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ABSTRACT

In this work, we study the context aggregation in stereo
matching from a new parallax perspective. Unlike previous
works, we propose to characterize and augment a pixel with
its parallax contextual representation (PCR), which has not
been explored before. We also propose a new concept called
disparity prototype to describe the overall representation of
a disparity plane. Our proposed PCR module consists of
three steps: 1) divide disparity planes for a rough estimation
of disparity; 2) estimate the disparity prototypes for each
disparity plane; 3) derive PCR-augmented representations
with disparity prototypes. Extensive experiments on various
datasets using different networks validate the effectiveness of
our proposal.

Index Terms— Stereo matching, parallax contextual rep-
resentation, disparity prototype, disparity plane

1. INTRODUCTION

Recent efforts using CNNs to learn powerful representa-
tions from data significantly promote the performance of
stereo matching. DispNetC [1] builds the first end-to-end
network for stereo matching and proposes a correlation layer,
following which many methods directly regress disparity
maps [2, 3]. GCNet [4] takes a different approach, which
concatenates left features and shifted right features to gen-
erate a 4D feature volume and employes 3D CNN to aggre-
gate contextual cues. Based on 3D convolution, many other
methods, including PSMNet [5], StereoNet [6], AnyNet [7],
GANet [8], and EMCUA [9], achieve state-of-the-art per-
formance on benchmarks. Particularly, GwcNet [10] and
AMNet [11] explore a middle way between using the corre-
lation of features and directly concatenating the features.

The 3D convolution based methods generally outperform
the 2D methods due to the use of global semantic context.
However, relying solely on fixed-size convolutional kernel to
model the contextual information is inefficient. Firstly, fixed-
size 3D filtering inevitably involves irrelevant pixels, causing
a well-known edge-fattening issue in object boundaries and
thin structures [12]. Secondly, local contextual representa-
tion usually fails to address long-range dependencies [13, 14].
Considering these drawbacks, an intuitive solution is to inves-

Fig. 1. Effectiveness of the proposed PCR module, com-
pared with the baseline network (PSMNet). For illustration
and comparison, the ground-truth disparity map is used to
build a method called gt-PCR, which forms completely cor-
rect matching probability maps. We can observe that the PCR
module performs better than the baseline. Moreover, gt-PCR
can produce remarkably excellent results, which shows the
potential of PCR. The 3-pixel threshold error rate 3px(%) and
the average end point error (EPE) are used to evaluate the per-
formance of these methods.

tigate a better contextual representation scheme with higher
weights for similar features.

Semantic segmentation, another fundamental task in com-
puter vision, also requires a good understanding of context.
Several recent representative semantic-segmentation meth-
ods [15, 16, 17] try to extract the global context from a
categorical perspective: to exploit an aggregated representa-
tion of the object region that a pixel belongs to. Motivated by
their success, this paper aims to answer a question for stereo
matching: Can the representations aggregating pixels at the
same disparity level help stereo matching?

Disparity planes are the counterpart of a set of discrete
disparity candidates. Empirically speaking, pixels from the
same disparity plane have strong correlation since they are
assigned to close disparity values. Such a parallax contextual
information, a factor largely ignored before, should be ex-
plored for better stereo matching. Hence, for the first time, we
present a parallax contextual representation (PCR) approach
in this work. Fig.1 well verifies the effectiveness of this new
representation augmentation scheme.

The novelties and contributions of our proposed approach
can be described as follows.

1) We propose a new parallax contextual representation



Fig. 2. Overview of the network architecture. The PCR is added to the PSMNet [5] backbone for parallax contextual aggrega-
tion. Given a stereo pair, PSMNet extracts the features of the left and right images and forms three cost volumes with a stacked
hourglass architecture. For each cost volume, we supervise it with a cross-entropy loss by using quantified disparity ground
truth. The inputs of PCR is a 4D feature volume and a 3D cost volume from the last hourglass module. The output of PCR
module is an augmented representation for each pixel, which is fed to 1× 1 convolutions to obtain a new refined cost volume.

(PCR), which augments the representation of each pixel with
its contextual information extracted from disparity planes.

2) We propose the concept of disparity prototype to de-
scribe the overall representation of a disparity plane. Specifi-
cally, the disparity prototype is the aggregation of all features
of pixels belonging to a disparity plane.

3) Different from existing methods [4, 5], which minimize
the distance between the ground truth and the mean value of
estimated disparity, we supervise the model to learn the cost
distribution peaking around the ground truth, which provides
distinguish disparity planes for the PCR module.

