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ABSTRACT

Multi-label classification remains a challenging problem due
to the inherent label imbalance issue, which brings over-
fitting of minor categories to modern deep models. In this
paper, to tackle this issue, we propose a novel method named
Variational Feature Augmentation (VFA) to enhance the deep
neural networks for multi-label classification. Our method
decouples the feature vectors extracted by the backbone
network into multiple low-dimensional spaces via a novely
proposed Variational Feature Decoupling Module. The de-
coupled feature vectors are then re-combined with a shuffle
operation and a Feature Augmentation Layer to enrich the mi-
nor co-occurrence relations, mitigating the label imbalance.
Different from most other methods, VFA does not modify
the network architecture or introduce extra computation cost
in inference phase. We conduct comprehensive experiments
on four benchmarks of two visual multi-label classification
tasks, pedestrian attribute recognition and multi-label image
recognition, and the results demonstrate the effectiveness and
generality of the proposed VFA.

Index Terms— Deep Learning, Multi-Label Classifica-
tion, Pedestrian Attribute Recognition

1. INTRODUCTION

Multi-label classification is the task of assigning multiple con-
cepts or attributes to a instance. For example, a natural im-
age generally contains multiple objects. One essential issue
of multi-label classification is the inherent label imbalance,
which causes over-fitting of minor categories and cannot be
well handled by common resampling strategies [1] due to the
label co-occurrence.

Many deep networks have made progress for multi-label
classification tasks [2, 3, 4, 5, 6]. Impressive success was
achieved by exploting label correlation via graph-based mod-
els [3, 4]. Other approaches extracted attentional regions in
image recognition and pedestrian attribute recognition (PAR)
problems [5, 6]. However, most of these methods utilize
heavy architectures and ignore the essential label imbalance

issue. The most general approach in recent multi-label mod-
els is to use the binary cross-entropy (BCE) loss function with
class-specific re-weighting to balance the conributions of dif-
ferent classes. However, such simple methods often result in
limited improvement due to the label co-occurrence and the
dominance of negative labels [7]. To address these problems,
several recent works [7, 8] have attempted to modify the com-
monly used BCE loss function. [7] suggested a Distribution-
Balanced loss to re-balance the weights taking into account
label co-occurrence. [8] proposed Asymmetric Loss (ASL)
to asymmetrically focusing on positive and negative samples
considering the high negative-positive imbalance in the case
of multi-label classification. These methods have achieved
the state-of-the-art performances on the mainstream bench-
marks like MS-COCO [9]. However, there are still some
drawbacks for these methods. E.g, the hyper-parameters in
these methods require elaborate tuning for different datasets
or tasks. Additionally, most methods have not verified their
generality to other tasks. Some methods use the idea of de-
coupling features. [6] equipped a attention module for each
attribute and conducted binary classification independently in
PAR task. However, they introduced extra attention modules
for all attributes, increasing the amount of parameters and
computation cost.

To tackle the label imbalance issue, in this paper, we pro-
pose a novel Variaional Feature Augmentation (VFA) method
to improve the performance of multi-label classifiers, which
performs label re-balancing in the class-wise decoupled fea-
ture spaces. VFA is composed of three components. First, a
Variational Feature Decoupling Module decouples the feature
vectors extracted by backbones into multiple low-dimentional
groups of sub-feature vectors, each group responding to one
category. The conventional resampling strategies fail in multi-
label cases due to the label co-occurrence issue. In this step,
the co-occurrence of labels is decoupled for further opera-
tions. Secondly, for each group of sub-feature vectors, we
independently shuffle the permutation of the batch and recon-
sititute the co-occurrence of labels to mitigate the label im-
balance. Thirdly, a Feature Aggregation Module combines
the sub-feature vectors and reproject them into the original
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Fig. 1. The framework of Decoupled Feature Augmentation (best viewed in color). In the training phase, the feature vectors
extracted by the backbone network are decoupled into multiple sub-feature spaces by the Feature Decoupling (FD) module.
The decoupled sub-feature vectors are then shuffled and re-combined to constitute the augmented feature vectors and refine
the multi-label classifier. In the inference phase, all the extra modules and opperations are removed to maintain the original
architecture.

feature space. The re-combined feature vectors are used to
update the classifiers together with the original ones. VFA
only introduces extra structures in the training phase and is
cost-free in the inference phase comparing with baseline mod-
els. We evaluate VFA on four benchmarks of two visual
multi-label classification tasks, pedestrian attribute recogni-
tion and multi-label image classification. VFA gains consis-
tent improvement and achieves competitive or surpassing per-
formances comparing with other state-of-the-arts.

