The lithium isotope response to the variable weathering of soils in Iceland

Philip A.E. Pogge von Strandmann1,2*, Kevin W. Burton3, Sophie Opfergelt4, Bianca Genson2, Rannveig A. Guicharnaud5, Sigurður R. Gislason6

1Institute of Geosciences, Johannes Gutenberg University, 55122 Mainz, Germany.
2Institute of Earth and Planetary Sciences, University College London and Birkbeck, University of London, Gower Street, London, WC1E 6BT, UK.
3Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK.
4Earth and Life Institute, Université catholique de Louvain, Croix du Sud 1 bte L7.05.10, 1348 Louvain-la-Neuve, Belgium.
5Icelandic Institute of Natural History, Urriðaholtsstræti 6-8, 210 Garðabær, Iceland.
6Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland.

*Corresponding author: ppoggevo@uni-mainz.de

Abstract

This study has analysed Li isotopes ratios from well-studied soil and pore water profiles from Iceland that have the same parent material but have experienced different degrees of chemical weathering. Thus, from least to most weathered, we have analysed vitrosols (V), gleyic andosols (GA), brown andosols (BA), Histosols (H) and Histic Andosols (HA). Although the most weathered H and HA soils have the highest content in clay-sized material, they have the least fractionated δ^7Li\textsubscript{pore water} values. In contrast, the least weathered GA and BA pore waters are most fractionated for Li isotopes. Given that Li isotope ratios are
fractionated by clay mineral formation, this appears counter-intuitive. A single trend for all samples of δ7Li as a function of Li/Na ratios suggests that they are all controlled by a process with a single fractionation factor, in this case likely the formation of poorly-crystalline allophane, which dominates in the “least weathered” soils. This rapidly forming secondary mineral dominates Li isotope fractionation over more slowly-forming crystalline clays. The fractionation along a single path shows that the key process here in controlling the Li isotope ratio of surface waters is the degree of Li uptake by secondary minerals. This does not necessarily correspond to the amount of clay minerals present in the soil, but to the amount of clay minerals that are being newly formed in a single passage of the pore water through the soil, or are in equilibrium with soil solutions at the time of sampling.

1.0 Introduction

The chemical weathering of rocks at the Earth’s surface is the primary control on atmospheric CO₂ levels on varying timescales. Weathering provides both alkalinity (stemming from water-rock-atmospheric-carbon interactions) and cations for the formation of marine carbonates, sequestering carbon (Berner et al., 1983; Walker et al., 1981). If the rocks being weathered are silicates, containing virtually no carbon, then this carbon sequestration is a net sink and a primary long-term climate controlling process. At the same time, continental weathering provides a number of critical nutrients (e.g. iron, silicon, phosphorus) to the coastal oceans, which stimulates primary productivity (Hawley et al., 2017; Lalonde et al., 2012). This productivity temporarily also takes up atmospheric carbon, but most marine organic matter is reoxidised before it is buried in marine sediments. However, continental chemical weathering and physical erosion also provide clay particles into the coastal oceans. These both increase nutrient fluxes to primary productivity (because microbes leach nutrients from the rock particles (Grimm et al., 2019)), but, critically, also greatly increase organic
carbon burial, thus also sequestering carbon on the long term (Kennedy et al., 2014; Kennedy and Wagner, 2011). Overall, this makes silicate weathering the primary atmospheric CO₂ controlling process on both long (via carbonate precipitation) and short, seasonal timescales (via organic carbon burial).

Significant effort has focused on understanding and quantifying weathering processes and fluxes, as well as on the processes that control weathering (Gislason et al., 2009; Maher, 2011; West et al., 2005). In particular, a feedback control, via a temperature-driven “thermostat” is likely to be the overarching process that has mitigated climate over geological time, although time periods also exist where an increase in supply may have overridden this climate stabilisation process, such as in the Cenozoic (Raymo and Ruddiman, 1992).

The debates on these various processes have been at the forefront of biogeochemistry for almost four decades, but finding reliable and unambiguous tracers of weathering processes both in the present and geological past has proven tricky. One of the most established of such tracers is lithium isotopes. Lithium is a moderately incompatible trace element that is present in all silicate rocks, in orders of magnitude more than in carbonate rocks (Penniston-Dorland et al., 2017; Pogge von Strandmann et al., 2020). Hence, in weathering environments, Li arises from the dissolution of silicates, even in carbonate-dominated catchments (Kisakürek et al., 2005; Millot et al., 2010). Lithium isotopes (⁶Li and ⁷Li) are not fractionated by primary productivity (Pogge von Strandmann et al., 2016), and while it remains poorly understood whether plants fractionate Li isotopes, the Li concentration of plants is sufficiently low for surface waters to remain largely unaffected (Clergue et al., 2015; Lemarchand et al., 2010; Li et al., 2020; Steinhoefel et al., 2021).

Instead, Li isotopes are fractionated by the silicate weathering process, in that when primary silicate rocks (with a relatively low isotope ratio) are dissolved, they impart a low (rock-like) ⁸⁷Li to waters. Isotopically light lithium is preferentially taken up by formation of secondary
minerals (clays, oxides, zeolites), as well as by adsorption onto secondary minerals, imparting a heavy isotopic signature to residual waters (Chan et al., 1992; Hindshaw et al., 2019; Huh et al., 2001; Millot et al., 2010; Pistiner and Henderson, 2003; Pogge von Strandmann et al., 2019a; Pogge von Strandmann et al., 2017b; Pogge von Strandmann and Henderson, 2015; Teng et al., 2010; Vigier et al., 2008). Consequently, dissolved Li isotopes are controlled by the weathering congruency: congruent dissolution of silicates imparts a low δ7Li, while incongruent weathering (where secondary minerals form) yields a high δ7Li signature relative to the parent material (Misra and Froelich, 2012; Pogge von Strandmann and Henderson, 2015).

Li isotopes are now well established as a tracer of both present and past weathering processes (Dellinger et al., 2015; Hathorne and James, 2006; Lechler et al., 2015; Misra and Froelich, 2012; Pogge von Strandmann et al., 2021a; Pogge von Strandmann et al., 2017a; Pogge von Strandmann et al., 2013), but important questions remain, especially concerning precisely how Li isotopes respond to changes in weathering processes. For example, the effect of water-rock interaction time (e.g. secondary mineral formation rates) on Li isotopes remains poorly quantified, partly because the timing of adsorption vs. incorporation during neoformation is poorly known, and because the effect of Li uptake by oxides/oxyhydroxides vs. clay or zeolites is also poorly known (Hindshaw et al., 2019; Li and Liu, 2020). This study aims to investigate the, as yet, little quantified effects arising from variable degrees of weathering in soils – for example, high solution δ7Li could be due to either a high fraction of removal with a low fractionation factor, or lower removal with a high fractionation factor.

Here we examine soil and pore water profiles from different soil types from Iceland. These different profiles represent weathering of bedrock with a similar composition, but reflect differing degrees of weathering.
Five different Icelandic soil types were analysed that represent increasing degrees of chemical weathering, collected in 2009 and 2010 (Opfergelt et al., 2014), and are shown on a soil map of Iceland (Fig. 1). These particular samples have previously been analysed for the isotopes of Mg, Si, Fe and Zn (Opfergelt et al., 2014; Opfergelt et al., 2017a; Opfergelt et al., 2017b). These Icelandic soils have specific definitions (Arnalds, 2004): Vitrisols (V) represent the least weathered soils from Iceland, and have <1% organic carbon or <1% Si_{ox}. Their mineralogy is dominated by volcanic glass, and they have little (5–10%) plant cover. Broadly, they represent a desert-like environment with little vegetation or soil formation, but in a cold and wet environment.

Gleyic andosols (GA – where US spelling is Andisols) are slightly more weathered, and tend to have organic carbon contents (<12%) in surface horizons. They contain allophane contents of up to 20%.

