
Variable elimination strategies and construction
of nonlinear polynomial invariant attacks on

T-310

Nicolas T. Courtois1 and Marios Georgiou2

1University College London, Gower Street, London, UK
2PricewaterhouseCoopers, Nicosia, Cyprus

Abstract. One of the major open problems in symmetric cryptanal-
ysis is to discover new specific types of invariant properties for block
ciphers. In this paper we study non-linear polynomial invariant attacks.
The number of such attacks grows as 22n and systematic exploration is
not possible. The main question is HOW do we find such attacks? We
have developed a constructive algebraic approach which is about making
sure that a certain combination of polynomial equations is zero. We work
by progressive elimination of specific variables in polynomial spaces and
we show that one can totally eliminate big chunks of the cipher circuit.
As an application we present several new attacks on the historical T-
310 block cipher which has particularly large hardware complexity and
a very large number of rounds compared to modern ciphers e.g. AES.
However all this complexity is not that useful if we are able to construct
new types of polynomial invariant attacks which work for any number of
rounds.
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1 Introduction, Non-Linear Cryptanalysis

The concept of cryptanalysis with non-linear polynomials a.k.a. Generalized Lin-
ear Cryptanalysis (GLC) was introduced at Eurocrypt’95, cf. [14]. A key question
is the existence of round-invariant I/O sums: when a value of a certain polyno-
mial is preserved after 1 round. Many researchers have in the past failed to find
any such properties, cf. [17] and there are extremely few positive results on this
topic, cf. [20, 5]. Bi-Linear and Multi-Linear cryptanalysis were subsequently in-
troduced [8, 9] for Feistel ciphers. Our work is rather disjoint compared to recent
high-profile results in [20] dealing with SPN ciphers, we focus more on Feistel
ciphers. Moreover unlike in [20] we focus on invariants which work for 100 % of
the keys and we work on stronger invariants which hold with probability equal
to 1 and eliminating all key bits (so that we can ignore the key schedule).

A classical open problem in cryptanalysis is discovery of invariant proper-
ties of complex type, cf. recent papers [20, 5]. The space of possible solutions is
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double exponential. One very general attack is called Partitioning Cryptanalysis
(PC), cf. [1, 15, 16]. A more specific approach is to consider only partitions de-
fined by the value (0 or 1) of a single Boolean polynomial. This is of course less
general, yet it leads to a more illuminating approaches. Properties are described,
discovered and studied with the tools of algebra rather than to happen by some
incredible coincidence. The main question in this is paper how to explicitly con-
struct interesting polynomial invariant attacks. First we code the problem as
the problem of solving a surprisingly simple single equation of a limited de-
gree which we will call FE which guarantees that we have a Boolean function
and the polynomial invariant P which makes a block cipher weak. Our work is
mainly about weak keys. Specific examples will be constructed based on a highly
complex historical block cipher T-310. We construct numerous examples where
the set of solutions to FE is not empty which demonstrates that our approach
actually works.

Mathematical Theory of Invariants. There exists an extensive theory of
multivariate polynomial algebraic invariants [13]. However mathematicians have
studied primarily invariants w.r.t. linear transformations(!) and have rarely con-
sidered invariants with more than 5 variables or in finite fields of small size. In
our work we study invariants w.r.t non-linear transformations (!!!) and up to
36+3 variables over GF (2). A well-known polynomial invariant with applications
in symmetric cryptography is the cross-ratio, cf. Sect. 4 in [9].

2 Notation and Methodology

We are looking for arbitrary polynomial invariants of type P(Inputs) = P(Output ANF)
where P is some polynomial. The value of this polynomial (0 or 1) applied be-
fore and after one round of a block cipher should not change. In order to have
notations, which are as compact as possible, in this paper the sign + will denote
addition modulo 2, frequently we will omit the sign * in products and will fre-
quently use short or single letter variable names. Initially the cipher state uses
variables of type x1 or y36 or e1 which are binary variables ∈ {0, 1}. In polyno-
mials P we will replace these by shorter one-letter abbreviations a− z, M − V ,
etc. Quite importantly, we consider, which is rarely done in cryptanalysis, that
the Boolean function is an unknown denoted by a special variable Z. We will
then postulate that Z may satisfy a certain algebraic equation [with additional
variables] and then this equation will be solved in order to determine Z. Our
Boolean function has 6 inputs.