2. METHOD

For multi-label classification, we first illustrate the symbols
and variables used in the following part of the paper. Let X ,
V = RD and Y = {0, 1}C denote the instance space, feature
space and label space, where D and C are the dimension-
ality of feature space of the output of backbones and label
space, respectively. Given instance-label pairs {xi, yi}Ni=1,
the backbone project the instances {xi}Ni=1 into feature vec-
tors {vi}Ni=1, which the classifier predict the labels according
to. The end-to-end deep network can be represented as two
stages: f : X → V and h : V → Y , and the goal of multi-
label learning is to learn the backbone f and classifier h.

2.1. Overview of Variational Feature Augmentation

Different from previous methods focusing on enhancing the
feature learning with additional modules, our goal is to im-
prove the classifier with augmented feature vectors without
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Fig. 2. The details of Variational Feature Decoupling and Fea-
ture Aggregation.

introduing extra computation cost in the inference phase. The
framework of the proposed VFA is shown in Fig.1. The moti-
vation is to augment the feature vectors extracted by the back-
bone via decoupling and reconstituting the co-occurrence re-
lations of different labels in the training set. To achieve this
purpose, the feature vectors v is first decoupled into multiple
sub-feature vectors {vj}Cj=1 by a Feature Decoupled module
consisting of C variational auto-encoders (VAEs)[10], where
C is the number of categories. After decoupling, we shuf-
fle the permutation of the sub-feature vectors of each cate-
gory j in a batch and re-combine them into unitive feature
vectors. The re-combination procedure can enrich the co-
occurence relations, e.g, the component of category A in in-
stance i could be seamed with the component of category B



in instance j, which does not appear in the original training
set. The re-combined features will be re-projected into the
feature space and used for refining the multi-label classifiers.
In the inference phase, all modules used in the training phase
are removed to maintain the same architecture as the baseline
model.

2.2. Variational Feature Decoupling

In this work, we decouple the feature into sub-feature spaces
discriminatively, which is implemented with C variational
auto-encoders and binary classifiers. The detailed structure
of Variational Feature Decoupling module is illustrated in
Fig.2. Specifically, we first transform the feature vectors v
into C lower-dimensional sub-feature vectors {vj}Cj=1 by C
two-layer MLPs {fj}Cj=1 with the same structure. For each
vj , we set a VAE composed of an encoder ej and a decoder
dj , which first encodes the sub-space feature vectors into
latent codes {µj , σj} with [µj , σj ] = ej(vj) and construct it
with re-parameterization technique [10]

ṽj = dj(σj × ε+ µj) (1)

where µj and σj represent the first and second moment vector,
and ε is a standard Gaussian random vector of the same shape
with µj . The encoding and decoding process is supervised by
common VAE losses [10]

Lvae = 1
2

∑C
j=1

∑Dz

k=1(1 + log((σ
(k)
j )2)− (µ

(k)
j )2 − (σ

(k)
j )2) +

∥∥∥vj − ṽj
∥∥∥
2
. (2)

Additionally, similar to [11], we set a binary classifier hj
on the latent codes of each category to impel the sub-space
vectors to be discriminative. The loss function is formulated
by

Lbin =
1

C

C∑
j=1

l(hj(zj), yj), (3)

where l(·, ·) is standard binary cross entropy loss and zj =
σj × ε+ µj is the re-parameterized vector.