Brown andosols (BA) are increasingly weathered, and are the classical freely drained andosols found in Iceland. They tend to contain significant allophane (15–30%), as well as some ferrihydrite (1–8%).

Histosols (H) and Histic Andosols (HA) are the most weathered soils in this study. Histosols are dominated by organic materials (>20% organic C). Histic Andosols are found in poorly drained areas, and have sufficient aeolian inputs to reduce their organic contents below the 20% limit for Histosols. Allophane content is 2–10%, and they meet the $(\text{Al} + 0.5\text{Fe})_{\text{ox}}$ criteria for Andosols.

Overall, Iceland is covered by ~48% Andosols (of all types), ~40% Vitrisols and Leptosols and ~1% Histosols (and 11% by glaciers and ice caps) (Arnalds, 2004). In general, vegetated areas are dominated by Andosols, desert areas by Vitrisols and wetlands by Histosols.
In this study, the vitrisol (V) is from SW Iceland, located south of the Langjökull and west of the Myrdalsjökull ice caps. The gleyic andosol (GA) is from just north of Reykjavik. The brown andosol (BA), the Histosol (H), and the Histic Andosol (HA) are from the Borgarfjörður catchment in western Iceland. Peats were developed at the HA and H sites (Opfergelt et al., 2014). Overall, GA and BA soils are well-drained, while the H and HA soils are poorly drained, with inevitable consequences for the water-rock interaction time. All soils developed from similar tholeiitic basalt, and their difference from each other is largely due to the soil drainage conditions (Opfergelt et al., 2014).

Further to the soils, a series of local secondary minerals was acquired from the Natural History Museum in Reykjavik. These minerals were not always formed in the same areas as the soils (although many are from the same catchment), but are from similar Icelandic weathering environments, and are examined here to provide some context of secondary mineralogy. These include samples of different calcites, clays (unidentified) and six different types of zeolite (heulandite, chabazite, mesolite, stilbite, epistilbite and scolecite). Further, an Fe-oxyhydroxide was taken from the coating on a pebble from a side stream on the nearby Norðura River (locality A6; (Pogge von Strandmann et al., 2006)). The major element composition suggests that this coating is largely impure ferrihydrite, containing Al, P and possibly Si admixtures (Si not measured), typical of soil and stream environments, but the presence of other phases, such as Al-hydroxide, cannot be ruled out.

3.0 Methods

3.1 Sampling

Sampling is described in Opfergelt et al. (2014). Briefly, typical parent tholeiitic basalt was sampled at the BA site. This represents the type of parent material for the HA, H, BA and GA sites. For the Vitrisol, the C horizon was considered as unweathered parent
volcanic ash. Soil profiles were described following FAO guidelines and sampled by horizon. Soil samples were air-dried and sieved at 2mm. The measurement of chemical and physical properties of the soils (pH, cation exchange capacity (CEC), chemical composition) is described by Opfergelt et al. (2014).

Three representative soils were sequentially leached to separate out different phases, and analysed for Li concentrations. The leaching technique followed a modified version of Tessier et al. (1979) detailed in Revels et al. (2021). Briefly, the exchangeable fraction was leached using Mg(NO$_3$)$_2$ at pH5 for 1 hour; carbonates were leached using acetic acid buffered with Na acetate to pH5 for 5 hours; oxides were leached using NH$_2$OH-HCl in acetic acid at 96°C; the silicate residue was dissolved using the method described for bulk soils below.

Soil solutions were sampled over two different seasons (September 2009 and June 2010), using macro rhizon soil water samplers, which filter pore waters at 0.2 µm. Elemental concentrations were determined by ICP-MS and ion chromatography, as described by Opfergelt et al. (2014). In their initial measurements, Li concentrations were not always determined, because [Li] was so low, and was hence below detection limits. For these samples, Li concentration was re-determined by this study during isotope analysis, by drying down at least 10ml of sample, and comparing the MC-ICP-MS beam intensity to that of a known concentration standard.

3.2 Li isotope analyses

Lithium isotope purification and analyses by our methods have been described in elsewhere (Pogge von Strandmann et al., 2011; Pogge von Strandmann and Henderson, 2015). Briefly, soils were dissolved in HF-HNO$_3$-HClO$_4$, HNO$_3$ and HCl, and sufficient pore water was dried down to attain 20ng Li. This was purified through a two-step cation
exchange method, and analysed relative to the LSVEC standard on a Nu Instruments HR
MC-ICP-MS at Oxford University. Splits taken before and after the Li collection bracket on
the columns show that >99.9% of Li analysed, which is essential for both precision and
accuracy. The total procedural blank for Li isotopes is effectively undetectable (<0.005 ng
Li). Long-term precision of this method and instrument is ±0.6‰ (2sd), based on repeated
seawater analyses of 31.2 ± 0.6‰ (2sd, n = 62), and BCR-2 basalt of 2.6 ± 0.4‰ (n = 6).

4.0 Results

Opfergelt et al. (2014) extensively characterised these soils, and results are given in
Tables 1 and 2. Briefly, the primary mineralogy of these soils (augite, Ca-plagioclase,
magnetite) reflects that of the primary tholeiitic basalt. Based on selective extraction,
secondary minerals are dominated by short-range ordered minerals, mainly allophane and
ferrihydrite, as also reported from other Icelandic soils (Arnalds, 2004; Sigfússon et al., 2006,
2008). No other secondary minerals were identified in the soils’ clay-sized fraction (<2µm),
except in the HA soil, where XRD detected smectite and kaolinite (Opfergelt et al., 2014).
The allophane content is higher in the V-BA-GA soils than in the HA-H soils. This is because
allophane forms above pH 4.9 when Al is not complexing with humus and therefore the more
acidic HA-H soils have a lower allophane content (Mizota and van Reeuwiik, 1989). The
HA-H soils do contain some allophane, which is explained by aeolian deposition or by higher
pH conditions that may have existed earlier in the soil development cycle (Opfergelt et al.,
2014).

As described by Opfergelt et al. (2014), one of the primary chemical properties of the
bulk soils is the total reserve in bases (TRB = [Na] + [Mg] + [Ca] + [K]). The TRB is well-
defined as a relative index quantifying the leaching of these cations in the soils relative to the
parent material (e.g. Ameijeiras-Mariño et al., 2017; Delvaux et al., 1989; Henriet et al.,
Any fraction of cations that are included in present secondary, rather than primary minerals, will still be included in the TRB. The TRB value in soils decreases with increased weathering, and leads to the observation that the least weathered soil is the Vitrisol (average TRB = 618 cmolc/kg), compared to a value of 733 cmolc/kg in the pristine basalt, followed by the Gleyic Andosol (TRB = 401 cmolc/kg), then the Brown Andosol (TRB = 358 cmolc/kg), then the Histosol (TRB = 194 cmolc/kg), closely followed by the Histic Andosol (TRB = 158 cmolc/kg), which is therefore the most weathered soil type. This relative degree of weathering is supported by a direct correlation with the proportion of free Fe (Fe_d/Fe_t) (Opfergelt et al., 2017b), which is also used as a weathering indicator. This is also further supported by the total clay-sized content (<2µm), which is higher in the HA-H soils (53 and 43%, respectively) compared to the BA-GA (both ~35%) and V (4.6%) soils (Table 1).

4.1 Lithium in soils

None of the soil profiles have a clear trend in Li concentrations with depth (Fig. 2a). Overall, the GA soil has the highest Li concentrations (10.6 ± 2.8 (1sd) µg/g), followed by the BA and V (8.3 ± 2.6 and 8.3 ± 3.0 µg/g, respectively), and then by the H and HA (5.2 ± 3.3 and 5.2 ± 2.8 µg/g, respectively). In comparison, the host basalt has a Li concentration of 5.89 µg/g, within the range for Icelandic basalts (Pogge von Strandmann et al., 2006; Pogge von Strandmann et al., 2008; Pogge von Strandmann et al., 2012; Vigier et al., 2009).

