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Abstract. GOST 28147-89 is a well-known block cipher. Its large key
size of 256 bits and incredibly low implementation cost make it a plausible
alternative for AES-256 and triple DES. Until 2010 “despite considerable
cryptanalytic efforts spent in the past 20 years”, GOST was not broken
see [30]. Accordingly, in 2010 GOST was submitted to ISO 18033 to
become a worldwide industrial encryption standard.

In paper we focus on the question of how far one can go in a dedicated
Depth-First-Search approach with several stages of progressive guessing
and filtering with successive distinguishers. We want to design and opti-
mized guess-then-truncated differential attack on full 32-bit GOST and
make as as efficient as we can. The main result of this paper is a single-
key attack against full 32-round 256-bit GOST with time complexity of
2179 which is substantially faster than any other known single key attack
on GOST.

Key Words: Block ciphers, GOST, differential cryptanalysis, truncated
differentials, guess-then-determine, Gaussian distribution, distinguisher attacks.

1 Introduction

GOST 28147-89 is a well-known block cipher and a government standard of
the Russian Federation. A 256-bit block cipher which can claim to be a serious
alternative for AES-256 and triple DES, given its very low implementation cost
[30]. Until 2010 there was no attack on GOST, cf. [30].

Then in 2011 it was discovered that GOST can be broken and is insecure
on more than one account. There is a substantial variety of recent attacks on
GOST [3–6, 19, 11, 12, 23, 16, 17, 24]. In particular there is a large variety of self-
similarity and black-box reduction attacks [3, 16, 9, 11, 17, 19, 24]. There have also
been quite a few papers about advanced differential attacks on GOST [33, 6, 4,
5, 13, 32, 29, 31, 8, 15]. In contrast to other recent works on this topic we do not
focus on the complex question of how such attacks can be discovered, cf. [7, 14,
29], or how reliable some heuristic results are [33, 6, 4, 5, 8, 15] especially given
the fact that GOST is not a Markov cipher [25, 14, 29] or how to optimize them
in general for one given set of S-boxes cf. [7, 13, 29] or for major alternative sets of
S-boxes cf. [13, 32, 31, 8, 29]. We don’t look at multiple key attacks [9, 11, 16, 17,
24] or at more advanced “combination” attacks which combine the complexity
reduction approach based on high-level self-similarity of [16, 11, 3] with advanced
differential properties with 2,3 and 4 points, [16, 17].

This paper is about developing a complex advanced differential attack on
GOST block cipher which involves several steps with progressive guessing of
well-chosen key bits, and several statistical distinguisher steps.
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1.1 GOST and Differential Cryptanalysis

Differential cryptanalysis (DC) is based on tracking of changes in the differences
between two messages as they pass through the consecutive rounds of encryption.
It is one of the oldest classical attacks on modern block ciphers [18, 2], we refer
to cf. [8] for a short historical survey. Differential attacks are very well known.
Yet researchers have until recently failed to accurately evaluate the strength
of GOST against DC. GOST was quite frequently claimed very secure against
such attacks. In late 1990s Schneier writes that: “against differential and linear
cryptanalysis, GOST is probably stronger than DES”, cf. [34]. Later in 2000
Russian researchers claimed that breaking GOST with five or more rounds is
“very hard” and claim that as few as 7 rounds out of 32 are sufficient to protect
GOST against DC [20]. Needless to say later research have not confirmed at all
such very optimistic claims [25, 26, 14, 15]. GOST appears to be quite secure in
the very basic historical Biham-Shamir formulation of DC with single differences
on the full state [2, 20, 33]. A more powerful family of attacks are “truncated
differential” attacks by Knudsen [27] which have been applied to GOST as early
as in 2000 by Seki and Kaneko [33] with some success. In 2011 Courtois and
Misztal have found new differential sets for GOST [6] which are substantially
better than previously known. The possibilities offered by such attacks remain
poorly understood in the research community. For example in the a recent survey
paper specifically about advanced differential cryptanalysis and specifically on
block ciphers with small blocks in Section 1.1. page 3 of [1] we read: Truncated
differentials, [...] in some cases allow to push differential attacks one or two
rounds further. This paper and our other recent research on GOST [6, 4, 5, 8, 13–
15] shows that we can gain not two but much closer to 20 rounds (!) compared
to what we would expected to achieve with single differentials [20, 21, 33].

In this paper we work on essentially one single highly optimized attack, the
best we could find. It is a balancing act between the time complexity of differ-
ent consecutive steps of a complex attack. An intermediate goal is to construct
distinguishers on say 20 rounds of GOST: this question has been studied in [7,
8, 13–15, 29]. This paper is about how to transform one such distinguisher into
an efficient attack on the full 32-round GOST cipher.

This paper is organized as follows: In Section we explain the high-level struc-
ture of GOST and explain the role played by GOST key scheduling. We ex-
plain the principle of splitting GOST into three sections of for example 6+20+6
rounds. Then in Section 3 we study the question of constructing a distinguisher
for 20 rounds of GOST which is a central question in this paper. This is fur-
ther extended into a sequence on of “concentric” distinguishers for decreasing
supersets of 20 rounds cf. Section 4. In Section 5 we study the propagation
inside GOST in order to be able to construct well chosen subsets of key bits
to be guessed at various stages of our attack. Thus finally in Section 6 we de-
scribe a full advanced differential attack on 32 rounds of GOST which works in
5 stages in which well-chosen assumptions on the key and data (plaintext) bits
are progressively refined with early rejection.