2.3. Shuffle and Feature Aggregation

As mentioned earlier, the purpose of feature decoupling is
to make feature augmentation more flexible for multi-label
classification. Once we obtain the deoupled sub-feature vec-
tors, we shuffle the them in the batch dimension. The mo-
tivation of shuffle is to enrich the co-occurrence relations of
labels. A schematic diagram is shown in Figure 3. After shuf-
fling, co-occurence relations with low frequency will be en-
riched and new relations might appear, which could balance
the distributions of the original data and benefit the learn-
ing of multi-label classifiers. Given the sub-feature vectors
Vj = [vj1, v

j
2, ..., vjn] ∈ Rn×d of category j, where n is the

batch size and d is the dimensionality of sub-space feature
vectors, this process can be described as

[vj
1, vj

2, ..., vj
n]

shuffle→ [vj
a1
, vj

a2
, ..., vj

an
] := Ṽj

, (4)
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Fig. 3. The semantic diagram of shuffle (best viewed in
color). The shuffle is conducted in the batch dimension
(the blue dotted boxes). After shuffling, unprecedented co-
occurrence relations might appear in the training set (the red
dotted boxes).

where {ai} is the new indices of the batch. For all categories,
the shuffle is conducted independently. After shuffled, the
sub-feature vectors are concatenated and re-projected into the
original feature space by a Feature Aggregation module g as:

Ṽ = g([Ṽ1
; Ṽ2

; ...; ṼC
]) (5)

The Feature Aggregation module is implemented with a two-
layer MLP. To ensure that the augmented feature vectors Ṽ
can be correctly re-projected into the original feature space,
we introduce a L2 reconstruction loss

Lrec =
∥∥Ṽu − V

∥∥
2
, (6)

where Ṽu = g([V1;V2; ...;VC ]) is the reconstructed feature
vectors without applying shuffle and V is the original feature
vectors extracted by the backbone network. Finally, the orig-
inal feature vectors V and augmented feature vectors Ṽ are
jointly used for fine-tuning the classifiers with binary cross
entropy losses

Lcls = 1
N

∑N
i=1 l(h(vi), yi) +

β
N

∑N
i=1 l(h(ṽi), ỹi), (7)

where β is the weight that balances the original loss and aux-
iliary loss.

3. EXPERIMENTS

In this section, we first introduce the datasets and evaluation
metrics. Then, we compare our VFA based on different base-
line models with other existing state-of-the-art methods on
each public dataset.

3.1. Datasets and Metrics

Pedestrian Attribute Recognition. We conduct experi-
ments for PAR on three benchmarks: PETA[12], RAP[13]
and PA100k[14] datasets. PETA is a widely used dataset
for PAR. It contains 19000 outdoor images and 35 selected
attributes for evaluation. RAP is the largest PAR dataset of
indoor scenes, and it contains 41585 images. We follow [13]
to select 51 attributes for evaluation. PA100k is the largest



Method mA Accu Prec Recall F1
GRL 86.70 - 84.34 88.82 86.51
HP-Net 81.77 76.13 84.92 83.24 84.07
VeSPA 83.45 77.73 86.18 84.81 85.49
DIAA 84.59 78.56 86.79 86.12 86.46
ALM 86.30 79.52 85.65 88.09 86.85
JLAC 86.96 80.38 87.81 87.09 87.45
ResNet50 85.19 79.14 87.11 86.18 86.36
VFA(Ours) 86.47 80.48 87.35 87.74 87.31

Table 1. The comparisons on PETA dataset. The results in
red and blue represent the best and second best performances.

Method mA Accu Prec Recall F1
VeSPA 77.70 67.35 79.51 79.67 79.59
HP-Net 76.12 65.39 77.33 78.79 80.09
LGNet 78.68 68.00 80.36 79.82 80.09
GRL 81.20 - 77.70 80.90 79.29
ALM 81.87 68.17 74.71 86.48 80.16
JLAC 83.69 69.15 79.31 82.40 80.82
ResNet50 80.52 68.44 79.91 80.64 79.89
VFA(Ours) 81.76 68.49 79.09 81.74 80.01

Table 2. The comparisons on RAP dataset. The results in red
and blue represent the best and second best performances.