The selective leaches of three soils (HA O1, H O6, BA BW2) show that between 0.2 and 3.4% of the total Li is in the exchangeable fraction, slightly less than observed during experiments with Icelandic basalts (Pogge von Strandmann et al., 2019a), but similar to the amount of Mg reported in this fraction (Opfergelt et al., 2014). Carbonates contain a similar proportion of Li (1–4%). The oxide fractions (primarily Fe-oxides) contain significantly more
Li, ranging from 10% in the BA soil, to 25% in the HA soil. The silicate fraction contains ~90% of the total Li in the BA soil, 70% in the HA soil, and 72% in the H soil (Table 1).

Although the recovered phases are slightly different compared to the BCR leaching of Hawaiian basalt by Li et al. (2020) (e.g. that method combines exchangeable and carbonate phases in a single leach), the results agree in that the silicate fraction dominates the Li budget, followed by the oxide fraction. The least weathered leached soil (BA) has the least Li in any of the secondary fractions.

Similarly, there are no trends with depth for soil δ7Li, except for the BA, where δ7Li decreases linearly from 6.4 to 2.1‰ with increasing depth (Fig. 3). There is, however, a difference in the average δ7Li in the soil between different soil types. From least to most weathered, the V soil has an average of 1.9 ± 1.9‰, the GA of 5.2 ± 1.3‰, the BA of 2.7 ± 3.0‰, and H of -0.2 ± 3.5‰ and the HA of 0.5 ± 1.4‰. In other words, aside from the Vitrisol, the average δ7Li in the soil decreases as the degree of weathering increases. The parent basalt has a δ7Li of 3.6‰, within the range for Icelandic basalts and MORB. In particular, this parent value is similar to that of 2010 Eyjafjallajökull ash (3.9‰; Pogge von Strandmann et al., 2012), of unaltered basalt at the Reykjanes Peninsular (3.7‰; Verney-Carron et al., 2015), and elsewhere in Iceland (3.1–4.0‰; Ryan and Kyle, 2004), suggesting that there is little variability across Iceland, and hence of the parent composition of our different soil profiles.

4.2 Lithium in pore waters

No pore waters exist from the very fast-draining Vitrisol. In the other soils, there is a hint of increasing Li concentrations with depth in the HA and BA (Fig. 2b), but not in the other soil profiles. On average, the Li concentrations increase with increasing degree of weathering: the GA has an average pore water Li concentration of 0.09 ± 0.02 ng/ml, compared to 0.15 ± 0.07 ng/ml in the BA, 1.78 ± 1.12 ng/ml in the HA and 3.27 ± 2.54 ng/ml
in the H. In comparison, Icelandic rivers range between 0.015 and 0.4 ng/ml, although up to 1.1 ng/ml in rivers with hydrothermal input (Pogge von Strandmann et al., 2006). A Histic Andosol from elsewhere in Iceland has reported pore water Li concentrations of 0.67–1.94 ng/ml (Pogge von Strandmann et al., 2012).

There are sometimes significant differences between both the [Li] and the δ7LiPW (on average ~10‰) from the same horizons, but from the two different years/seasons, collected in September (late summer) 2009 and June (spring) 2010 (Fig. 3). Some variability between shallow (<70cm) pore waters could be expected, given fluctuations in water-levels, evaporation and redox variations, which could also explain the lack of consistent differences between the different soils. Broad patterns appear to be maintained, however; for example, in the HA, pore waters from both years trend towards lighter isotope ratios with depth (Fig. 3), similarly to broadly flat profiles in the Gleyic Andosol.

Lithium isotope ratios show trends to lower values with depth in the HA and H profiles, but not in the others. Overall, the pore water δ7LiPW is always higher than that of the soils, except at the base of the HA soil, where pore waters become similar or even slightly isotopically lighter than their corresponding soils. A precipitation correction (denoted by *) is applied to the major element pore water data, based on the assumption that rainwater in Iceland stems from the oceans (Pogge von Strandmann et al., 2006), and that all Cl− in the pore waters stems from marine aerosols, which is validated by the low Cl− concentrations of Icelandic basalt (Gíslason et al., 1996). We do not apply a precipitation correction to pore water Li. This is because an attempted correction using seawater elemental ratios and isotope compositions, and the measured [Cl], drives around a third of [Li] to negative values. We also note that the pore water data do not lie on a mixing trend with seawater. This is a similar approach to other basaltic Li studies (Liu et al., 2015; Pogge von Strandmann et al., 2006), and we note that this may be due to analytical uncertainty in both [Cl] and [Li] values, as also
suggested by other studies (Pogge von Strandmann et al., 2010). We note that for samples where the correction can be made, the contribution from sea spray is generally <10%, and averages <5%.

Between different soil profiles there are large average $\delta^7\text{Li}_{pw}$ differences that correlate with the degree of weathering. The least weathered GA has the highest $\delta^7\text{Li}_{pw}$ of $26.7 \pm 3.4\%$ (1sd). The BA has an average $\delta^7\text{Li}_{pw}$ of $23.2 \pm 7.3\%$, the H of $14.3 \pm 3.3\%$ and the HA of $6.6 \pm 6.9\%$. In comparison, Icelandic (non-hydrothermal) rivers have a $\delta^7\text{Li}$ of 15.4–44‰ (Pogge von Strandmann et al., 2006; Pogge von Strandmann et al., 2016; Vigier et al., 2009), and another reported Icelandic Histic Andosol has pore waters that have a $\delta^7\text{Li}$ ranging between 7.4–21.4‰ (Pogge von Strandmann et al., 2012).

4.3 Lithium in secondary minerals

While the fluids that correspond to the secondary minerals are not available (although most were formed in the same catchment as most of the soils analysed here), analysis of the solid secondary minerals, nevertheless, provides some insight into their effect on lithium behaviour (Table 1). Li concentrations in the calcites are similar at 32–39 ng/g, over two orders of magnitude below Icelandic basalt. Of the silicate secondary minerals, the clays have Li concentrations of ~5–14 µg/g, similar to that of the Fe oxyhydroxide (14 µg/g), but significantly higher than the zeolites (0.4–2.7 µg/g).

Li isotope ratios in the calcites range between -1.0 and 5.4‰. Inorganic calcites are reported to have fractionation factors of 3–6‰ from fluid (Marriott et al., 2004). The clays exhibit a similarly wide variation in $\delta^7\text{Li}$, with values of -8.4 and 2.1‰. The zeolites tend to have fairly low $\delta^7\text{Li}$ values (-4.9 to -0.2‰), except for heulandite (7.9‰) and scolecite (5.3‰). Given the differing locations and the variability in the pore waters detailed above, it is not possible to determine fractionation factors from these samples. As such, the Li
concentrations potentially provide more information than the isotope ratios, supporting the hypothesis that carbonate weathering does not significantly affect dissolved Li compared to silicates (Kisakürek et al., 2005). In addition, the concentration data suggest that zeolites play a more minor role in affecting Li behaviour than clays and Fe oxyhydroxides.

5.0 Discussion

5.1 Elemental depletion in soils

In Icelandic basalt weathering, Na is the most mobile major cation (Gíslason et al., 1996), consequently it goes into solution preferentially over Mg and Ca, which are approximately 10 times less mobile (Gíslason et al., 1996; Pogge von Strandmann et al., 2006). Elemental depletion in soils can be assessed from τ calculations (Brimhall and Dietrich, 1987; Chadwick et al., 1990), where the loss or gain of Li compared to the parent material is compared to that of an immobile element. Positive τ values indicate a net elemental gain, while negative ones indicate a loss. Here we use Zr as the immobile element, although we note that τ values normalised to Nb yield values within ±10%. Mobile major cations such as Mg and Ca have consistently negative τ values (aside from one sample for Mg), showing that they have been stripped from the soils. The average τ values for Mg and Ca from each soil sequence decrease with increasing weathering grade (Fig. 4a,b), agreeing with the other tracers of the degree of weathering, such as TRB. The overall τ values for these elements are higher than, for example, in the highly weathered bauxite profiles developed in the Columbia River Basalts (Liu et al., 2013), which is to be expected in the more kinetically-limited weathering regimes of Iceland (Dellinger et al., 2015).