An Improved Differential Attack on Full GOST 3

2 GOST and Key Schedule

GOST is a block cipher with a simple Feistel structure, 64-bit block size, 256-bit
keys and 32 rounds. Each round contains a key addition modulo 232, a set of 8
bijective S-boxes on 4 bits, and a simple circular rotation by 11 positions. Each
round of GOST looks exactly the same except for the key k used:

(L,R) 7→ (R,L⊕ fk(R))

GOST has 32 rounds such as the one described in Fig. 1 below. The � de-
notes the addition modulo 232. On our picture below the � denotes the addition
modulo 232. We number the inputs of the S-box Si for i = 1, 2, . . . , 8 by integers
from 4i+1 to 4i+4 out of 1..32 and its outputs are numbered according to their
final positions after the rotation by 11 positions: for example the inputs of S6
are 20, 21, 22, 23 and the outputs are 32, 1, 2, 3. At the left margin in Fig. 1 we
also show S-box numbers in the next round, to see which bits are successfully
determined in our attacks on GOST, cf. later Fig. 7 page 11.

Fig. 1. One Round of GOST And Connections in The Following Round

The key structural property of GOST which makes it suitable for cryptan-
alytic attacks of the specific kind and specific form, is that the last 8 rounds
are identical to the fist 8 rounds run in the opposite direction (however this
symmetry does not follow for more inner rounds).

rounds 1 8 9 16

keys k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7
rounds 17 24 25 32

keys k0k1k2k3k4k5k6k7 k7k6k5k4k3k2k1k0

Fig. 2. Key schedule in GOST

This property has a big impact on security of GOST: 32 bits of the whole
key, a fairly small proportion, are used in one round, and for every 32 bits
guessed we can remove two full outer rounds, instead of 1 round for a similar
cipher without a weak key scheduling. Thus for example if we guess 192 key
bits, we can remove 12 full rounds of GOST cf. [4]. In this paper we exploit
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this symmetry even further: we will look at differential which are a member of a
certain set of differentials which is totally symmetric for the first 8 rounds and
the last 8 rounds. Our key guesses will be far more precise than guessing keys
for full rounds and specially adapted to this highly symmetric situation.

Given one round in Fig. 1 and key scheduling in Fig. 2 we have a complete
description of GOST. In this paper we will only study the most popular set of
GOST S-boxes a.k.a. the ”GostR3411 94 TestParamSet” which was published
by Schneier in 1994 and which claimed to be used by the Central Bank of the
Russian Federation [34]. This is exactly what most researchers call just “the
GOST cipher” (without any additional mention) in the cryptographic literature.
This choice of S-boxes greatly affects all the differential probabilities we use in
this paper, we refer to [7, 13, 29, 13, 32, 31, 8, 29] for the study of similar attacks
for other S-boxes.

2.1 Preliminary Remarks

In our later attack which will be described in Sections 4-6 we are going to split
GOST into three pieces with 6+20+6 rounds. Early advanced differential attacks
were based on a for up to 20 rounds of GOST [4, 5] and mandated guessing
complete 32-bit keys for several outer rounds in order to fully reconstruct these
internal differentials. This approach is refined in [13, 14, 29, 7] and in this paper.
We will guess only some well-chosen key bits which will be used to filter P/C
(Plaintext,Ciphertext) pairs used later in the attack. As in [4] the attack runs
through many stages with great many filtering/guessing steps, where at each
step we reduce the number of cases to consider (the plaintext space, some key
bits already guessed and pre-computed relations between all these) and only
after this reduction of number of cases we make additional guesses. Large parts
of this whole process can be viewed as an adaptive Depth-First-Search (DFS)
attack on a tree of possibilities which is constructed adaptively depending on the
assumptions currently considered as valid. This type of process is very widely
used in cryptanalysis.

There is a substantial difficulty in differential attacks where the key size is
much larger than the block size as in GOST: there are false positives, differentials
which do not propagate but occur naturally, by accident. The key point is that for
a very long time the false positives are not eliminated in a differential attack on
GOST. We are just dealing with assumptions on internal difference bits in GOST,
their consequences and relations between these assumptions but for many many
steps none of the steps of the attack is able to see if the inner 20 rounds are 20
rounds of GOST, more rounds of GOST, or maybe just some other permutation.
This can only be seen at a much later stage of the attack.

Before we get there we need to study a number of preliminary technical
questions.
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2.2 Sets of Differentials, Aggregated and Truncated Differentials

Truncated differential attacks [27] have been studied since 1994. Some attacks on
GOST are proposed in 2000 by Seki and Kaneko [33] and since 2011 better and
stronger differential properties have been found, cf. [6, 4]. We consider differences
with respect to the popular bitwise XOR operation. Following previous work on
this topic [4, 5] we define an aggregated differential A,B as the transition where
any non-zero difference a ∈ A will produce an arbitrary non-zero difference b ∈ B
with a certain probability.

In particular we consider the case when A is a set of all possible non-zero
differentials contained within a certain mask. This also is a special case of “Trun-
cated Differentials” [27] which are defined as fixing the difference not on all but a
subset of data bits. However we need to be careful and explicitly exclude all-zero
differentials from this set. For example for

∆ = 0x80700700

we obtain a set of all differences on 32 bits with between 1 and 7 active bits
(but not 0) and where the active bits are contained within the mask 0x80700700.
Similarly, the set denoted by (∆,∆) is a set of difference on 64 bits with up to 14
active bits, where any non-zero difference is allowed, including also differences
where the difference is zero in one half, but not the all-zero difference on both
halves. We have |A| = 214 − 1: there are exactly 214 − 1 single 64-bit differences
in this set of differentials A.

For example the following fact was established in [6, 4, 5]:

Fact 2.3 The aggregated differential (∆,∆) with uniform sampling of all dif-
ferences it allows, produces an element of the same aggregated differential set
(∆,∆) after 4 rounds of GOST with probability about 2−13.6 on average over all
possible keys, where ∆ = 0x80700700 has 7 active bits.

