × 4 × 4 𝑘-point mesh at 8 different 𝑃s. The dynamical 

matrices for akimotoite were calculated using DFPT [65] on a 2 × 2 × 2 𝑞-point mesh and 

then extrapolated to a denser 4 × 4 × 4 𝑞-mesh to obtain VDoS. Strains of ±0.5% and 

±1% magnitude are applied to obtain static elastic constants at each pressure. 

Bridgmanite 

Calculations on Mg-Pv were performed on a 40-atom supercell. Ultrasoft [61] 

pseudopotentials were used for Al, Fe, Si, and O. A norm-conserving pseudopotential 

generated with von Barth-Car’s method was used for Mg. The electronic states were 

sampled on a 2 × 2 × 2 𝑘-point grid with a plane-wave kinetic energy cutoff of 40 Ry, 
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respectively. The Mg-Pv structure was optimized at 10–12 relevant 𝑃 points with VCS-

MD. Dynamical matrices were calculated using DFPT on a 2 × 2 × 2 q-point grid for 

these structures and then interpolated to an 8 × 8 × 8 𝑞-point grid to obtain VDoS. Strains 

of ±1% magnitude are applied to obtain static elastic constants at each pressure. 
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Appendix B. Matching phonon modes for different pressure 
points 

In order to calculate numerically mode-Grüneisen parameters, 𝛾?@, with the expression 

𝛾?@ = −𝜕 ln𝜔?@ /𝜕 ln𝑉, we need to interpolate 𝜔?@ vs. 𝑉. Accurate determination of 

this numerical derivative for each mode would require us to identify the “same” mode at 

different volume points and order them accordingly in the input files. Because in outputs 

of DFT software, such as Quantum ESPRESSO, the mode frequencies for each volume 

and at each q-point are usually ordered by their magnitude, we will have to sort the 

phonon modes to align them to establish continuity between volume points. It would be 

impractical to sort these modes manually for complex crystals and calculations with 

many q-points, so we provide an automatic solution. There has been some effort to 

address the mode frequency continuity between volume points [66]. Between different q-

points within the Brillouin zone [67], a popular, practical, and most straightforward way 

is to sort the phonon modes based on the eigenvectors, which is also how we implement 

in our code. 

Assume there is no degeneracy. At reciprocal coordinate 𝒒, 𝜔@/  and 𝑒?@ are the 𝑚-th 

eigenvalue and eigenvector of the dynamical matrix 𝐷(𝒒) [68], 

𝐷(𝒒)	𝑒?@ = 𝜔?@/ 	𝑒?@ (𝐵. 1) 

The orthonormality of the set of normal modes 𝑒?@ is given by 

𝑒?@
£ (𝑉)	𝑒?@�(𝑉 + d𝑉) = 𝛿@@� (B. 2) 

Here 𝑒?@, 𝑒?@� as well as their product 𝐴 = 𝑒?@
£ (𝑉)	𝑒?@�(𝑉 + d𝑉) are all 3𝑁 × 3𝑁 

matrices, and 𝛿@@T  is a unitary matrix. 

For crystal under two close compression states 𝑉 and 𝑉 + d𝑉, it is sufficient to say the 

eigenvectors are “nearly orthonormal”, a condition that can be expressed as 

𝑒?@
£ (𝑉)	𝑒?@�(𝑉 + d𝑉) = 𝛿@@� + O(dV) (B. 3) 
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where 𝑂(d𝑉)	a 3𝑁 × 3𝑁 matrix with elements is sufficiently small. 