More immobile elements, such as Al, also tend to have negative τ values in most of the samples (apart from at the base of the GA soil), albeit significantly higher numbers than the mobile elements. The Gleyic Andosol has values close to zero, and these values then
decrease with increasing grade of weathering in the other profiles (Fig. 4c). In other words, some Al has been stripped from the more weathered of these soils, but considerably less than the mobile elements, and overall elemental loss is less than in more weathered Columbia River Basalt soil profiles (where τ_{Mg} values are uniformly close to -1, and τ_{Al} values average at ~0.55 (Liu et al., 2013)).

5.2 Soil lithium isotopes

Tau values were also calculated for Li, relative to Zr (Fig. 4d). Only the H and HA soils show any Li loss, and it is the HA that shows the greatest Li loss (average $\tau_{Li,Zr} = -0.07 \pm 0.6$), while on average the Histosol has gained Li ($\tau_{Li,Zr} = 0.19 \pm 0.7$). The BA and GA soils have gained even more Li ($\tau_{Li,Zr} = 0.27 \pm 0.15$ and 0.35 ± 0.28, respectively). The vitrisol has a tau value close to 0 (0.06), reflecting its relatively unaltered status. Positive τ values are in contrast to soil profiles from Hawaii and the Columbia River Basalts, where soils are almost always depleted in Li, and tend to exhibit much lower absolute τ_{Li} values in both settings (Liu et al., 2013; Ryu et al., 2014). Relative Li enrichment at depth in Hawaii, especially in older soils, is reported as due to Li retained in secondary minerals (Ryu et al., 2014). In the Icelandic soils examined here, the average τ_{Li} for each profile decreases with increasing weathering grade (based on TRB, and other tracers mentioned above), meaning that the nominally least weathered profiles are enriched in Li relative to the parental rock, while more weathered profiles are comparatively depleted in Li. The Gleyic Andosol in particular is increasingly enriched towards the base of the soil, and this mimics enrichment in Al (Fig. 4c), confirming that Li is being retained by secondary minerals – in this case largely allophane.

There is no direct relationship between the δ^7Li$_{soil}$ values of individual samples and their τ_{Li} values. For example, both the Histic Andosol and especially the Histosol, show
layers that are relatively isotopically heavy compared to the rest of the soils (Fig. 3). In both cases these correspond to ash layers. In the HA profile, the ash layer is mixed with a redox layer of organic-rich material, while in the H profile it is pure ash.

Discounting those layers, however, there is a clear decrease in average δ^7Li$_{soil}$ with increasing level of weathering, except for the Vitrisol (δ^7Li = 1.9 ± 1.9‰), which overlaps the composition of the parent basalt (3.6‰). Thus, δ^7Li values decrease from GA > BA > H ~ HA, which also broadly co-varies with the TRB values, although there is scatter within each soil type. This also yields a positive co-variation between the average τ_{Li} and the Δ^7Li$_{soil-basalt}$ (i.e. the difference in δ^7Li between the soil and the parent basalt) for each soil type (Fig. 5).

This trend is enhanced by highly depleted and isotopically light bauxites from the Columbia River Basalts (Liu et al., 2013). Various Hawaiian soils also lie on this trend (Li et al., 2020; Ryu et al., 2014), albeit with the humid profile from Li et al. (2020) having a large variability (Fig. 5).

Isotopically lighter Li isotope ratios in soils could be taken to suggest a greater Li accumulation in secondary minerals, relative to soils with heavier values (Clergue et al., 2015; Pogge von Strandmann et al., 2012). However, in the case of these soils, those that are enriched in Li relative to the parent basalt (positive τ_{Li}) are isotopically heavier compared to those that are depleted in Li. There is also an overall positive co-variation between soil δ^7Li and the abundance of clays such as allophane (Fig. 6a), which is the dominant secondary Al-silicate in these environments (Opfergelt et al., 2014; Stefansson and Gislason, 2001; Wada et al., 1992). There is no co-variation between δ^7Li$_{soil}$ and the abundance of ferrihydrite nor clay-sized contents (Fig. 6b), showing that in these environments, Li sorption on iron oxyhydroxides or incorporation into crystalline clays is not controlling isotope fractionation.

There is also no correlation between soil δ^7Li and δ^{66}Zn, where Zn is thought to be controlled by the soil organic matter content (Opfergelt et al., 2017a), suggesting that Li
isotopes are not affected by organic matter, as also confirmed by other studies (Li et al., 2020).

It therefore appears that the amount of total clay-sized material in the soils is not the primary control on bulk soil δ^7Li values. The correlation between δ^7Li$_{soil}$ and allophane contents (and also δ^7Li$_{soil}$ and τ_{Li}) is also hard to understand, because soil δ^7Li values extend to values both higher and lower than those of unaltered basalt, or indeed Icelandic volcanic ash (Pogge von Strandmann et al., 2012). Thus, it is unlikely that the isotopically light bulk soils values of the H and HA are due to a low allophane content. Instead, as discussed below (Section 5.3), it appears more likely that greater allophane content is associated with higher δ^7Li values because the secondary minerals are precipitating from isotopically heavy soil pore waters. In other words, greater clay formation is driving pore water δ^7Li higher, from which secondary minerals are then precipitating. This can occur in a standard coupled relationship of two reservoirs with a constant fractionation factor (Faure, 1986). It would, however, also mean that the initial dissolution of basalt would at first yield secondary minerals that are isotopically lighter than basalt. This initial isotopically lightest phase is not being resolved here, however. Complete loss of this phase via erosion is relatively unlikely, if this phase is an aluminosilicate, because allophane is the first of these phases to form (Arnalds, 2004). Therefore, such a light phase would have to be of another composition, or, more likely, is not resolvable in the analysis of bulk soils due to mass balance considerations. This is discussed further below in the context of the pore waters.

An alternate hypothesis is that the least weathered soils (BA and GA) have a higher δ^7Li because they have experienced a lower solid to solution partitioning of Li, i.e. a lower weathering intensity. This can be tested by comparing the measured τ_{Li} value to those based on a steady-state mass balance between the dissolved load, soil and bedrock. If modelled (steady-state) τ_{Li} values are similar to measured values, it would imply that the system is in
steady-state, and weathering intensity (the Li in the water/solid ratio) is controlling the soil Li
gain or loss. In contrast, if modelled and measured values are not similar, then there is a
decoupling between the present-day solution and solids, and more rapidly forming secondary
minerals (i.e. allophane) are controlling solution compositions. We model τ_{Li} using equations
from Bouchez et al., 2013:

$$w = \frac{\delta_{soil} - \delta_{rock}}{\delta_{soil} - \delta_{diss}} = -\epsilon_{steady-state}$$

Where δ is the δ^{7}Li values of the soil, rock and dissolved load. Overall, there is no
relationship between the measured and modelled steady-state τ_{Li} values ($r^2 = 0.15$). However,
there is a positive co-variation for the HA soils (Fig. 7), while there is none for the other soil
types. This strongly suggests that the isotopically heavy soils (BA and GA) are not at steady-
state between their solutions and soils, whereas the HA soil may be. In turn, this suggests that
our previous hypothesis is correct, and the BA and GA soils exhibit decoupling between their
solutions and soils, and therefore their high δ^{7}Li may be due to allophane taking up Li from
heavy pore waters.