For 6 rounds the probability is 2−18.7 on average over all possible keys.
For 8 rounds the probability is 2−25.0 on average over all possible keys.

Remark: Recent research shows that the size of 14 bits is close to optimum,
i.e. set with a different size are less likely to be as good, see [15]

Now we look at a one particular differential set, which we have noticed,
arrives with a particularly large probability:

Fact 2.4 The set (∆,∆) = (0x80700700, 0x80700700) produces a differential of
the form (0x00000700, 0x80780000) with probability of 2−22.19 for 7 rounds of
GOST.

This was obtained by a computer simulation. We have |A| = 214 − 1 and
|B| = 28 − 1. This an aggregated differential A,B contains (214 − 1)(28 − 1)
single differential characteristics.

Truncated differential attacks on GOST are facilitated by a strong internal
structure inside GOST where GOST splits very neatly into two loosely connected
parts, cf. Fig. 3 and Section 4 of [7] and different interesting truncated differential
attacks can be classified in relation to this structure [7, 13, 14].
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For example some of the best known attacks cf. Fact 2.3 which are also
exploited in this paper are said to be of type 3+3 S-boxes in each of the loosely
connected parts. These 3 S-boxes and their connections are shown in Fig. 3
below.

Fig. 3. Connections between S-boxes exploited in Fact 2.3.

3 Our Main Distinguisher For 20 Rounds

Our goal is to design an attack on the full 32-round GOST. As in [4, 5] we guess
some key bits and use a distinguisher, however our new distinguisher is symmet-
ric and the attack will have more stages. The key question is how a differential
attack on GOST can cope with false positives. There are differentials which oc-
cur due to propagation of small Hamming weight differentials for 20 rounds of
GOST, and other which occur “by accident” for an arbitrary permutation on
64 bis. Not only for a Random Permutation (RP) but also almost always, with
overwhelming probability 1− ε for ANY permutation such as several rounds of
GOST block cipher. We need to quantify precisely the interaction between these
two sets, which is essential in we want to reliably distinguish between 20 rounds
of GOST and some other permutation.

Fact 3.1 We look at the combination of a non-zero input difference of type
(0x80780000, 0x00000700) and a non-zero output difference of type
(0x00000700, 0x80780000) for 20 rounds of GOST.

For a typical permutation on 64-bits we expect that there are 215 pairs Pi, Pj

with such differences. The distribution of this number can be approximated by a
Gaussian with a standard deviation of 27.5.

For 20 rounds of GOST and for a given random GOST key, there exists
two disjoint sets of 215 + 213.9 such pairs Pi, Pj. These are two entirely disjoint
sets of pairs, which can be distinguished by the fact that 213.9 pairs will have
the difference 0x80700700, 0x80700700 after 6 rounds from the beginning AND
6 rounds from the end, and none of the 215 will have such internal differences.

The distribution of the sum can be approximated by a Gaussian with an av-
erage of about 215 + 213.9 and the standard deviation of 27.8.
We are at 26.1× the standard deviation.
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Fig. 4. Signal vs. Noise Differential Distinguisher for 20 Rounds of GOST

Justification: For any permutation, we observe that every single combination
of an input differential on 64 bits, and on an output differential on 64 bits,
is expected to occur about 0.5 times on average. Indeed we have 2127 pairs
and about 2128 possible sets of two differentials. Now we have (28 − 1)(28 − 1)
possibilities of type (0x80780000, 0x00000700) → (after some permutation OR
20 inner rounds of GOST) → (0x00000700, 0x80780000). Overall we expect to
obtain 0.5 · 28+8 = 215 pairs Pi, Pj for a given GOST key, with any of these
28 − 23 + 1 differences.

For the actual 20 rounds of GOST the situation is more complex. We need to
distinguish between pairs which occur “by accident” and those which occur due
to “propagation”. We are going to develop a precise argument showing that both
sets are entirely disjoint and their numbers can be added. In order to do this we
are going to give a precise meaning to the word “propagation” in this precise
20 rounds case: we say that the differential ”propagates” if it goes through two
additional differences in the middle as follows:

0x80780000 0x00000700

(7 Rounds)

0x80700700 0x80700700

(6 Rounds)

0x80700700 0x80700700

(7 Rounds)

0x00000700 0x80780000

Fig. 5. ”Propagation” For 20 rounds With Specific Middle Differentials

Following Fact 2.3 and given 264+14−1 pairs with the initial difference, we
have 277−18.7 = 258.3 pairs for the middle 6 rounds.

Then following Fact 2.4 the propagation in the next 7 rounds occurs with
probability 2−22.2 on average over GOST keys. Since this is a permutation, the
same propagation can be applied backwards in the preceding 7 rounds. Overall,
we expect that 258.3−44.4 = 213.9 pairs survive.
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Now we are going to show that typically, none of these 213.9 pairs Pi, Pj is
a member of the set of 215 established beforehand. This can be established as
follows: for any of the 215 cases which occur naturally at random, we have a
non-zero input differential (0x80780000, 0x00000700). Then a computer simula-
tion shows that a differential of type (0x80700700, 0x80700700) CAN occur at
7 rounds from the beginning (as in Fig. 5 which is 6+7 rounds from the begin-
ning in GOST) but only with probability of 2−16.2. Similarly it can also occur
7 rounds from the end, but only with probability of 2−16.2. Overall we expect
that only about 215−16.2−16.2 = 2−17 pairs Pi, Pj on average will have the “prop-
agation” characteristics according to Fig. 5. Therefore the two sets are entirely
disjoint with a very high probability.

To summarize, we expect to get always a mix of 215 + 213.9 cases, which
are unlikely to have an intersection, just subject to the standard deviation for
each set. Because we are dealing with a sum of a very large number of almost
totally independent events, and exactly in the same way as in [4, 5], and due
to the Central Limit Theorem these numbers are expected to follow a Gaussian
distribution and the standard deviation is expected to be equal exactly to the
square root of their expected average number which will be about 215.55 for 20
rounds and about 215.0 for other permutations.