Our code includes a function cij.misc.evec_sort to match phonon modes at close-by 

volumes. The function takes an array of 3𝑁 frequencies 𝜔@
($) (𝑚 = 1	to	3𝑁) for volume 

point 𝑉($), their orthonormal eigenvectors (3𝑁 × 3𝑁 matrix, 𝑒@
($)) in corresponding order, 

and orthonormal eigenvectors (3𝑁 × 3𝑁 matrix, 𝑒@
(%)) from another volume 𝑉(%). The 

algorithm first calculates absolute inner product 𝐴 = abs[(𝑒@
($))£	𝑒@

(%)]. Then it identifies 

row index 𝑚 and column index 𝑚′ of the element with maximum values in 𝐴 (i.e., 

𝑚𝑚T = argmax(𝐴)) to match 𝜔@ with 𝜔@�. The algorithm then sets the entire 𝑚-th row 

and 𝑚′-th column to zero and looks for other pairs of corresponding modes. This process 

is looped for 3𝑁 times until all modes are matched for the 𝑞-th 𝑞-point in volume points 

𝑉($) and 𝑉(%). 

The algorithm works well with phonons calculated with primitive cells, where there are 

no or very few degenerate modes but might not be as work well in non-primitive cells 

and with large degeneracies [67]. We also note that Ref. [69] has proposed an alternative 

way to obtain Grüneisen parameters, but their method requires calculations to be 

performed on large supercells, this might not go well with DFT calculations, which is 

usually how we prepare input for this software. 

In the three examples we enclosed with this code, we found that the ordering of mode 

frequencies does not affect the final result significantly. This is probably because the 

average �̅�, 𝛾/ooo, and  𝑉𝑑𝛾/𝑑𝑉ooooooooooo are used in the calculation, and not many phonon crossings 

occur in these examples. But this function is included in the case calculations are carried 

out for materials with phonon modes with abnormal volume dependence, which results in 

more crossings between modes. 

Another function cij.misc.evec_load is also supplied to help users parse and load 

eigenvectors from Quantum ESPRESSO’s matdyn.x output. 
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Figures 

 

Figure 1. The flowchart for thermoelasticity calculations with SAM-Cij. 
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Figure 2. (a, b) Unit-cell volume (2 f.u.) of diopside (a) vs. 𝑃 at various 𝑇s, and (b) vs. 𝑇 
at various 𝑃s. Teal diamonds in (a) correspond to measurements reported in Ref. [34] at 
300 K, solid purple circles in (b) correspond to measurements reported in Ref. [35] at 
0 GPa. Colored squares in (a, b) correspond to measurements reported in Ref. [36]. In (a) 
𝑇 and (b) 𝑃 are represented by colors in the color-bars. (c) Thermal expansivity of 
diopside vs. 𝑇 at various 𝑃s. 
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Figure 3. Elastic tensor components (𝑐$%) of diopside vs. (a–c) 𝑃 at various 𝑇, and (d–f) 
vs. 𝑇s at various 𝑃s. Teal diamonds in (a–c) correspond to measurements reported in Ref. 
[34] at 300 K, solid purple circles in (d–f) correspond to measurements reported in Ref. 
[35] at 0 GPa. 

(a) (b) (c)

(d) (e) (f)



25 
 

 