Z(e1, e2, e3, e4, e5, e6)

where e1 . . . e6 will be some 6 of the other variables. In practice, the ei will
represent a specific subset of variables of type a-z, or some other such as F,K,L.
There will be 4 distinct copies of Z() known as Z1−Z4 or Z, Y,X,W which are
later replaced be an ANF polynomial with 64 coefficients, e.g.:

Z ← Z00 + Z01 ∗ L+ Z02 ∗ c+ Z03 ∗ Lc+ . . .+ Z62 ∗ cklfh+ Z63 ∗ Lcklfh
Further capital letters S1, S2,K, L, F, Z will be used to represent some very

“special” sorts of variables which are placeholders for something more complex.
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S1, S2 or in one-letter versions K,L, will be bits of the secret key used in a given
round We then use the capital letter F to represent the bits which depends on
the IV: a round-dependent constants (known to the attacker typically). Our
notations would typically omit to specify in which round of encryption these
bits are taken, as most of our work is about constructing one round invariants
(which however do extend to an arbitrarily large numbers of rounds). We consider
that each round of encryption is identical except that they can differ only in some
“public” bits called F (and known to the attacker) and some “secret” bits called
S1, S2 or K,L and unknown to the attacker. These bits will be different in
different rounds. In order to construct an attack we start from any given cipher
specs in forms of ANFs for one round, and we attempt to generate some complex
polynomial invariant property. This framework covers most block ciphers ever
made except that some ciphers would have more “secret” bits in one round.

2.1 Our Specific Cipher

In this paper we are going to work with one specific block cipher T-310. We
do not provide a full description of how T-310 is initialized and used. We just
concentrate on how one block cipher round operates (the ANFs). Below we
show the internal structure of T-310, one of the most important block ciphers
of the Cold War, massively used to encrypt all sorts of state communications,
cf. [19]. T-310 is one of the most “paranoid” cipher designs we have ever seen.
The cipher is iterated hundreds of times per one bit actually encrypted. The
hardware complexity of T-310 is hundreds of times bigger than AES or 3DES,
cf. [10]. Does it make this cipher very secure? Not quite, if we can construct
algebraic invariants which work for any number of rounds.
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Fig. 1. T-310: a peculiar sort of Compressing Unbalanced Feistel scheme cf. [10].

The block size is 36 bits and the key has 240 bits. We are going to explore
the space of invariants on 36 bits and study Boolean functions on 6 bits, some
of which may lead to specific invariant attacks. There are 22

6

= 264 Boolean
functions on 6 bits and an incredibly large number 22

36

of possible invariants.



5

The cipher operates on 36-bit blocks and the state bits are numbered 1-36.
The bit numbering in this compressing unbalanced Feistel cipher with 4 branches
is such, cf. Fig 1, that bits 1, 5, 9 . . . 33 are those freshly created by this round,
while ALL the input bits the numbers of which are NOT multiples of 4 are
shifted by 1 position, i.e. bit 1 becomes 2 in the next round, 35 becomes 36, etc.

Fig. 2. The internal structure of one round of T-310 block cipher.

Here F is a public bit derived from an IV transmitted in the cleartext, S1 and
S2 are bits of the secret key on 240 bits. S1 and S2 are repeated every 120 steps.

Few things remain unspecified in our picture: which bits and in which order
are connected to D1-D9 and v1-v27. In T-310 this specification is called an
LZS or Langzeitschlüssel which means a long-term key and which is distinct
than the short-term key on 240 bits. We simply need to specify two functions1

D : {1 . . . 9} → {0 . . . 36}, P : {1 . . . 27} → {1 . . . 36}. For example D(5) = 36
will mean that input bit 36 is connected to the wire D5 on our picture, and
P (1) = 25 will mean that input 25 is connected as v1 or the 1st input of Z1.
Finally the internal wiring LZS uses a special convention where the bit S1 is
used instead of one of the Di by specifying that D(i) = 0. Overall one round
can be described as 36 Boolean polynomials out of which only 9 are non-trivial.

A key step is rewriting the equations above using exact values for D(i) and
P (j). Let x1, . . . , x36 be the inputs and let y1, . . . , y36 be the outputs. In this
notation both variables xi and yi are treated “alike” and denoted by lowercase
letters a-z backwards starting from x36 till x11 and y36 till y11. Then we use
capital letters M -V (avoiding some letters used elsewhere). For example a = x36
and t = x17, and M = x10 and V = x1.