5.3 Allophane control on pore water profiles

These soils also exhibit a positive co-variation between δ^{7}Li$_{PW}$ and allophane contents
(significant $p<0.01$ for Spearman Rank correlation; Fig. 8). Thus, while the total clay-sized
content co-varies negatively with δ^{7}Li$_{PW}$ (greater clay-sized content in the poorly-drained
soils), the allophane content co-varies positively with δ^{7}Li$_{PW}$ (greater allophane in the
rapidly-drained soils). This correlation is highly unlikely to be caused by redissolution of
isotopically light clay minerals, as observed in supply-limited regimes such as the tropics
(Dellinger et al., 2015), because weathering regimes in Iceland are dominantly kinetically-
limited (Dellinger et al., 2015; Gislason et al., 1996). Instead, allophane is poorly crystalline
and can form rapidly in these soils, and together with ferrihydrite (which does not show a
useful correlation with δ^7Li), tends to dominate both the secondary weathering products and
the exchangeable components in these volcanic soils (i.e., in many Icelandic soils it is the
dominant silicate secondary mineral), especially at pH > 4.9 (Opfergelt et al., 2014;
Sigfússon et al., 2008). As mentioned above, the similar trend in δ^7Li$_{soil}$ with allophane
contents is then likely caused by allophane precipitating from isotopically heavy pore waters.
Formation from the congruent dissolution of volcanic ash is unlikely, because measured ash
has a δ^7Li lower than that of the heaviest soils (Pogge von Strandmann et al., 2012). This
requires that allophane precipitating from the very first step of dissolution (when solution
δ^7Li would presumably be close to primary rock δ^7Li) is not resolved in this study – either
because it is not present (unlikely, given that allophane is the first silicate secondary mineral
to form in Iceland (Arnalds, 2004)), or more likely that it is not resolvable in bulk soils due to
mass balance. A mass balance, using the fractionation factor determined below and a basaltic
starting composition, suggests that the first 20% of Li transferred from solution to secondary
minerals would have a δ^7Li $< 0\%_o$, and the total δ^7Li of the solid after taking up 60% of Li
from solution would be $+1\%_o$. The calculations below (Section 5.4) show that, on average, 80
$\pm 27\%$ of Li is removed from solution, which would yield a clay δ^7Li of 2.5$\%_o$, if starting
from congruent basaltic dissolution. In other words, the initial light precipitated solid is not
detectable in bulk measurements.

It therefore appears likely that the Li isotope composition of the pore waters is
largely being controlled by the formation of the more rapidly forming poorly crystalline
allophane, rather than the slower formation of crystalline clays such as smectite or kaolinite,
which are only detectable in the HA soil by XRD (Opfergelt et al., 2014). The clay fraction is
comprised of the $<2\mu m$ fraction, so includes Fe-oxyhydroxides as well as clays. However,
there is no co-variation between pore water δ^7Li and Fe extracted by dithionite-citrate-
bicarbonate (DCB) (Opfergelt et al., 2017b), suggesting that neither crystalline clays nor Fe-
451 oxyhydroxides are controlling Li isotopes here.

The relatively low pH of the poorly-drained H and HA pore waters also results in a
coc-variation between δ^7Li$_{PW}$ and pH (Fig. 8d). Primary silicate dissolution will consume
protons, raising pH. In contrast, secondary mineral formation will tend to release protons,
thus lowering pH. Organic matter decomposition will also have the same effect (Gislason and
Eugster, 1987; Pogge von Strandmann et al., 2010), and in the peaty H and HA soils, it is
likely this latter process that is affecting pH. Thus, the soils with the highest clay-sized
contents have the lowest pore water pH, but this does not appear to be affecting the pore
water Li isotope ratio. Instead, the relationship is due to a positive co-variation between pH
and the saturation index of allophane. This agrees with the overall observation that allophane
only forms above pH 4.9 when Al stops forming a complex with humus (Mizota and van
Reeuwiik, 1989). This then provides further evidence that it is the formation of allophane
over other clays that is dominating Li isotope fractionation.

5.3.1 Using Li/Na ratios to constrain Li isotope fractionation factors

To further understand the processes controlling δ^7Li$_{PW}$, the isotope ratios can be
compared to the Li/Na ratios (Liu et al., 2015). In these pore waters, there is a strong negative
correlation between δ^7Li$_{PW}$ and Li/Na* (Fig. 9), as would be expected if secondary minerals
take up Li over Na, and the lighter Li isotope preferentially. Similar relationships have been
seen in basaltic rivers from Iceland and elsewhere (Liu et al., 2015; Pogge von Strandmann et
al., 2010; Pogge von Strandmann et al., 2006; Pogge von Strandmann et al., 2016; Pogge von
Strandmann et al., 2017b; Vigier et al., 2009). The interesting feature concerning the
relationship observed here, however, is that the pore waters from the soils that have
undergone the most weathering (HA and H, as determined from CRB depletion) are the least
fractionated from basalt or bulk soils for both Li/Na and $\delta^7\text{Li}_{PW}$ (i.e. most congruent
dissolution), while those that have undergone the least weathering (BA and GA), and overall
have the lowest total clay-sized contents, are the most fractionated, implying that they also
have the most secondary mineral formation. In general, H and HA soils are more poorly
drained that BA or GA soils. In principle, that should lead to greater water-rock contact times
in the H and HA soils, which would promote secondary mineral formation and raise solution
$\delta^7\text{Li}$ (Dellinger et al., 2015; Pogge von Strandmann et al., 2017b; Pogge von Strandmann and
Henderson, 2015). Given that this is the opposite to what is observed, other processes must be
controlling the pore water $\delta^7\text{Li}$ composition.

Interestingly, both HA soil profiles (i.e., from this study and from Pogge von
Strandmann et al., 2012) plot along the same $\delta^7\text{Li}_{PW}$ vs. Li/Na trend (Fig. 9), suggesting that
while their isotope ratios are different, the fractionation factors are the same in both soils. In
other words, a different amount of Li has been removed from the water by secondary mineral
formation, but with the same fractionation factor. Hence, the pore waters imply that the Histic
Andosol from this study is dissolving almost congruently at the base of its profile (Fig. 9).
These are the O layers of the soil, and it may be that organic acids are driving the pH low,
and causing more congruent dissolution of primary and/or secondary minerals.

If allophane is dominating Li removal from the remaining pore waters, then it is
possible to calculate an isotopic fractionation factor, based on the removal of Li relative to Na
from solution. The logarithmic relationship between Li/Na and $\delta^7\text{Li}$ for the trend shown by
the GA, BA and HA pore waters can be modelled using a Rayleigh fractionation relationship.
The starting composition can either be set to the host soils (as in Fig. 9b), or the pristine
basalt. The two starting compositions make little overall difference to the fractionation factor
α, which varies by 0.01 according to the initial material. The average Rayleigh α value for
these soils is 0.993 ± 0.03 (Fig. 9b), identical to the average α value of 0.992 for all basaltic
rivers (Pogge von Strandmann et al., 2017b), and to the α value of 0.991 determined in inorganic basalt-water weathering experiments (Pogge von Strandmann et al., 2019a).

Equilibrium fractionation factors are also shown in Figure 9b, but the trends of the data do not appear to follow linear trends, except potentially for the HA pore waters. In general, therefore, the similarity in fractionation factors between soils, inorganic experiments and rivers argues that the overall fractionation of Li isotopes during basalt weathering is similar regardless of first order controls, such as runoff or climate. These factors may however be the cause of the scatter observed in global basaltic rivers. In addition, the similarly of the soil and river fractionation factors with inorganic experiments suggests that vegetation does not form a significant control on the Li isotope composition of surface waters, or that vegetation imposes an identical fractionation factor.

In general, if most of the pore waters can be modelled by a similar fractionation factor, it would supply strong evidence that one secondary mineral is dominantly removing Li from solution (Hindshaw et al., 2019). In this case, given the co-variation with δ^{7}Li$_{PW}$, this mineral would appear to be allophane, which also agrees with the similar values of the histic andosol reported in Pogge von Strandmann et al. (2012), where allophane was also the dominant silicate secondary mineral. The similar positive co-variation between bulk soil δ^{7}Li and allophane contents could therefore also imply that the allophane is forming through uptake of Li from the pore waters, driving the bulk soil Li isotope ratio heavy as well. In effect, this could explain why the ‘closed-system’ relationship of Rayleigh fractionation appears to fit the fractionation behaviour better than equilibrium fractionation. This would be because allophane formation (or at least its uptake of Li) is faster than the residence time of the pore waters, meaning that they behave as a closed system. This applies even to the rapidly-draining BA and GA soils, suggesting that Li uptake is very rapid, and indeed water-
basalt interaction experiments show that solution δ^7Li shows more than 12‰ fractionation within 12 days, and more than 16‰ in a month (Pogge von Strandmann et al., 2019a).