4 Concentric Distinguishers

We have constructed one very good distinguisher for 20 rounds of GOST. Now
the question is as follows. In the similar way as in [5] we want to avoid the
necessity to examine all possibilities for the key in the first 6 rounds, and just
apply the distinguisher. We want to progressively reduce the key size and the
data space on the way, and for this to build a sequence of concentric distin-
guishers for 22, 24 and more rounds which allow early rejection of many cases,
so that we are going to examine 20 rounds of GOST with some assumptions on
the key and some subset of data much less frequently. This is expected to lead
to really efficient attacks on full 32-round of GOST. One very simple example
of such attack was already described in [5]. In this paper we are going to study
much more complex distinguishers.

4.1 Extending with Additional Weakly Constrained Rounds

We start with our distinguisher property of Fact 3.1. This property is going to
be extended with a “weakly constrained” differential propagation which occurs
with quite a high probability for 6 more rounds on each side.

We also need a model to account for what is going to happen when our as-
sumptions are wrong. Therefore we are going to compare what happens with
GOST split as 6+20+6 rounds to a situation which involves a random permu-
tation (RP) as follows. We look at combination of 6 rounds of GOST, some
permutation, and 6 rounds of GOST with the same keys in the backwards di-
rection, as in GOST. This is illustrated in Fig. 6 which accounts for both sort
of situations. It can represent the full 32-round GOST with 20 rounds in the
middle, and it could also be a situation which we wrongly assumed to be the full
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32-round GOST and the middle permutation is not exactly a random permuta-
tion however it is not at all what we assumed in our attack and we can expect
that it might behave as a random permutation for the properties we study.

This leads to the following property which is the core property in our later
attack on full 32-round GOST.

Definition 4.2 (Alpha Property) We say that a pair of encryptions for the
full 32-round GOST (or for a combination of 6 rounds of GOST, some permu-
tation, and 6 rounds of GOST with reversed keys) has the Alpha Property if the
following whole configuration of sets of differentials simultaneously holds:

<plaintext> ------------------->

0xFFFFFFFF 0xFFFFFFFF | 0x00000700 0x80780000

(1 Round) | (1 Round)

0xFFFFFFFF 0xFFFFFFFF | 0x80780000 0xF0000787

(1 Round) | (1 Round)

0xFFFFFFFF 0xFFFF8787 (20 Rounds) 0xF0000787 0x807FFF80

(1 Round) (or RP) (1 Round)

0xFFFF8787 0x807FFF80 (or other) 0x807FFF80 0xFFFF8787

(1 Round) | (1 Round)

0x807FFF80 0xF0000787 / \ 0xFFFF8787 0xFFFFFFFF

(1 Round) | (1 Round)

0xF0000787 0x80780000 | 0xFFFFFFFF 0xFFFFFFFF

(1 Round) | (1 Round)

0x80780000 0x00000700 | 0xFFFFFFFF 0xFFFFFFFF

|___________________| <ciphertext>

Fig. 6. The Alpha Property

We note that this property is perfectly symmetric (encryption/decryption).

4.3 Alpha Property: GOST vs. Random Permutation

In a similar way as before, a key problem in our distinguisher is that unhappily
the Alpha property can occur also ”by accident”, not at all for the reasons we
expect. This question needs to be formulated more precisely, as this property
is about differentials also inside GOST, and therefore we cannot just compare
GOST to a random permutation. The right question which we need to ask is as
follows: in our composition of 6 rounds of GOST, some permutation and then the
same 6 rounds in the decryption mode, can we have a fully consistent situation
with all the differences which we have in the property Alpha on the outer 2x6
rounds, similar as in Fig. 6.

We have the following result:

Fact 4.4 For the full 32-round GOST and on average over the GOST keys,
there exists 213.0 + 211.9 distinct pairs of plaintexts Pi 6= Pj which have the
Alpha property.

If we replace the inner 20 rounds by a random permutation or with GOST
with more rounds, we expect only about 213.0 distinct pairs with a standard de-
viation of 26.5.
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Justification: We apply Fact 3.1 and obtain 215 + 213.9 pairs for the inner 20
rounds with two disjoint sets as explained before. Then it is easy to verify, by
a computer simulation, that this provokes the 6 difference sets in the following
6 rounds, simultaneously, with probability as large as 2−0.98, which is due to
slow diffusion in GOST. The same applies in the first 6 rounds. Overall we
obtain about 213.9−2.0 ≈ 211.9 pairs with propagation, and a disjoint set (because
subsets of disjoint sets from Fact 3.1) with 215−2.0 ≈ 213.0 pairs which occur by
accident.

Again, because we are dealing with a sum of many almost totally independent
events, as in [4, 5] and due to the Central Limit Theorem [35], the standard
deviation is expected to be exactly the square root of 213.0.

5 Guess Then Determine Attacks on GOST

In this section we explain how to compute output bits for a certain round of
GOST with incomplete knowledge of all the key bits on which this bit depends
in this and previous rounds. We have the following basic fact (cf. [7, 12]):

Fact 5.1 The input on 4 bits of any particular S-box in GOST can be computed
as: a = x + k + c mod 16 where k are the 4 key bits at this S-box, c is a single
carry bit with c = 1 ⇔ x′ + k′ + c′ ≥ 16 where x′ and k′ are the data and the
key at the previous S-box, and c′ is the previous carry bit. This is illustrated in
Fig. 7 below.

In our attack we exploit the weakness of carry propagation in the addition
modulo 232. It is possible to see that carry bits such as c can be guessed with a
surprisingly high accuracy. We observe that:

1. We define Wr(i) by the equation Wr(i)−1 = (i−1) mod 8. This corresponds
to the number of S-box within 1..8 with wrap-around.