1 Which are both assumed to be injective and D(i) are always multiples of 4, this in
order to avoid many degenerate cases and trivial attacks cf. [10].
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Fig. 3. Variable naming conventions

In the general case, one round of encryption is defined as follows:

y33 = F + xD(9)

Z1
def
= Z(S2, xP (1),. . . ,xP (5))

y29 = F + Z1 + xD(8)

y25 = F + Z1 + xP (6) + xD(7)

Z2
def
= Z(xP (7), . . . , xP (12))

y21 = F + Z1 + xP (6) + Z2+ xD(6)

y17 = F + Z1 + xP (6) + Z2+ xP (13) + xD(5)

Z3
def
= Z(xP (14), . . . , xP (19))

y13 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xD(4)

y9 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20) + xD(3)

Z4
def
= Z(xP (21), . . . , xP (26))

y5 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xD(2)

y1 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xP (27)+xD(1)

x0
def
= S1

yi+1 = xi for all other i 6= 4k ( with 1 ≤ i ≤ 36)

Fig. 4. The specification of one round of T-310

Variable Renaming. When we manipulate concrete connections for some con-
crete cipher wiring (LZS) and in the study of all our later polynomial invariants
P we can rewrite the above equations using our short one-letter notations, for
example in one case we get exactly:

a← b then b← c then c← d

d← F + i

e← f then f ← g then g ← h

h← F + Z + e where Z has 6 inputs Z ← Z(L, j, h, f, p, d))

[. . .]

W ← Z(a, g, c, z, U, i)

V ← F + Z + r + Y +m+ L+X +W + x+ w

These expressions should be viewed as a set of 36 substitutions where each
variable is replaced by a polynomial algebraic expression. The variables on the
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left hand side will be output variables after 1 round, and on the right hand side,
we have ANF or polynomials in the input variables. In order to have shorter
expressions to manipulate we replaced here Z1 − Z4 by shorter abbreviations
Z, Y,X,W respectively. We also replaced S2 by a single letter L (used at 2
places). The other key bits S1 will only be used at one place if some D(i) = 0.

3 The Fundamental Equation

We want to find a polynomial expression P using any number between 1 and 36
variables such that it is an invariant after the substitutions in Section 2.1 above.
For example if the polynomial P is fixed, and also in other cases, the attacker
will write ONE SINGLE (or more) algebraic equation which he is going to solve
to determine the unknown Boolean function Z, if a solution exists.

Definition 3.1 (Compact Uni/Quadri-variate FE). Our “Fundamental Equa-
tion (FE)” to solve is to make sure that sum of two polynomials like:

FE = P(Inputs) + P(Output ANF)

reduces to 0, or more precisely we are aiming at FE = 0 for any input, or in
other words we want to achieve a formal equality of two Boolean polynomials
like

P(Inputs) + P(Transformed Outputs) = 0

or even more precisely

P(a, b, c, d, e, f, g, h, . . .) = P(b, c, d, F + i, f, g, h, F + Z1 + e, . . .)

where Z1−Z4 will be later replaced by Boolean functions Z(), Y (), X(),W ().
Alternative Notation. There is also another notation which is more like

notations used in classical invariant theory. Instead of writing

FE = P(Inputs) + P(Transformed Outputs)

we can also write:
FE = P + Pφ

where

Pφ def
= P(Inputsφ) = P(Transformed Outputs)

which is the same as above, and we can also write:

Pi def= P

Po def= P(inputsφ)

where φ is the transformation induced by 1 round of encryption and where
φ(Inputs) denotes a sequence of 36 polynomial expressions of output-side vari-
ables (a, . . . V ) expressed as Boolean function of the 36 input-side variables [with
some extra variables such as secret key variables]. For example the variable a
is replaced by polynomial b and d by F + i. In other words they are written as
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formal polynomials in B36 corresponding to the ANF expressions of one round
of encryption (and as a function of inputs of this round). Our usage of exponents
is similar as in the mathematical (Hilbertian) invariant theory. Our exponents
can be simply interpreted as transformations on polynomials, or more precisely
as operations belonging to a certain group of transformations acting on a set of
Boolean polynomials P or A or other say (azM + b) ∈ B36 where B36 is the
precise ring of all Boolean polynomials in 36 variables named a− z and M − V
as in this paper. The notation Pφ is very elegant and unhappily ambiguous in
general, because in general φ depends also on F and various key bits. Then it
happens that Pφ is likely to be unique nevertheless: we are aiming at computing
Pφ primarily and precisely in cases where the result, the transformed and sub-
stituted polynomial Pφ is such that the final result Pφ does NOT depend on the
variables F,K,L (!). This may and will become possible when our polynomial
P is particularly well chosen.