5.4 Element mobility and co-variation with Li isotopes

The use of Li isotopes as a palaeo-weathering tracer (Hathorne and James, 2006; Pogge von Strandmann et al., 2017a) opens the discussion as to whether Li isotopes only inform on weathering regime changes (Dellinger et al., 2015), or whether they can inform on CO$_2$ drawdown efficiency (Pogge von Strandmann and Henderson, 2015). The latter requires that Li isotopes can be used to determine behaviour of the critical elements to the carbon cycle, calcium and magnesium. This can be examined through the mobility of elements, which is the tendency of elements to stay in solution (= mobile) compared to that of going into secondary minerals (= immobile) (Gíslason et al., 1996). This is determined by the ratio of the elements in question (here, Li to Ca) of the dissolved load to that of a starting composition (here, either parent basalt, or host soil). A relative mobility value of 1 implies that the Li/Ca ratio of the water is the same as that of the starting material, while lower values mean that Ca is more mobile than Li.

Icelandic rivers exhibit a very strong relationship between Li to Ca relative mobility and their δ^7Li value ($r^2 = 0.7$; Fig. 10a), as well as a similar one for Li to Mg mobility ($r^2 = 0.67$; Fig. 10c) (Pogge von Strandmann et al., 2016; Pogge von Strandmann et al., 2020). In turn, this means that Li isotopes ratios could inform on the sequestration efficiency of CO$_2$. The soil pore waters exhibit a similar, albeit more scattered, relationship. The GA waters have the lowest Li mobility (compared to Ca or Mg), and, given that the decrease in Li mobility is due to uptake by secondary minerals, the highest δ^7Li$_{PW}$. The HA and H waters show contrasting behaviour (Fig. 10a), with the HA waters having low δ^7Li$_{PW}$ but still higher
Ca or Mg than Li mobility, while the H waters have intermediate δ^7Li$_{PW}$, but a greater Li mobility than Ca.

When comparing the mobility vs. δ^7Li$_{PW}$ trend of these pore waters to basaltic rivers from Iceland (Pogge von Strandmann et al., 2006) and the Azores (Pogge von Strandmann et al., 2010), as well as the other Icelandic Histic Andosol (Pogge von Strandmann et al., 2012), the HA soils from this study lie off the overall trend. If they are removed from the overall pore water trend, then that trend and its r^2 becomes similar to that for the rivers ($r^2 = 0.7$ for Ca, Fig. 10a; $r^2 = 0.55$ for Mg, Fig. 10c).

The behaviour of the pore waters can be taken further: a simple Rayleigh relationship, using the best-fit alpha value from Section 5.3.1, can be used to determine the fraction of Li taken into solution (Pogge von Strandmann et al., 2012; Vigier et al., 2009)(Fig. 10b). Thus, on average the GA pore waters have the lowest fraction of Li in solution (average $7 \pm 4\%$, where the uncertainty stems from the uncertainty in α), which increases to averages of $9 \pm 6\%$ in the BA pore waters, $14 \pm 7\%$ in the H and $50 \pm 6\%$ in the HA (up to 97% in some HA waters). Again, as above, excepting the HA pore waters, there is a significant ($p<0.01$, Spearman Rank) relationship between the Li to Ca relative mobility (and Li to Mg relative mobility) and δ^7Li$_{PW}$, or the fraction of Li in solution that is derived from the δ^7Li$_{PW}$ value (Fig. 10b and d). In effect, when $\sim10\%$ total Li is in solution, then Li and Ca or Mg are similarly mobile (relative mobility $\sim 1^{+1.5}_{-0.5}$). In contrast, where $\sim2\%$ of total Li is in solution, Li is approximately a factor of 50 times less mobile than Ca (relative mobility $\sim 0.02^{+0.06}_{-0.015}$), due to uptake into secondary minerals. This type of relationship has been reported in experimental basalt-water interactions (Pogge von Strandmann et al., 2019a), as well as in basaltic, andesitic and gneissic rivers (Clergue et al., 2015; Pogge von Strandmann et al., 2010; Pogge von Strandmann et al., 2006; Pogge von Strandmann et al., 2020; Wimpenny et al., 2010), and suggests that the δ^7Li value can be used to both determine the fraction of Li in
solution (i.e. the weathering regime) and from that the behaviour of Ca in solution. This
would be interesting especially from a palaeo-weathering perspective (Misra and Froelich,
2012; Pogge von Strandmann et al., 2017a; Pogge von Strandmann et al., 2013), because it
implies that the behaviour of an element directly involved in sequestering CO₂ could be
quantified. However, the HA pore waters here exhibit a trend with a significantly different
gradient from the other samples (Fig. 10b and d), and this highlights that more characterising
work is necessary. In this case, as mentioned above, the HA pore waters appear to follow a
linear rather than log trend in δ⁷Li vs. Li/Na space (Fig. 9), potentially suggesting equilibrium
fractionation, and hence a subtly different fractionation factor. This may be because there are
hints that other clays are forming in these soils, compared to the other profiles (Opfergelt et
al., 2014; Opfergelt et al., 2017a; Opfergelt et al., 2017b).

5.5 Li vs. Mg isotopes

Magnesium is a critical element in the carbon cycle, because of the formation of Mg-
carbonates that sequester CO₂, and the exchange of Mg for Ca at mid-ocean ridges
(Humphris and Thompson, 1978; Walker et al., 1981). Mg isotopes have been suggested as a
tracer of Mg behaviour, but the processes that control Mg isotopes are complex, and include
lithology, secondary minerals and plants (Hindshaw et al., 2020; Tipper et al., 2006a; Tipper
et al., 2006b). It may be possible to constrain weathering processes using a combination of
isotopic systems, including those of Li and Mg. In particular, because Li substitutes for Mg in
both primary and secondary silicates (Hindshaw et al., 2019). Magnesium isotopes from these
particular soils and pore waters have been interpreted as representing a combination of Mg
adsorption by the soil exchangeable fraction (of heavy Mg isotopes preferentially) and of Mg
uptake by vegetation (which also takes up heavy Mg isotopes preferentially) (Opfergelt et al.,
2014). A strong control on Mg isotopes by adsorption onto allophane has also been reported
in other Icelandic soils (Pogge von Strandmann et al., 2012). When plotted against Li isotopes (Fig. 11a), the pore waters are always isotopically lighter than the host basalt and soils for Mg isotopes, but (as mentioned above), some pore waters have similar isotope ratios to their host soils for Li isotopes.

Excluding the largely unfractionated HA from this study (bearing in mind that the Histic Andosol studied by Pogge von Strandmann et al. (2012) behaves slightly differently – Fig. 11a), there is a general negative relationship between Li and Mg isotopes, largely due to the preferential uptake and sorption of light Li and heavy Mg by secondary minerals. Hence, although there is scatter in any potential relationship, it is interesting that the pore waters from soils that are nominally the least weathered are the most fractionated for both Li and Mg isotopes. This supports the hypothesis that the secondary mineral that is affecting the sampled pore waters (or at least their Li and Mg behaviour) is allophane, rather than other clays that take longer to form, because it is the most fractionated (least weathered) soils that yield the most favourable chemical conditions for allophane formation.