2. The input of each S-box Si in round r + 1 is

a = x+ k + c mod 16

and depends on (i) the 4 key bits k at the entry of this Si and (ii) x obtained
from the outputs of two S-boxes in round r with numbers Wr(i − 2) and
Wr(i − 3) XORred with the appropriate bits after round r − 2 (this part
does not change in round r − 1), and (iii) one carry bit c.

3. The carry bit c is such that

c = 1⇔ x′ + k′ + c′ ≥ 16

where x′ and k′ are the data and the key at the previous S-box, and c′ is the
previous carry bit.

4. The previous carry bit influences the result with low probability which will
be quantified below.
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Fig. 7. Computation of the Input Of One S-box With A Carry Bit

From here we easily obtain that:

Fact 5.2 Let i > 1 (with S1 there is no carry entering as in Fig 7.
We assume that the attacker knows the whole 64-bit output of round r − 2,

the input of one S-box Si at round r + 1, and the key k at the same Si in round
r + 1, and the state of Wr(i− 2) and Wr(i− 3) in round r.

Let k′ be the unknown key at S-box i-1 in round r + 1 (cf. Fig 7).
Then we have the following results:

1. Let d, e be respectively the most significant bits of k′ and x′. The bit d is
obtained from 1 lower bit from Wr(i− 3) XORed with the appropriate state
from round r − 2, which is bit 20 on our example at Fig. 7,
If d = e = 1, we have c = 1 with probability 1 and we can compute a.
If d = e = 0, we have c = 0 with probability 1 and we can compute a.
If d + e = 1, we have c = 0 or c = 1 which are more or less equally likely.
Here we get exactly two possibilities for a.
On average we obtain 2× 1/4× 1 + 1/2× 2 = 1.5 = 20.6 possibilities for a.
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These possibilities for a are computed using only 5 bits of the key and the
state of only 2 S-boxes in the previous round.

2. If the attacker knows the whole 4-bit x′ he can compute k′+x′ with an interval
of incertitude of 8 instead of 16 previously. Thus only with probability 1/4
there will be two answers. Thus on average we obtain 1/4 × 2 + 3/4 × 1 =
1.25 = 20.3 possibilities for a.

3. The same happens if the attacker knows the whole 4-bit k′ but not x′.
4. If the attacker knows k′ AND the whole state of Wr(i − 4) in round r, he

can compute c correctly with probability of roughly about 1− 2−4.

Justification: The first result is straightforward and we will derive the second
result. Each of these probabilities can be established by checking all the possible
cases. The top bit b of x′ is known due to Wr(i − 3), therefore the expected
value of x′ is about x′ ≈ 8 ∗ b + 4, and the whole k′ is known. It is easy to see
that the expected approximation error (computed as average over 8x8 cases) is
|x′−8∗b+4| = 1.31. We decide that c = 1⇔ 8∗b+4+k′+c′ ≥ 16. This will be
accurate unless x′+k′+c′ < 16 AND 8∗b+4+k′+c′ ≥ 16 or the vice versa with
the difference between these two numbers being on average 1.31. Each of these
2 cases occurs with probability of very roughly about 1.3/16 ≈ 2−4. Overall
we expect that with probability 1− 2−3 our computation of c is correct. Other
results are obtained in the same way.

Important Remark: The intention of this theorem is not that is some cases
the computations done in our attack will be incorrect and therefore we might
miss some cases and the attack would fail. We handle it in a very different way.
Each time we will determine if c = 1, by checking x′ + k′ + c′ ≥ 16 with more
or less exact approximations of x′ and k′ and c′, we know exactly the margin
of error and know exactly when there will be two possibilities for c. In all these
cases we are simply going to include in our enumeration two cases, one with
c = 0 and one with c = 1, with different values for 4 outputs of the current
S-box.
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6 An Improved Differential Attack on GOST

For the ease of reading we split our attack in 5 stages. All the stages should
be seen as a part of the same Depth First Search procedure, where we guess
key bits, reject some cases, then guess more key bits, reject again, etc. As we
advance in the attack tree the time complexity may increase or decrease, and the
probability to arrive at this level for a particular set of choices decreases with
many early aborts: tree branches which do need to be explored only with low
probability.

6.1 Attack Stage 1 - First 4 and Last 4 Rounds

We proceed as follows:

1. We are given 264 KP which are assumed to be stored in a database.
2. We have the Alpha property cf. Fig. 6 which holds for 213 + 211.9 distinct

pairs i, j of encryptions for the full 32=6+20+6 rounds, cf. Fact 4.4.
3. First we are going to reduce the total number of pairs from 2127 to a lower

number, by a birthday-like approach which avoids the enumeration of all
possible pairs.

4. Given an assumption on a certain number of key bits, we define as inactive
bit a bit where Pi and Pj collide (the difference is 0) at a certain bit location
inside the cipher, if our assumption about the key is correct.

5. Our attack will have many steps in which we are going progressively guess
some key bits, then reduce the space of pairs considered due to our differen-
tials, which reduce the number of pairs under attack and make it feasible to
guess additional key bits at a later stage.

6. We want to write constraints which describe the following events which occur
in the first 3 then 4 and the last 3,4 rounds in our property Alpha, cf.Fig. 8.

<plaintext> ------------------->

0xFFFFFFFF 0xFFFFFFFF | 0xF0000787 0x807FFF80

(2 Rounds) | (1 Round)

0xFFFFFFFF 0xFFFF8787 (24 inner) 0x807FFF80 0xFFFF8787

(1 Round) (rounds) (1 Round)

0xFFFF8787 0x807FFF80 (of GOST) 0xFFFF8787 0xFFFFFFFF

(1 Round) | (2 Rounds)

0x807FFF80 0xF0000787 / \ 0xFFFFFFFF 0xFFFFFFFF

|___________________| <ciphertext>

Fig. 8. First 4 and last 4 rounds in the Alpha Property of Fig. 6

– The output after the addition of the output of S7 and S1 after round 2
gives 8 inactive bits at 0 which are 3-6,11-14. This is implied by the set
0xFFFF8787 which our Alpha property imposes after round 2.