In the next step, Z will be represented by an Algebraic Normal Form (ANF)
with 64 binary variables which are the coefficients of the ANF of Z, and there
will be several equations, and four instances Z, Y,X,W of the same Z:

Definition 3.2 (A Multivariate FE). At this step we will rewrite FE as
follows. We will replace Z1 by:

Z ← Z00 + Z01 ∗ L+ Z02 ∗ j + Z03 ∗ Lj + . . .+ Z62 ∗ jhfpd+ Z63 ∗ Ljhfpd

Likewise we will also replace Z2:

Y ← Z00 + Z01 ∗ k + Z02 ∗ l + Z03 ∗ kl + . . .+ Z62 ∗ loent+ Z63 ∗ kloent

and likewise for X = Z3 and W = Z4 and the coefficients Z00 . . . Z63 will be
the same inside Z1−Z4, however the subsets of 6 variables chosen out of 36 will
be different in Z1− Z4.

Some coefficients of P may be fixed, other will be variable. In all cases, all
we need to do is to solve the equation above for Z, which is 64 binary unknowns
for the ANF coefficients, plus some extra variables for P. This formal algebraic
approach, if it has a solution, still called Z for simplicity, or (P, Z) allows to
guarantee a certain invariant P holds for 1 round.

A major problem is now the existence of solutions. Does this equation FE
have a solution? In many interesting cases this equation will be unusually simple
and sometimes it vanishes totally, all coefficients are equal to 0, one example
of this can be found in Appendix and more in [5]. A previous draft paper on
this topic [5] was initially about simple invariants of low degree and many of
them has serious issues such as linear attacks also exist. In this paper we are
looking for better attacks and how to construct attacks from scratch with strong
properties such as elimination of certain variables e.g. F,K,L. Their presence
would ruin the attack, it will not longer work for any key and any IV .
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4 Milestone Example - Eliminating Round Constants F

It is easy to see that every freshly created output in one round of T-310 depends
on F . For this reason in early invariant attacks on T-310 eliminating F seemed
quite difficult [5]. Being able to do this, is in some sense an interesting generic
attack. A useful strategy is to aim at eliminating F completely at an early stage
of our construction. Moreover if at all we actually can eliminate the constant F ,
we can also eliminate a lot more complex things2 as we will see later.

4.1 A Construction of a Basic Multiple Invariant without F

We show how an invariant can be constructed in an ordered and systematic
way. We assume that D(9) = 32 and D(8) = 36 which implies d ← F + e and
h← F + Z1 + a and which mandates a sort of imperfect cycle of length 8 on 8
bits:

Fig. 5. Consequences of assuming that D(9) = 32 and D(8) = 36. F is used twice and
will be eventually eliminated. The intention is that the invariant will not depend on F
and neither on 4 additional bits which enter Z1.

2 F is a constant known to the attacker. However if F could be totally eliminated
for the purpose of finding a non-linear invariant operating on X bits, other more
complex variables which depend on many key bits and on what happens in other
parts of the cipher, also CAN be eliminated, cf. Section 4.2 below.
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We will decide a bit later (after writing the FE) where different inputs of Z1
need to be connected. We get a series of obvious transitions such as ce becomes
df which we would get in traditional Bi-Linear Cryptanalysis (BLC) [8], plus
a series of less obvious transitions due to the 2 assumptions D(9) = 32 and
D(8) = 36 such as bd becomes ce, hoping that the term Fc can be somewhat
cancelled later.

Fig. 6. A detailed explanation for our invariant which shows terms which cancel. This
analysis is done under our initial ad-hoc assumption that D(9) = 32 and D(8) = 36.

This analysis of cycles on degree 2 monomials suggests to use the following
irreducible polynomial defined as the union of terms in black in both cycles:

P = a+ b+ c+ ac+ d+ bd+ e+ ce+ f + df + g + ag + eg + h+ bh+ fh

Knowing that each term in blue in Fig. 6 appears an even number of times,
we have already eliminated all terms with F . Now we add all the parts with
Z on both cycles, we expect that our FE will be: Z + Zc + Zg ≡ 0. This can
only work with Z 6≡ 0 if bits c and g are connected as inputs of Z1. This is
the moment at which we need to decide which bits will be connected to become
inputs of Z1, cf. earlier Fig. 5 and this can be done in any order, not necessarily
following our figure. For example we can have P (1) = 34 where c corresponds to
x34 and P (4) = 30 where g corresponds to x30. We are now able to generate a
long term key for which our invariant is going to work, for example:

827: P=34,32,25,30,19,28,18,35,31,33,23,36,24,22,5,1,

13,17,16,10,21,6,20,29,9,15,3 D=21,17,29,24,27,20,31,36,32

For this LZS we can now re-compute our FE which will have fewer unknowns:

P(a, b, c, d, e, f, g, h) = P(b, c, d, F + e, f, g, h, F + Z1 + e)

the fundamental equation is then as expected:

Z = Z(c+ g)

and because FE does not depend on either F or L, we do not need eight
copies of it but just one. Here is one solution:

Z = e+ be+ ce+ bce+ bf + bcf + bef + bcef

This completes a construction of a non-linear round invariant. We have
checked that there is no linear invariant in any of the eight cases depending
on F, S1, S2, and therefore Linear Cryptanalysis (LC) does not work here. Our
non-linear invariant P works in all eight cases and therefore it propagates for
an arbitrary number of rounds for any key and for any IV.
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We have obtained an invariant P on 8 bits 29-36 the key feature of which is
that it completely eliminates 4 bits which come from other parts of the cipher.
In fact the invariant obtained above can be constructed systematically.

Theorem 4.3 (Pre-conditions for Key 827). The invariant P = a+ b+ c+
ac+ d+ bd+ e+ ce+ f + df + g+ ag+ eg+ h+ bh+ fh will occur for L = 0 or
L = 1, or for any L, each time the following set of conditions are satisfied:

D(9) = 32

D(8) = 36

(1 + c+ g)Z(L,P [1− 5]) ≡ 0

Z 6≡ 0

Proof: The constraints D(9) = 32 and D(8) = 36 already mandate a cycle
between numbers 29-36 shown in Fig. 5 and they mandate all the transitions
of 6 which do not have a red question mark (?) sign, which depend on the FE.
Finally, we check that all terms in F are eliminated.

4.2 A Transposed Version

Until now we have constructed an invariant for Z1 which eliminates F which is
known to the attacker (and it also ignores 4 more bits entering Z1). Now IF we
can eliminate F , we can do a lot better. We can simply transpose our invariant
from Z1 to Z4 and here it will eliminate g2, cf. Fig. 2 plus another 4 bits which
depend on at least 17 bits and 2 key bits in EXACTLY the same way. Instead
of eliminating a constant F known to the attacker we are now eliminating g2
which is a lot more complex to know, actually it depends on almost everything
else (and the attacker could not possibly know or determine g2).

Fig. 7. The same invariant transposed to Z4.

By doing so we get a stronger invariant. For example we found the following
LZS:

847: P=32,22,26,14,21,36,30,17,15,29,27,13,4,23,1,8,35,20,

5,16,24,9,10,6,7,28,12 D=24,12,8,16,36,4,20,28,32

Here everything is transposed: the FE is WM +WQ+W = 0 and is the same
in all 8 cases for any F and any K,L and the transposed invariant is now

yM + zN +MO+NP + yQ+OQ+ zR+PR+ y+ z+M +N +O+P +Q+R
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This works for a variety of Boolean functions, and we cannot directly trans-
pose the previous solution because the two key variables c, g are now M,Q at
different positions. A correctly transposed solution is then for example Z =
d+ cd+ bd+ bcd+ cf + bcf + cdf + bcdf . A crucial point here is that a very com-
plex part of the cipher enters this component at g2 and yet it could be totally
eliminated. Furthermore LZS 847 is a permutation on 36 bits secure against LC
and all previously known attacks on T-310 [10].

5 Eliminating a Lot More - Construction of Better
Simultaneous Invariants

We will now work through intersection of spaces of polynomials in order to see
what invariants are possible and discover some yet better invariants. Previously
we have eliminated F plus 4 more bits and then transposed this result to elim-
inate a quantity with even more complex dependencies. Here we go one step
further.

We are going to show the existence of an invariant on Z1 and Z4 which
mixes bits which sit at two opposite ends3 of the cipher, cf. Fig 2. These parts are
connected through Z2 and Z3 by a quantity called g27 and defined as g27 = g2+
g7 cf. Fig. 2 which depends on an excessively large number of round input bits (at
least 19) plus the key bit S2. Without g27 none of the outputs on the right hand
side we use can be computed. Yet this connection g27 gets totally eliminated (so
does F and few other things). A lof of complexity is simply eliminated totally.