Figure 4. (a, c) Elastic moduli and (c, d) acoustic velocities of diopside vs. (a, b) 𝑃 and (c, 
d) 𝑇. Teal diamonds in (a, b) correspond to measurements reported in Ref. [34] at 300 K, 
solid purple circles in (c, d) correspond to measurements in Ref. [35] at 0 GPa. Colored 
squares correspond to calculations in Ref. [36] at (a, b) 𝑇 and (c, d) 𝑃 represented by 
colors in the color-bars.  
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Figure 5. (a, b) Unit-cell volume (6 f.u.) of akimotoite (a) vs. 𝑃 at various 𝑇s, and (b) vs. 
𝑇 at various 𝑃s. Dark blue triangles in (a) correspond to measurements reported in Ref. 
[42] at 300 K. Colored symbols in (a, b) correspond to calculations reported in Ref. [47] 
and measurements in Ref. [43] at (a) 𝑇s and (b) 𝑃s represented by colors in the color-
bars. (c) Thermal expansivity of akimotoite vs. 𝑇 at various 𝑃s. 
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Figure 6. The 𝑐$%’s of akimotoite vs. (a, b) 𝑃  at various 𝑇s and (c, d) vs. 𝑇 at various 𝑃s. 
Blue squares and triangles in (a, b) correspond to measurements in Ref. [48] and Ref. 
[42] at 300 K, purple squares in (c, d) correspond to measurements in Ref. [48] at 0 GPa. 
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Figure 7. (a, c) Elastic moduli and (c, d) acoustic velocities of akimotoite vs. (a, b) 𝑃 and 
(c, d) 𝑇. Dark blue triangles in (a) correspond to measurements reported in Ref. [42] at 
300 K. Colored symbols correspond to measurements reported in Ref. [43] at (a) 𝑇s and 
(b) 𝑃s represented by colors in the color-bars. 
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Figure 8. (a, b) Unit-cell volume (16 f.u.) of Mg-Pv (a) vs. 𝑃 at various 𝑇s, and (b) vs. 𝑇 
at various 𝑃s. Dark blue pentagons and triangles in (a, b) correspond to measurements at 
300 K reported in Refs. [50,52]. Colored squares, diamonds, pluses, and crosses 
correspond to high 𝑃𝑇 GGA + MD calculations reported in Ref. [5] and measurements in 
Ref. [51,53]. Their 𝑇s (a) and 𝑃s (b) are represented by colors in color-bars.  
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Figure 9. The  𝑐$%’s of Mg-Pv vs. (a–c) 𝑃 at various 𝑇s, and (d–f) vs. 𝑇 at various 𝑃s. 
Dark blue (a–c) and purple (d–f) circles correspond to 300 K and 0 GPa measurements 
reported in Ref. [56]. Colored squares correspond to GGA + MD results reported in Ref. 
[5]. Their 𝑇s (a–c) and 𝑃s (d–f) are represented by colors in colorbars.  
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Figure 10. (a, c) Elastic moduli and (c, d) acoustic velocities of Mg-Pv vs. (a, b) 𝑃 and (c, 
d) 𝑇. Dark blue (a–c) and purple (d–f) circles in (a, b) correspond to 0 GPa and 300 K 
measurements reported in Ref. [56]; dark blue pentagons in (a) correspond to 300 K 
measurements [52]. Colored squares, triangles, crosses, and diamonds correspond to high 
𝑃𝑇 GGA + MD results reported in Ref. [5] and measurements reported by [51,53,57]. 
Their 𝑇s (a–c) and 𝑃s (d–f) are represented by colors in color-bars.  
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Tables 
Table 1.  List of modules and command-line utilities in the cij distribution 

Module  Description 

cij.core Core functionalities 
• calculator – The calculator that controls the workflow. 
• mode_gamma – Interpolate phonon frequencies and calculate 

mode Grüneisen parameters. 
• phonon_contribution – Calculate 𝑐$%

OQ. 
• full_modulus – Interpolate 𝑐$%<= vs. 𝑉, and calculate 𝑐$%U  and 𝑐$%( . 
• tasks – Handles the ordering of 𝑐$%

OQ calculation. 
cij.util Methods used in the main program 

• voigt – Convert between Voigt (𝑐$%) and regular (𝑐$%&') notations 
of elastic coefficients. 

• units – Handle unit conversion. 
cij.io Input output functions and classes. 
cij.plot Plotting functionalities. 
cij.cli Command-line programs 

• cij run (main.py) – Perform a SAM-Cij calculation. 
• cij run-static (static.py) – Calculate static elastic 

properties. 
• cij extract (extract.py) – Extract calculation results for a 

specific 𝑇 or 𝑃 to a table. 
• cij extract-geotherm (geotherm.py) – Extract calculation 

results along geotherm 𝑃𝑇 (given as input) to a table. 
• cij plot (plot.py) – Convert output data table to PNG plot. 
• cij modes (modes.py) – Plot phonon frequency interpolation 

results. 
• cij fill (fill.py) – Fill all the non-zero terms for elastic 

coefficients given the constraint of a crystal system. 
cij.data Data distributed with the program, e.g., the relationship between 𝑐$%’s for 

different crystal systems, the naming scheme for output files, etc. 
cij.misc Miscellaneous functionalities that are not used in the main program, e.g., 

methods that facilitate the preparation of input files. 
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Table 2. Relavent keywords and their options in settings.yaml. 