– The output after the addition of the output of S4,S5,S6,S7 after round
3 gives 15 inactive difference bits at 0 which are 24-31,1-7 (excluding bit
32). This is implied by the set 0x807FFF80 which occurs after round 3.
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7. We consider and try to guess the following key bits: all key bits at rounds
1,2,3 and 20 key bits for S-boxes S12345 in round 4.

8. We observe that for any guess of these 96 + 20 = 116 key bits, we get
8+15+13=36 cancelations after rounds 1-4 as explained above, and 36 more
cancelations on exactly the same S-boxes with the same keys after round 29
going backwards.
This can be seen as a collision on 36+36=72 bits, computed as a function
of type fk(Pi) where k represents 116 bits of the key and i is one of the 264

KP cases.
9. For each 116 possible guesses for our selected key bits we compute 264 possi-

ble strings on 72 bits for each Pi. Only a proportion of one out of 28 values on
72 bits are taken. For any given case i the probability that there is another
j for which the 72 bits collide is 2−8.

10. Then we can enumerate in time of maybe 4·264 CPU clocks some 264−8 = 256

possible i or j with 256/2 = 255 distinct pairs i, j which collide on these 72
bits.
Another way of looking at this is as follows: there are (we do NOT ever
enumerate all of them) about 2127 pairs Pi, Pj and there are about 2127

differences fk(Pi)−fk(Pj) on 72 bits. Some 2127−72 = 255 of these differences
will have all the 72 bits at 0.

11. These 255 pairs per key assumption can be enumerated efficiently. A sim-
plified method is as follows: We make a hash table where at address being
a hash of fk(Pi) on 72 bits, and we store i as well. Each time the value is
already taken we output a collision. We will output a list of 255 pairs Pi, Pj .
Memory required is roughly about 270 bytes.

12. The total time spent in these steps of the attack should not exceed 2116+64

times the cost of computing roughly speaking 1 round of GOST.
It is not needed to do as much work as computing 2116 times 4 first rounds
of GOST and 4 last rounds of GOST. Basically the cost of computing the
first 3+ and the last 3+ rounds of GOST can be neglected. More precisely it
will be amortized in 220 sub-cases of the 296 cases, in which we just need to
evaluate 4 S-boxes in round 3 and 4 S-boxes in round 30, which is roughly
feasible to do in most an equivalent of 1 round of GOST.
Therefore we estimate that we need only about 2116+64 ·8 CPU clocks, which
could be seen as an equivalent of roughly about 2174 GOST encryptions.

To summarize, we can thus in total overall time equivalent to about 2174

GOST encryptions and with memory of about 270 bytes, enumerate 2171 =
2116+55 cases of type k116, i, j. We get on average 255 possible pairs i, j for each
key assumption on 116 bits.

In Fig. 9 we summarize all the current and further steps of our attack.
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Fig. 9. Summary of Major Steps In Our Attack on GOST

6.2 Attack Stage 2 - Working on Rounds 5 and 28

Now we are going to work on additional key assumptions with the objective to
decrease the number of pairs per key from 255 to a much lower number so that
we will be able later at Stage 4 apply the distinguisher given by Fact 4.4.

1. Now we look at the difference 0x80780000 obtained after round 5, where
outputs of S-boxes S8, S1 and S2 are ’newly’ inactive which is a cancelation
on 12 bits after round 5, cf. earlier Fig. 6 page 9 or Fig. 10 page 17.

First we will work on S8, then on S1, then on S2.

2. First we guess additional 4+4 key bits. The situation is the same as in Fig.
7 with boxes S78 at round 5 depending mostly on boxes S456 in round 4.

We guess 4 bits at S-box S6 in round 4, needed only to compute the bit 31
entering S8 at round 5, and the 4 key bits at S8 in round 5, and an approx-
imation on the 4-key bits at S7 in round 5, which together with outputs of
S4 and 1 bit from S5 in round 4, can be used to compute the carry entering
S-box S8 at round 5 with probability of about 1− 2−4 (cf. Fact 5.2).

3. More over and quite importantly we do not allow any errors in our compu-
tations. In rare cases where there is an ambiguity about the carry, because
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for example we have 15 and the carry added from S6 in round 5 could mat-
ter, we simply check both cases. This leads to a negligible increase in the
total number of cases checked from about 2171+12 to about (1+2−4)2171+12,
see Fact 5.2.3. For simplicity we ignore these additional numbers which are
negligible compared to other numbers in this attack.
Later during the attack, when the key at S6 and early S-boxes becomes
known, these additional cases will be eliminated instantly. In fact we can
also leave these additional cases, everything we do later in our attack can
tolerate a small proportion of additional incorrect cases.

4. With these 12 new key bits, we can enumerate 2171+12 cases k116+12, i, j. In
each cases with probability 2−4 the 4 bits XORed to the output of S-box
S8 become inactive at round 4, and with probability 2−4 they also become
inactive at round 29.

5. Accordingly in time of about 2177 computations of 2/32 full GOST, which is
about 2179 GOST computations, (assuming one takes 29 CPU clocks). We
reject most cases except 2171+12−4−4 = 2175 cases k128, i, j.

6. This, is 247 cases per key.
7. Now we guess 8 more key bits. These are 4 bits at S-box S7 in round 4 which

output 3 is needed to compute the input of S1 in round 5 (there is no carry
entering S1). We also guess 4 key bits at S1 in round 5.