However, it is also clear that there is significant scatter in the relationship for these pore waters between Li and Mg isotopes (Fig. 11a). In the absence of Mg-rich secondary minerals in these soils (Opfergelt et al., 2014; Pogge von Strandmann et al., 2012; Sigfússon et al., 2006, 2008), both Li and Mg are controlled by incorporation by substitution and adsorption. However, the substitution and especially the sorption kinetics are different for the two elements (experimentally by a factor of ~2.6 (Pogge von Strandmann et al., 2021b)), meaning that similar behaviour will decouple the two elements and their isotopes. Scatter is also caused by Mg uptake by plants, which causes isotope fractionation, and in these soils is thought to be an important controlling process for Mg isotope ratios (Opfergelt et al., 2014).

Thus, even in the relatively simple weathering environment of Iceland, elements and isotopic
systems that are coupled by the same overall process (silicate weathering) and decoupled by the specifics of the process for each element.

5.6 Li vs. Si isotopes

Silicon is another critical element in the carbon cycle, largely because it is the weathering of silicates that ultimately removes atmospheric CO$_2$, and also because Si can be a critical nutrient in certain ocean environments (Frings et al., 2016; Hatton et al., 2019). Si isotopes are often interpreted similarly to Li isotopes, because secondary minerals preferentially take up the light Si isotopes, driving waters isotopically heavy, and because both trace silicate weathering processes (De la Rocha et al., 2000; Georg et al., 2007).

Because of this, both isotope systems exhibit a general positive covariation when comparing all global river and pore water data (Pogge von Strandmann et al., 2017b). However, some studies, including from Iceland, have shown a significant degree of scatter between Li and Si isotopes, taken to be either influenced by plants (which preferentially take up light Si isotopes, but do not fractionate Li isotopes), or due to kinetic differences if Si is dominated by neoformation, compared to faster incorporation or adsorption for Li isotopes (Georg et al., 2007; Georg et al., 2009; Opfergelt et al., 2013; Pogge von Strandmann et al., 2006; Pogge von Strandmann et al., 2019b; Pogge von Strandmann et al., 2012; Vigier et al., 2009).

In our data, all the soils are isotopically lighter than the host basalt for Si isotopes (Fig. 11b), due to the formation of secondary minerals (Opfergelt et al., 2017b). In contrast, soil δ^7Li of the present study is only occasionally lower than the value for basalt, and there is no correlation between bulk soil δ^7Li and δ^{30}Si for any of the soil profiles. Given that secondary minerals clearly do take up the light isotopes of both elements (because pore waters are isotopically heavy), this behaviour may be a function of the overall mass balance. Because Si makes up a significant portion of clays (for example, Si makes up 20 molar% of
forsterite, 28% of Ca-montmorillonite and 14% of allophane), but Li does not (at most 0.01% of clays), the bulk soil δ^{30}Si will be measurably perturbed by clay formation, while the bulk soil δ^7Li will largely not be.

In contrast, the pore waters are clearly affected by secondary mineral formation in both systems, driving an overall positive co-variation between δ^7Li and δ^{30}Si (Fig. 11b). However, this co-variation does not exist for individual soil profiles. Further, the pore waters that are most fractionated for Li isotopes (GA and BA) are not for Si, where the heaviest values are from the Histosol (and also the HA of Pogge von Strandmann et al., 2012). From the relationship between δ^7Li and Li/Na discussed above (Fig. 11a), it is clear that the Li isotopes in the pore waters are only being fractionated by a single process (or processes with a uniform fractionation factor), which then suggests that more variable processes are affecting the Si isotope ratios of the pore waters. These likely include uptake by plants, and the varying (and generally slower) kinetics that can affect the uptake of a major element into secondary minerals (Opfergelt et al., 2017b; Pogge von Strandmann et al., 2012).

The relationships between δ^7Li and Mg and Si isotopes indicate the differing and multiple processes that control Mg and Si over those that control Li (given the virtually linear relationship between δ^7Li and Li/Na). This therefore demonstrates the potential complications that can affect major elements over trace elements with relatively simple behaviour during weathering such as Li (Pogge von Strandmann et al., 2019b), and also confirms the potential of Li isotopes as a weathering tracer.

6.0 Conclusions

This study has analysed Li isotope ratios from well-studied soil and pore water profiles from Iceland that have experienced different amounts of chemical weathering. Pore waters from the soils that have experienced least weathering, based on the total reserve in
bases (Gleyic Andosol and Brown Andosol) have the highest $\delta^7\text{Li}_{PW}$ values (14–34‰), and these soils are also enriched in Li compared to their parent basalts. In contrast, those that are more weathered (HA and H) have the lowest $\delta^7\text{Li}_{PW}$ values (-1.4–20‰), and the bulk soils are depleted in Li.

The pore waters form a well-defined negative trend for $\delta^7\text{Li}$ as a function of Li/Na ratios, suggesting that they are controlled by a process with a single fractionation factor, likely the formation of allophane. Hence, a large range of solution $\delta^7\text{Li}$ (~36‰) can be generated by weathering with a single fractionation factor, due to variable proportion of Li uptake. The correlation between $\delta^7\text{Li}$ and uptake presents the possibility of combining isotope ratio and flux into a single solution when interpreting palaeo—records. The isotopic fractionation does not correspond to the amount of clay-sized material present, but to the amount of clay undergoing neoformation. In other words, it is secondary minerals that are currently forming, rather those that have previously formed, which control the $\delta^7\text{Li}$ of surface waters. Hence, profiles that have experienced only little overall chemical weathering, but have formed a relatively large amount of amorphous, rapidly-formed, secondary minerals (allophane), can exhibit substantial Li isotope fractionation.

Most of the pore waters also plot along the same trend between $\delta^7\text{Li}$ and the relative mobility of Li to Ca or Li to Mg as other Icelandic surface waters. This suggests that dissolved Li isotope ratios can be used not only to inform on Li behaviour and the silicate weathering regime, but also Ca behaviour. Effectively, this can then be used to determine the fraction of Ca in solution vs. secondary minerals in palaeo—records, and thus CO$_2$ drawdown efficiency. In other words, with data from more weathering lithologies, Li isotopes may be useful for quantitatively determining past CO$_2$ drawdown behaviour.
Acknowledgements

This study and PPvS were funded by ERC Consolidator grant 682760 CONTROLPASTCO2.

Birkbeck, University of London is thanked for the undergraduate project of BG. We would like to thank Kristján Jónasson and the Icelandic Institute of Natural History for providing the secondary mineral samples.