We focus on 8+8 bits 29-36 and 5-12 pertaining to Z1 and Z4 only and
strictly avoiding anything between g2 and g7. We start by assuming the following
four constraints which implements a basic sort of “exchange” connection between
two opposite ends of the cipher.

D(2) = 4 · 9
D(3) = 4 · 8
D(8) = 4 · 2
D(9) = 4 · 3

We can again generate cycles in the same way as in Section 4.1: transitions
are either natural e.g. bc← cd or consequences of the 4 conditions on D() above.
Similarly we ignore the boxes with blue crosses which we hope might eventually
be eliminated later inside the final FE which is not yet finalized. A detailed
analysis of these natural cycles as shown in Fig. 8 (and few more) leads to 8
natural clusters of monomials for P which most likely work together:

5.1 Analysis of Polynomial Spaces

This gives 8 natural pre-FE equations, with the idea that a final P and final FE
is a fixed linear combination of these 8, which are exactly:
3 We call it “spooky interaction” the two distant (as remote as only possible) parts

of the cipher “talk” to each other in terms of a polynomial invariant which mixes
variables from both sides. However their principal connection a.k.a. g27 is eliminated.
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Fig. 8. Our ad-hoc assumption is D(2) = 36, D(3) = 32, D(8) = 8, D(9) = 12. Here

g27
def
= g2 + g7 cf. Fig. 2. We aim at invariants on 8+8 bits which would not depend

on F, g27 and few more inputs of Z1, Z4 in blue are not yet connected. Other inputs
of Z1, Z4 will be used and their connections are decided at a later stage.

Fig. 9. A detailed analysis of transitions we aim at using in our invariant. The boxes
with crosses are terms we hope to cancel later. Transitions in red with ? depend on Z
and will eventually work only if our final FE equation has a solution.
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Wb+Fd+(b+f+N+R)(F+Z+L+Y+X+P6+P13+P20)+h(F+Z)+Fz+ P(F+Z)+WR
(L+Y+X+P6+P13+P20)(c+g+M+Q)+c(Z+W)+ZM+WQ
Fb+FN+W(d+P)+ (F+Z)(f+R)+ (F+Z+L+Y+X+P6+P13+P20)(d+h+z+P)
F(Z+W+a+e+y+O)+We+Zy+(Z+L+Y+X+P6+P13+P20)(W+a+e+1)
Z(d+z)+W(f+N)+F(d+h+z+P)+(F+Z+L+Y+X+P6+P13+P20)(b+f+N+R)
W(g+M)+Z(g+Q)+(L+Y+X+P6+P13+P20)(c+g+M+Q)
Z(b+N)+W(h+z)+F(b+f+N+R)+(F+Z+L+Y+X+P6+P13+P20)(d+h+z+P)
ZW+Z(a+e)+W(y+O)

We start with a polynomial space of dimension 8. Now we observe that we need
to eliminate Fb and other similar monomials. A standard row-echelon proce-
dure forces us to XOR some equations and we obtain the following 6 linearly
independent equations:

XR +WR + (R + h+ z + P +N + f + b+ d)(P6 + P13 + P20) + Zb+ Lb+

Xb+ Lf + Y f +Xf + Lh+ Y h+Xh+ Zz + Lz + Y z +Xz + LP + Y P +XP+

WP + Y b+ Y N +XN + LR + Y R + Zd+ Ld+ Y d+Xd+Wd+ ZN +Wb+ LN

Zc+ Lc+ Y c+Xc+Wc+ (c+ g +M +Q)(P6 + P13 + P20)+

Lg + Y g +Xg + ZM + LM + YM +XM + LQ+ Y Q+XQ+WQ

WR +Wf +WN + Zh+ Zz + ZP + Zd+Wb

Lc+ Y c+Xc+ (c+ g +M +Q)(P6 + P13 + P20) + Lg + Y g +Xg+

+ LM + YM +XM + LQ+ Y Q+XQ+ Zg +Wg +WM + ZQ

Zb+ Zf +WP + ZR +Wd+Wh+Wz + ZN

ZW + Za+ Ze+Wy +WO

This stage is crucial for cipher designers, possibly one should be able to con-
struct a block cipher in such a way, that the dimension of this set of polynomials
is already 0 [here it is 6 so we can do cryptanalysis]. Then we are going to
eliminate all products of P6 in the same way, which also leads to elimination of
numerous other monomials and this leads to a dimension 3, still not 0:

Zc+Wc+ ZM +WQ+ Zg +Wg +WM + ZQ

WR+Wf +WN + Zh+ Zz + ZP + Zd+Wb

ZW + Za+ Ze+Wy +WO

Finally it is possible to show that out of 23 − 1 = 7 possible linear combi-
nations of these P, only the first 2 out of 7 lead to solutions, this under the
condition that the cipher wiring P () is injective, or we get FE equations for
which the set of solutions is empty due to the simple fact that a Boolean func-
tion cannot annihilate variables which are not inputs of this function. This leads
to only 2 possibilities, out of which we have chosen to work with one:

P = bc+cd+dy+yz+zM+MN+eN+ef+fg+gh+hO+OP+PQ+QR+aR+ab+bg+ch+

dO + yP + zQ+MR+ aN + be+ cf + dg + hy + zO +MP +NQ+ eR+ af.

This P is irreducible and the FE is obtained by repeating the very same linear
transformations by which we have reduced the dimension from 8 to 2 above:

NW + PZ +RW +Wb+Wf + Zd+ Zh+ Zz

All we have now to do is to ensure through P () that various inputs which
appear in the FE above are connected to Z1 = Z or Z4 = W respectively,
for example f must by an input of W , therefore we need P (i) = 31 for some
i ∈ {21, . . . , 26}. This is exactly the moment at which we can decide all the
connections in blue in Fig. 8. Here is an example of a LZS where this P works:
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714: P=11,7,30,29,33,1,20,17,2,15,14,27,36,24,18,8,19,

23,28,32,4,16,31,9,35,5,13 D=16,36,32,24,4,28,20,8,12

This example was found by the exact steps we enumerate below and by feeding
the resulting set of constraints on D() and P () to a SAT solver at the end. This
is done many times until we find a valid permutation on 36 bits.
Solving the FE. It remains to find a solution to NW + PZ + RW + Wb +
Wf +Zd+Zh+Zz ≡ 0. There is still some degree of freedom here in selecting
which bits will be inputs of W and Z though function P (). With LZS 714 above,
one possible solution is

Z = 1 + dc+ cb+ fb+ b+ c+ de+ df + db+ e+ f + d+ eb.

We get another invariant which works for any number of rounds and any key.

6 From Invariants to Ciphertext-Only Attacks on T-310

We are able to construct a certain polynomial invariant property for our block
cipher. Does it allow one to decrypt communications encrypted with T-310? A
key observation cf. is that typically our polynomial invariants P will lead to
partitioning the space of say 216 elements into two sets of rather unequal sizes.
We are able to produce a strong pervasive bias. For example we consider
the invariant from Section 5.1 with 16 variables. A quick computer simulation
checking all 216 possible cases shows that we have the partition in two sets with
36864 and 28672 elements. Then even though any individual variable say a or N
is typically not biased, neither are pairs of variables, we observed that in each
case there exists a relatively small N such that for ANY subset of N out of 16,
the joint probability distribution of these N variables is not uniform. In fact
N = 5 seems to suffice. For example when P = 0 we observed that the event
abcde = 1 happens 1280 times and the event abcd(e+1) = 1 happens 1024 times.
Moreover the event abcdef = 1 never happens.

In addition we have also checked that the polynomial P is irreducible and
that there are no linear invariants true with probability 1. We found a non-trivial
higher-order correlation attack where the bias does not depend on the number
of rounds.

6.1 Decrypting T-310 Communcations

Now it is sufficient that some Boolean function say Z3 in the next round takes
some subset of 5 bits out of 16 as an input. Then Z3 will take 1 more bits
(presumably not one of the 16) and with a high probability, the output of this
Boolean function will be biased at every encryption round. This will work if
sufficiently many of the 16 bits are used with Z3 or with Z2. Such permanently
biased bits are expected to lead to correlation attacks where S1 and the special
output bit xα actually used in the encryption [10] will be connected through
just a few biased bits. This, given the fact that the same key bit S1 is repeated
every 120 rounds, will inevitably lead to a ciphertext-only correlation attack on
T-310 and on a key recovery attack on 120 bits of S1 key (recovering S2 could
be harder). Knowing that bits in any natural language (not only German) in any



16

reasonable encoding are always strongly biased, cf. [11], from any such a bias
we can infer concrete values of individual key bits S1 by majority voting. A full
description and study of the best possible attack of this type requires substantial
amount of extra work and is beyond the scope of this paper.