Under "qha.settings" 
DELTA_P_SAMPLE number Pressure-sampling interval, used for output. 

The default value is 1 GPa. 
DELTA_P number The interval between two nearest pressures 

on the grid, in GPa. The default value is 0 
GPa. 

P_MIN number The minimum pressure in GPa. 
NTV integer Number of volumes (or equivalently, 

pressures) on the grid. 
T_MIN number The minimum temperature, in Kelvin. The 

default value is 0 K. 
DT number The interval between two nearest 

temperatures on the grid, in Kelvin. 
NT integer The number of temperatures on the grid. 

The default value is 16. 
Under "elast.settings" 
symmetry.system string The crystal system used, one of: 

triclinic, monoclinic, hexagonal, 
trigonal6, trigonal7, orthorhombic, 
tetragonal6, tetragonal7, cubic, the 
default value is trigonal. 

mode_gamma.interpolator string The method to interpolate phonon 
frequencies vs. volume, one of: spline, 
lsq_poly, lagrange, krogh, pchip, 
hermite, akima. The default value is 
lsq_poly. 

mode_gamma.order integer The order of phonon frequencies spline 
interpolation. The default value is 3. 

Under "qha" and "elast" 
input string The location of the input files. The default 

value is elast.dat. 
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Table 3. The output variable, their keyword in settings output section, default output unit, 
and their output file naming conventions. 

Property Keyword Unit Output file naming convention (i, j = 1 
to 6; base = tp or tv)  

Adiabatic elastic 

modulus 

cij_s GPa c{ij}s_{base}_gpa.txt 

Isothermal elastic 

modulus 

cij_t GPa c{ij}t_{base}_gpa.txt 

Voigt average of bulk 

modulus 

bm_V GPa bm_V_{base}_gpa.txt 

Reuss average of bulk 

modulus 

bm_R GPa bm_R_{base}_gpa.txt 

Voigt-Reuss-Hill 

average of bulk modulus 

bm_VRH GPa bm_VRH_{base}_gpa.txt 

Voigt average of shear 

modulus 

G_V GPa G_V_{base}_gpa.txt 

Reuss average of shear 

modulus 

G_R GPa G_R_{base}_gpa.txt 

Voigt-Reuss-Hill 

average of shear 

modulus 

G_VRH GPa G_VRH_{base}_gpa.txt 

Shear acoustic wave 

velocities 

v_s km/s v_s_{base}_km_s.txt 

Compressive acoustic 

wave velocities 

v_p km/s v_p_{base}_km_s.txt 

Pressure vs. volume p GPa v_tp_gpa.txt 

Volume vs. pressure and 

temperature 

V Åa p_tv_ang3.txt 
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Table 4. The structure of static elastic coefficients input data file (elast.dat) 

Structure of input data Description 

# comment line 
 

V0 N mcell The calibration volume 𝑉¶ for static elastic moduli 
interpolation; the number of volumes included in this data 
file 𝑁; total cell mass, 𝑚cell, in amu for calculation of 
acoustic wave velocities calculations. 

“v c11 c22 c33 …” Column names of the input data. The output elastic moduli 
are named after this list, the ordering of columns does not 
matter. 

V1 c11[V1] c22[V1] … The first volume and elastic moduli at this volume; the 
order corresponds to the column names specified above. 

V2 c11[V2] c22[V2] … Similarly organized data for subsequent volumes. 

… 
 

VN c11[VN] c22[VN] … 
 

“lattice_a lattice_b 
lattice_c” 

Column names for the axial lengths table. 

a11[V1] a22[V1] a33[V1] The axial length along three axes of Cartesian coordinates 
for the first volume. 

a11[V2] a22[V2] a33[V2] The axial length for subsequent volumes. 

…  

a11[VN] a22[VN] a33[VN]  
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