Table 1. Bulk soil and secondary mineral data. All soil data aside from Li isotope ratios are from Opfergelt et al., 2014. The final section shows the results for Li from sequential leaching of three soils.
| Pore waters | Depth (cm) | pH | T (°C) | Li (ng/ml) | Na (μg/ml) | Mg (μg/ml) | Al (μg/ml) | K (μg/ml) | Ca (μg/ml) | Si (μg/ml) | Fe (μg/ml) | Cl (μg/ml) | δ^7Li (‰) |
|-------------|------------|----|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|
| **2009** | | | | | | | | | | | | | |
| HA H1 | 7.5 | 6.18| 11.6 | 0.61 | 16.5 | 5.19 | 185 | 5.64 | 5.86 | 8.37 | 40.4 | 34.0 | 15.5 |
| HA O1 | 62 | 3.64| 11 | 3.02 | 7.87 | 3.60 | 102.00 | 0.116 | 30.1 | 31.1 | 115 | 11 | 2.1 |
| HA O2 | 83 | 3.71| 10.9 | 3.02 | 8.96 | 3.56 | 9670.0 | 0.127 | 24.4 | 30.8 | 122 | 12 | -1.4 |
| H O1 | 6.5 | 4.34| 11.3 | 4.17 | 9.17 | 4.16 | 316 | 0.390 | 9.88 | 17.40 | 13.8 | 9.0 | 14.6 |
| H O5 | 67.5 | 4.78| 11.7 | 3.02 | 16.1 | 3.33 | 15.8 | 0.318 | 4.29 | 13.90 | 519 | 22 | 14.3 |
| H O6 | 72 | 5.48| 11.6 | 5.94 | 19.6 | 10.9 | 90.8 | 0.746 | 11.2 | 18.3 | 25000 | 21 | 10.7 |
| BA BW1 | 46 | 5.83| 11.9 | 0.04 | 7.26 | 0.73 | 90.2 | 0.036 | 1.64 | 0.74 | 65.8 | 14.2 | 34.2 |
| GA A1 | 6 | 5.64| 13.1 | 0.12 | 7.83 | 1.46 | 106 | 0.326 | 3.78 | 4.89 | 38.6 | 25.9 | 28.5 |
| GA BW1 | 36 | 5.90| 13 | 0.08 | 7.53 | 1.20 | 9.6 | 0.041 | 3.54 | 7.95 | 13.6 | 13.4 | 32.2 |
| **2010** | | | | | | | | | | | | | |
| HA H1 | 7.5 | 5.05| 19.6 | 0.61 | 12.6 | 8.64 | 320 | 3.32 | 11.3 | 9.60 | 26.5 | 7.9 | 12.3 |
| HA BW1 | 33 | 4.67| 20.3 | 0.71 | 8.29 | 3.67 | 475 | 0.089 | 16.2 | 9.60 | 22.8 | 12.1 | 15.1 |
| HA O1 | 62 | 3.99| 18.9 | 1.80 | 6.70 | 4.13 | 6510 | 0.088 | 27.8 | 4.22 | 32.3 | 10.0 | 7.4 |
| HA redox | 75 | 3.98| 18.5 | 2.97 | 8.54 | 3.60 | 7530 | 0.128 | 23.2 | 26.5 | 36.2 | 11.3 | 0.8 |
| HA O2 | 83 | 3.95| 18.3 | 2.80 | 9.52 | 4.34 | 7640 | 0.078 | 24.5 | 30.3 | 36.5 | 13.0 | 0.8 |
| H O1 | 6.5 | 4.88| 22.3 | 2.86 | 9.91 | 4.68 | 54.3 | 3.13 | 7.20 | 10.5 | 282 | 4 | 19.7 |
| H O2 | 19.5 | 5.47| 20.3 | 0.79 | 12.0 | 6.38 | 23.8 | 0.439 | 7.26 | 5.30 | 58.5 | 28.7 | 18.4 |
| H O3 | 33 | 5.15| 19.2 | 1.95 | 14.7 | 4.53 | 205 | 0.315 | 8.94 | 17.4 | 193 | 23 | 11.7 |
| H O4 | 57.5 | 3.27| 21.0 | 6.12 | 101 | 0.788 | 7.14 | 19.2 | 15300 | 14.1 | 0.6 | |
| H O6 | 72 | 7.48| 25.4 | 17.5 | 45.7 | 1.72 | 15.2 | 18.8 | 20000 | 11.3 | 0.4 | |
| BA A1 | 10.5 | 0.06| 6.38 | 1.51 | 4.93 | 1.23 | 2.13 | 5.90 | 12.1 | 28.4 | 8.6 | |
| BA A2 | 30.5 | 5.84| 19.1 | 0.14 | 5.18 | 0.74 | 3.54 | 0.063 | 1.11 | 3.50 | 9.86 | 9.60 | 18.6 |
| BA BW1 | 46 | 5.88| 19 | 0.25 | 6.89 | 0.93 | 50.8 | 0.043 | 1.55 | 3.60 | 34.5 | 13.5 | 13.7 |
| BA BW2 | 74 | 5.96| 19.1 | 0.14 | 7.22 | 0.74 | 4.61 | 0.040 | 1.52 | 4.40 | 8.03 | 15.0 | 18.4 |
| BA BW3 | 96 | 5.46| 20 | 0.14 | 8.05 | 0.92 | 1.57 | 0.101 | 1.80 | 5.00 | 3.51 | 14.20 | 20.5 |
| GA A1 | 6 | 0.05| 6.87 | 1.79 | 17.3 | 2.318 | 3.75 | 5.70 | 13.6 | 31.6 | 31.6 | |
| GA A2 | 20.5 | 5.77| 17.8 | 0.12 | 6.69 | 0.68 | 28.2 | 0.995 | 1.55 | 7.50 | 45.4 | 6.6 | 24.3 |
| GA BW2 | 36 | 0.09| 6.65 | 0.68 | 5.69 | 0.173 | 1.76 | 8.10 | 14.7 | 27.0 | 0.5 | |
| GA BW2 | 49.5 | 5.6 | 17.4 | 0.10 | 8.28 | 1.27 | 40.0 | 0.280 | 3.75 | 12.0 | 11.3 | 8.5 | 22.1 |
| GA BW1 | 64 | 5.46| 17.2 | 0.08 | 11.3 | 2.48 | 10.4 | 0.368 | 7.14 | 12.4 | 4.96 | 9.30 | 25.6 |

Table 2. Pore water data. All data aside from Li isotope ratios are from Opfergelt et al., 2014.
Figure 1. Sample locations on a soil map of Iceland. Soil symbols correspond to the key of Figure 2. Adapted from Opfergelt et al., 2014.
Figure 2. Depth profiles for Li concentrations for bulk soils and parent basalt depicted by the vertical dashed line (a), and pore waters (b). The pore water concentrations have been averaged from the two different collection years for this diagram (Table 2).

Figure 3. Li isotope depth profiles for bulk soils, and the two different seasons of pore waters. In 2009, samples were taken in September (late summer), while in June (late spring) in 2010. The range of Icelandic basalt is depicted by the shaded area. Note the difference in horizontal axis scales.
Figure 4. Tau values for the soils for the elements Mg, Ca, Al and Li. The dashed vertical lines are at tau = 0.
Figure 5. Average τ_{Li} and $\Delta^{7}Li_{soil-basalt}$ values for each soil profile. The error bars represent the 1sd spread in the data. Also shown are data from the Columbia River Basalts (Liu et al., 2013) and multiple sections from Hawaii (Li et al., 2020; Ryu et al., 2014). Due to high aeolian input, the topsoil from Li et al. (2020) has been removed from the averages.
Figure 6. Bulk soil Li isotopes as a function of allophane content (a) and total clay-sized content (b).
Figure 7. Comparison of measured τ_{Li} values, compared to steady-state τ_{Li} values calculated from Li isotope ratios (Bouchez et al., 2013). Co-variation (as for HA soils) would suggest that depletion or enrichment may be due to weathering intensity, while no correlation (as for the other soils) suggest decoupling between processes controlling soil and present-day water composition. See text for details. Symbols are the same as figure 6.
Figure 8. Pore water Li isotope ratios as a function of soil total clay content (a), soil allophane content (b), and the PHREEQC-derived allophane saturation index (c), and pH (d).
Figure 9. (a) Li isotope ratios as a function of Li/Na ratios. The pore waters from the Histic Andosol of Pogge von Strandmann et al. (2012) are also shown. (b) the same diagram as panel a, but with Rayleigh (solid lines) and equilibrium (dashed lines) fractionation paths. The numbers next to each line represent the fractionation factor α. Experimental solutions from basalt weathering experiments (Pogge von Strandmann et al., 2019a), and Icelandic rivers (Pogge von Strandmann et al., 2006) are also shown. The * in the axis titles denote precipitation-corrected values.
Figure 10. a) Surface water Li isotope ratios as a function of the relative mobility of Li to Ca. The dashed trend line is the fit to this study’s pore waters (excluding the HA waters – see text). The solid line is the fit to Icelandic rivers (Pogge von Strandmann et al., 2006). Rivers from the Azores (Pogge von Strandmann et al., 2010) are also shown. b) the fraction of total Li in solution as a function of the Li to Ca relative mobility. The dotted line is the trend line, while the dashed lines are 95% confidence intervals. Panels c and d represent the same trends, except for the relative mobility of Li to Mg. The * in the axis titles denote precipitation-corrected values.
Figure 11. (a) Li isotope ratios as a function of Mg isotope ratios (Opfergelt et al., 2014; Pogge von Strandmann et al., 2012); (b) Li isotopes as a function of Si isotope ratios (Opfergelt et al., 2017b; Pogge von Strandmann et al., 2012).