Important Remark - Avoiding Trivial Cases. NOT every partitioning
in two spaces of unequal sizes will work here. There exist some trivial cases
entirely due to Linear Cryptanalysis. Some such degenerated examples are given
in Appendix A of [5] for example where P = 0 in 3/4 of cases.

Observations. We obtain an attack of the sort which is extremely rare in
cryptanalysis: a correlation attack with recovery for at least 120 bits of the key,
where the correlation does NOT degrade as the number of encryption rounds
increases. It is also unique in another way: our biases are higher order biases
on joint probability distributions of a certain dimension N which originate from
a non-linear invariant. They appear essentially ex-nihilo: they are NOT biases
which could be produced or understood as combinations of simpler biases or
within the strict framework of Linear Cryptanalysis.
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7 Conclusion

In this paper we study cryptanalysis with non-linear polynomial invariants. We
show how a specific structure and internal wiring of more or less any block cipher,
starting from round ANFs, can be translated into a relatively simple “Funda-
mental Equation” (FE), which can be used to study which specific non-linear
invariants may exist (or not) for this cipher. In current research in Partitioning
Cryptanalysis (PC) [15] there are some impossibility results [3, 21, 2] but ex-
tremely few possibility results [9]. Partitioning properties are extremely hard to
find. Polynomial invariants are way more intelligible. Our main contribution is to
show that the attacker does not need to randomly search for an interesting invari-
ant P and a vulnerable non-linear component Z. Specific polynomial invariants
P and weak Boolean functions which work together can now be determined
– by solving our FE equation(s). Our approach is constructive, completely gen-
eral and can be applied to almost any block cipher: we first write the FE then
based on ad-hoc heuristics we determine a space of polynomials with a reduced
dimension for P, we substitute variables inside the FE(s), and we attempt to
solve our FE(s). We have constructed numerous concrete examples of non-trivial
non-linear invariants which propagate for any number of rounds, and for any key
and IV. We anticipate that the success rate of this approach will be very differ-
ent for different families of ciphers. If just one round function is very complex
and uses many key bits, with too many constraints to satisfy simultaneously, our
approach is likely to fail. Or solving FE will become computationally difficult.

7.1 Applications: Biased Partitioning and Decryption Attacks

In many P creates a partition into two sets with similar yet unequal sizes.
Our invariants introduce a permanent and pervasive bias inside the cipher
which is not degraded with iteration of the cipher. This is expected to lead
to ciphertext-only higher-order correlation attacks with key recovery such that
their complexity does NOT depend on the number of rounds, cf. Section 6.

7.2 Beyond Simple and Vulnerable Boolean Functions

In our proof of concept examples the Boolean function is very special and has a
lower degree than expected. This is due to the fact that we imposed some specific
constraints and our examples have been chosen for elegance and simplicity. In
general, when the degree of P increases we expect to find many more/stronger
invariants P which work for a larger proportion of the space of all Boolean
functions on 6 variables. A first attack and proof of concept that when the degree
of P increases one can attack indeed more or less arbitrarily strong Boolean
functions can be found in [7].
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A A Degenerate Invariant with FE Reduced to Zero

Not all non-linear invariants are good. We consider the following degenerate case:

881: P=4,20,33,8,1,28,5,19,9,32,11,17,24,13,21,18,15,

25,12,16,35,22,23,29,36,30,34 D=0,36,4,8,12,20,24,28,32

Here the invariant P is a homogenous polynomial of degree 2 with 169 = 132

terms and 26 variables which is highly symmetric and not at all irreducible:

(n+b+p+r+t+v+x+z+N+P+R+T+V )(a+m+o+q+s+u+w+y+M+O+Q+S+U)

Furthermore it is possible to verify that if we call A the first sum, and if
we call B the second sum, AB is a non-linear invariant and also A + B is a
linear invariant for 1 round and the exact same cipher setup LZS 881. The linear
invariant produces a partition with two sets of equal sizes. For the non-linear
invariant the sizes are not equal and the probability that P = AB = 0 is exactly
3/4. Moreover, it is easy to see that this invariant works also for the original
Boolean function (actually the FE is reduced to 0 here) and also for any other
Z. This example remains however very special. Both A and B one at a time
are 2-round invariants with A 7→ B after 1 round. Then after one round A · B
becomes B ·A which is the same, hence a quadratic invariant for 1 round exists.
This is not a very good invariant: the 3/4 bias obtained here is something which
we would already be constructed by combining the two linear approximations.