PAR dataset with 100000 images from outdoor scenes. It
provides 26 commonly used attributes. We adopt five criteria
to evaluate the model, including a label-based criterion mean
accuracy (mA), accuracy (Accu), precision (Prec), Recall and
F1.

Multi-label Image Classification. We conduct experi-
ments for multi-label image classification on MS-COCO[9]
dataset. MS-COCO is widely used for multi-label recogni-
tion recently, and it contains 82081 images for training and
40137 images for validation. The dataset covers 80 commin
object categories. We adopt the average of overall/categorial
F1-score (OF1/CF1) and mean Average Precision (mAP) as
evaluation metrics.

3.2. Comparison with State-of-The-Arts

Pedestrian Attribute Recognition. We take the methods of
GRL[15], HP-Net[14], LGNet[16], VeSPA[17], DIAA[18],

Method mA Accu Prec Recall F1
HP-Net 74.21 72.19 82.97 82.09 82.53
LGNet 76.96 75.55 86.99 83.17 85.04
VSGR 79.52 80.58 89.40 87.15 88.26
ALM 80.68 77.08 84.21 88.84 86.46
JLAC 82.31 79.47 87.45 87.77 87.61
ResNet50 80.50 78.84 87.24 87.12 86.78
VFA(Ours) 81.30 79.01 86.66 88.08 86.95

Table 3. The comparisons on PA100k dataset. The results in
red and blue represent the best and second best performances.

Method Backbone Input Size mAP CF1 OF1
CNN-RNN VGG16 - 61.2 - -
SRN ResNet-101 224 77.1 71.2 75.8
ML-GCN ResNet-101 448 83.0 78.0 80.3
SSGRL ResNet-101 576 83.8 76.8 79.7
SSGRL ResNet-101 448 81.9 76.6 78.9
MCAR ResNet-101 576 84.5 78.7 81.1
MCAR ResNet-101 448 83.8 78.0 80.3

TResNet-M TResNet-M 224 76.6 70.7 73.7
VFA(Ours) TResNet-M 224 77.4 71.5 74.7
TResNet-L TResNet-L 448 84.1 77.3 79.5
VFA(Ours) TResNet-L 448 84.5 78.8 80.8
ASL* TResNet-L 448 86.3 81.4 81.8
VFA(ours) TResNet-L 448 86.5 80.4 82.4

* Re-implemented with the open source codes and pre-trained parame-
ters.

Table 4. The comparisons on MS-COCO. The results in red
and blue represent the best and second best performances.

ALM[6] and JLAC[19] for comparisons. We use a strong
baseline (ResNet50) proposed in [20] for all the experiments
on pedestrian attribute recognition. Table 1, Table 2 and
Table 3 shows the comparisons with other state-of-the-arts.
Our VFA gains consistent improvement over baseline models
and maintain the same computation and amount of param-
eters, and also achieve comparable performance with many
other state-of-the-arts. For example, on PETA dataset, VFA
outperforms more complicated and heavy models such as
ALM[6] in both mA and F1 criterion. Morever, we close the
gap between the baseline model and The SOTA graph-based
JLAC[19] in all five criteria by large steps. The experimental
results on PAR datasets demonstrate the effectiveness and
efficiency of our VFA.

MS-COCO. For multi-label image recognition, we take
several representative methods for comparisons[21, 2, 3, 4, 5,
8]. We employ TResNet[8] as our baselines with two settings
of input resolution. Table 4 shows the comparisons on MS-
COCO dataset. With VFA, all settings of baselines gain con-
sistent improvement. Specifically, VFA improves TResNet-
M by 0.8% in mAP and improves TResNet-L by 0.4%. The
experimental results on MS-COCO prove that our VFA can
effectively improve multi-label classifiers without extra bur-
den of computation and storage.

4. CONCLUSION

In this work, we propose a novel Variational Feature Aug-
mentation method improving the multi-label classification
models in a costless way. The proposed method increase
co-occurrence relations of labels by decoupling and re-
combining the feature vectors to refine classifiers. Extensive
experiments on three multi-label tasks and six benchmarks
including PETA, RAP, PA100k and MS-COCO demonstrate
the effectiveness of the proposed method.
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