8. Now we have an enumeration of 2175+8 cases k136, i, j, where we now have
136 key bits. In this list with probability 2−4 the 4 bits XORed to the output
of S-box S1 become inactive at round 4, and with probability 2−4 they also
become inactive at round 29.

9. Accordingly in time of about 2175+8 computations of 2/32 full GOST, which
is about 2174 GOST computations, we have an enumeration 2175+8−4−4 =
2175 cases k136, i, j.

10. Now we guess 8 more key bits. These are 4 bits at S-box S8 in round 4 which
outputs are 8-11 and which are needed to compute the input of S-box S2 in
round 5 (the carry entering S2 is already known for S1 in round 5 above).
We also guess 4 key bits at S2 in round 5.

11. Thus we consider the enumeration of 2175+8 cases k144, i, j, where we now
have 144 key bits. In this list with probability 2−4 the 4 bits XORed to the
output of S-box S2 become inactive at round 4, and with probability 2−4

they also become inactive at round 29.

Accordingly in time of about 2175+8 computations of 2/32 full GOST, which
is about 2174 GOST computations, we enumerate about 2175+8−4−4 = 2175 cases
k144, i, j. We are left with 231 pairs i, j on average for each key assumption on
144 bits which will be the cases which we will check in later steps of our attack.

For the right key assumption we will also obtain the 211.9 cases which have
the property Alpha for the correct GOST key
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6.3 Attack Stage 3

We will continue the process of guessing additional key bits and decreasing the
number of cases per key assumption.

<plaintext> ------------------->

0xFFFFFFFF 0xFFFFFFFF | 0x00000700 0x80780000

(2 Rounds) | (2 Rounds)

0xFFFFFFFF 0xFFFF8787 (20 Rounds) 0xF0000787 0x807FFF80

(1 Round) (or RP) (1 Round)

0xFFFF8787 0x807FFF80 (or other) 0x807FFF80 0xFFFF8787

(1 Round) | (1 Round)

0x807FFF80 0xF0000787 / \ 0xFFFF8787 0xFFFFFFFF

(2 Rounds) | (2 Rounds)

0x80780000 0x00000700 | 0xFFFFFFFF 0xFFFFFFFF

|___________________| <ciphertext>

Fig. 10. First 6 and last 6 rounds in the Alpha Property of Fig. 6

1. At this stage, in each case, we know all key bits in rounds 1,4 and key bits
S-boxes S1278 in round 5, for a total of 144 key bits.

2. Now in round 6 we have the difference 0xF0000787 which becomes 0x00000700
, cf. Fig. 10. The S-box outputs which are going to become inactive are: 3
outputs of S5 with numbers 29,30,31, the whole of S6 with numbers 32,1-3,
and one lower bit of S8 with number 8.

3. We will first work on S5, then on S6, and later on S8.
4. First we guess 9 key bits: for S3 at round 5, and for S5 at round 6 and just

one most significant bit for S4 at round 6. We have 3 inactive bits 29-31.
Following Fact 5.2. this allows to determine exactly the carry bit c with
probability 1/2, and the attacker knows in which case it is (when d = e, cf.
Fact 5.2.1.), and otherwise we have two cases to include (when d 6= e, cf.
Fact 5.2.1.).
Overall on average we have (1 + 2)/2 ≈ 20.6 more cases to check and we
compute the output of S5 at round 6 about 2175+9+0.6 = 2177 times.

5. In addition we also need to compute the output of S5 at round 27 in each of
these cases. In the same way sometimes this generates 1 or 2 cases to check,
and overall we get another factor of 20.6.

6. Accordingly in time of about 2175+9+0.6+0.6 computations of 2/32 full GOST,
which is about 2176.2 GOST computations, we obtain a list of 2175+9+1.2−3−3 =
2179.2 cases k153, i, j. This is 226.2 cases per key.

7. Then we guess 8 more key bits: for S4 at round 5, and for S6 at round 6. We
have 4 inactive bits 32,1-3.

8. Accordingly in time of about 2179.2+8 computations of 2/32 full GOST, which
is about 2178.2 GOST computations, we obtain a list of
2179.2+8−4−4 = 2179.2 cases k161, i, j.

9. This is only 218.2 cases per key on 161 bits which is within reach of our
distinguisher attacks.
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10. The total time spent in all the above steps is is about 2178.5 GOST compu-
tations, and probably only half of this number on average is needed.

6.4 Attack Stage 4

Now we are going to be able to see if 161 key bits are right or wrong.
We recall Fact 4.4. For the full 32-round GOST and on average over the

GOST keys, there exists two disjoint sets with 213 + 211.9 distinct pairs of plain-
texts Pi 6= Pj which have the Alpha property.

We have 218.2 cases per key, which for the right key on 161 bits contains
these correct 213 + 211.9 cases. All these cases come from the fact that we have
independently in the first 6 and the last 6 rounds, checked if certain set of twice
55 differences are at 0, which gives 217 pairs surviving. We have also produced
an overhead of some 21.2 additional cases which result from incertitude due to
further unknown key bits which gives 218.2 pairs total.

As before, It is clear that these 218.2 pairs obtained in the specific case of the
right 161-bit key, occur at random due to the random intersection between cases
which may occur at the beginning of GOST, and at the end of GOST, without
correlation between these events.

It is easy to see that 218.2 such pairs on average, with an expected standard
deviation of about 29.1, are still going to occur if we explicitly exclude about
264+14−1 � 2127 cases where a difference of type (0x80700700, 0x80700700) oc-
curs after 6+7 rounds AND at 6+7 rounds from the end, which as explained
for Fact 3.1 occurs with very low probability of about 2−32.4 and in fact less,
because in our case it is not yet certain that the difference is as expected after
round 7.

However because the 211.9 cases do ALL have differences of type
(0x80700700, 0x80700700) after 6+7 rounds AND at 6+7 rounds from the end,
the two sets are disjoint. To summarize we obtain the following result:

Fact 6.5 After Stage 3 of our attack, if the 161 bits are wrong, most of the time
(this will be quantified below) we get about 218.2 cases per key.

We assume that the attacker will decide that the key on 161 bits is correct if
he sees at least 218.2 + 211.5 cases for this key. Otherwise he will reject it.

The correct 161-bits key will be accepted with probability of 95%.
Incorrect 161 bits will be accepted with probability of about 2−39.

Justification: A correct 161 bits should give about 218.2 + 211.9 cases with stan-
dard deviation of 29.1 and will be rejected only if we are below 218.2 + 211.5

cases which is on one side of and outside of (211.9−11.5)/29.1 = 2 standard devi-
ations. By applying the Gauss error function [35] we see that a correct key will
be accepted with probability of about 95%.

If the 161 bits are wrong, we are outside of and on one side of, 211.5−9.1 = 22.4

standard deviations. Here the Gauss error function [35] gives a probability only
about 2−24.
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6.6 Attack Stage 5

We need to do some additional guessing and filtering. Up till now, with total time
of up to about 2178.5 GOST computations, we are able to enumerate 2179.2−24 =
2155.2 cases k161, i, j. Our 161 bits of the key are all the bits for the first 4 rounds,
and 24 bits at round 5 for S781234, and 9 bits at round 6 for S5,S6 and one bit
at S4.

1. We guess the remaining 8 bits to complete round 5 with boxes S56. Then
we guess the key at boxes S7181 at round 6 and at S213 in round 7. This
is a total of 28 bits. For simplicity we guess all these bits (a more refined
approach is NOT needed because the total time spent in this step is small).

2. The output after S8 in round 6 needs to cancel on 1 bit which is number
8, and the output of S3 in round 7 needs to cancel on 4 bits which are 20-
23. This is implied by the sets 0x00000700 and 0x80000000 in the Alpha
property obtained after round 6 and 7.

3. Accordingly in time of about 2155.2+28 computations of 2/32 full GOST,
which is about 2175 GOST computations, we reject most cases except some
2155.2+28−5−5 = 2173.2 cases k189, i, j.
This seems to be about 2−16 per key on average, which comes from the fact
that only some 161-bit sub-keys are present in the keys on 189 bits. However
if we look only at 2165 keys on 189 bits which are actually present, we have
28.2 cases per key.

4. We assume that the attacker will reject all cases where the count is less than
28.2 + 210.

5. Then it is easy to see that if the key is correct, it will be accepted with
probability very close to 1.

6. If the key is wrong, we observe that 28.2 + 210 is outside 25.9 standard devi-
ations. Here the Gauss error function [35] gives a figure much smaller than
2−256.

Summary: Thus given 264 KP and in an average time of about 2179 GOST
computations, we are able to determine with certitude 189 bits of GOST key.
The remaining 66 bits can then be found by brute force. The attack was designed
to work for 95% of GOST keys.

Applicability: Current attack was optimized for just one set of GOST S-
boxes. The space of possible variants ot this attack is very large It is very much
premature to claim [32] that it would not work for a certain well-designed set of
S-boxes [32, 31]. On the contrary. Similar results exist for any set of S-boxes [13,
8, 29]. We conjecture that for any set of bijective S-boxes in GOST (the worst
case) there is a differential attack substantially faster than brute force and very
similar to the one presented in this paper.
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7 Conclusion

GOST 28147-89 is a well-known block cipher and a Russian government stan-
dard. In his 1994 book [34] Schneier has written that “against differential and
linear cryptanalysis, GOST is probably stronger than DES”. In 2000 Russian
researchers claimed that as few as 7 rounds out of 32 are sufficient to protect
GOST against differential cryptanalysis, see [21, 20]. In the same year Japanese
researchers [33] show that more powerful differential attacks exist, exploiting
sets of differentials [33]which allow to break about 13 rounds of GOST out of
32. Many new attacks on GOST have been proposed since 2011 [3, 16, 23, 6, 4, 5,
19, 12, 11, 17] including new combined attacks which also exploit multiple differ-
entials. In 2011 Courtois and Misztal have found new differential sets for GOST
[6] most of which can also be seen as “truncated” differential attacks [27]. If one
exploits the key scheduling one can break full GOST faster than brute force [4].
This attack was further improved in [5] to achieve about 2224. In a recent paper
about advanced differential cryptanalysis, we read: Truncated differentials, [...]
in some cases allow to push differential attacks one or two rounds further. In this
paper we gain not 1 or 2 but much closer to 20 rounds, compared to previous
more basic differential attacks [20, 21, 33].

The main result of this paper is a multi-stage advanced differential attack
on full 32-round GOST. Given 264 KP we can recover the full 256-bit key for
GOST within only about 2179 GOST computations on average for a success
probability of 95 %. The memory is about 270 bytes. This is the fastest single-
key attack on GOST found so far. The best previous single-key attack on GOST
was 2192 of [19] which could be improved to 2191 in [16]. Our 2179 is an inexact
result assuming independence of certain events. At this moment the attack was
optimized only for one set of S-boxes.

In practice ciphers are NOT used with single keys. Faster and more realistic
attacks exist when we are dealing with multiple keys generated at random,
cf. [16, 11, 24, 17]. Numerous such attacks use very similar truncated differential
properties as in this paper or more advanced properties with 3 or 4 points cf.
[16, 17]. Many such attacks also require only 232 of data per key instead of 264

in this paper, cf. [16, 17]. One such attack allows to recover a full GOST key at
a total cost as low as 2101 GOST computations total, cf. [16, 17].
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