4) We integrate our PCR into different stereo networks [5,
10] and evaluate them on various stereo benchmarks. Ab-
lation studies on the SceneFlow dataset [1] demonstrate the
effectiveness of the proposed PCR, and our method largely
improves the performance of previous methods.

2. METHODS

Fig.2 shows the overall network architecture used in this pa-
per. We choose PSMNet [5] as the backbone network for il-
lustration. The parts of feature extraction and cost volume
construction retain the identical structure with PSMNet, but
we make some modifications to the stacked hourglass mod-
ules, which will be discussed in Section 2.2.

2.1. PCR Module

As shown in Fig.3, the inputs of the proposed PCR module
includes a 4D feature volume A ∈ RH×W×D×C and a 3D
cost volume B ∈ RH×W×D, both of which are outputs from
last hourglass module.

The proposed parallax contextual representation scheme
contains three steps: 1) structure all the pixels in the reference
image I into D disparity planes and compute the matching
probability map Md; 2) estimate the disparity prototype xd
for each disparity plane by aggregating the representations of
all the pixels in the disparity plane πd; and 3) derive the PCR-
augmented representation of each pixel by incorporating the
D disparity prototypes.

Computing the matching probability maps. Matching
probability maps are denoted by {M0, . . . ,MD−1}, where
a value on each 2D map Md indicates how likely a pixel pi
belongs to the disparity plane πd, and we generate such a
group of disparity planes under the supervision of quantified
disparity ground truth. We partition the 3D cost column con-
veyed from hourglass module into D slice {c0, . . . , cD−1},
with each cost slice corresponding to a disparity plane. For
pixel pi, the matching probability to plane πd is the softmax
output of cid over the disparity dimension:

mi
d =

exp(cid)∑D−1
d′=0 exp(cid′)

. (1)

Estimating the disparity prototypes. It is computationally
expensive to get contextual representations from original 4D
feature volume, and it contains redundant information, be-
cause only a small portion of disparity candidates {0, . . . , D−
1} have major contributions to final prediction (with most dis-
parity candidates having a very low matching probability).
Therefore, we conduct a simple 4D-to-3D conversion Γ:

Γ : η(cat(V (d,C, x, y))), (2)

where V (d,C, x, y) is the 3D part for disparity d in the 4D
feature volume. The Γ operation first concatenates C features
over disparity dimension (using cat(·)) for dimension reduc-
tion, and then uses the 1×1 convolution η(·) for feature adap-
tion to obtain a resultant 3D feature volume F ∈ RĈ×H×W .

Then we can aggregate all pixels weighted by the match-
ing probability to estimate the disparity prototype xd:

xd =
∑
i∈I

m̃i
dfi, (3)

where fi is the feature of pixel pi in F and m̃i
d is the normal-

ized degree for matching probability of each pixel pi across
spatial dimension; xd has the same size of fi ∈ RĈ×1×1. In
this way, xd can reflect the intrinsic information in a disparity
plane, and thus we call it the disparity prototype of disparity
plane πd.



Fig. 3. Illustration of the whole pipeline of PCR. The far left part depicts the two output branches fed into PCR from the last
hourglass module. The architecture of proposed PCR: (i) green dashed box: Computing matching probability maps. (ii) purple
dashed box: Estimating disparity prototypes. (iii) orange dashed box: Deriving PCR-augmented representation. Finally, we
transform the augmented representation to a new refined cost volume.

Deriving the PCR-augmented representations. Different
pixels should selectively attend to different disparity planes.
The relation between each pixel and each disparity prototype
acts as the “parallax contextual attention”. Inspired by the
concept of self-attention [18], we calculate the parallax con-
textual representation yi for pixel pi as

yi = ρ(

D−1∑
d=0

ωidδ(xd)),

ωid =
eγ(fi,xd)∑D−1

d′=0 e
γ(fi,xd′ )

,

(4)

where γ(f, x) = φ(f)Tψ(x) is the unnormalized relation func-
tion; and φ(·), ψ(·), δ(·) and ρ(·) are all transformation func-
tion implemented by 1×1 convolution followed by BN and
ReLU.

Finally, we concatenate yi and original feature fi together
to obtain the PCR-augmented representation of pixel pi:

zi = g([fTi yTi ]T ), (5)

where g(·) is also 1×1 convolution to fuse the original repre-
sentation and the PCR. The whole pipeline of our PCR mod-
ule is depicted in Fig.3.

In this way, we can adaptively aggregate relevant context
from different disparity planes for each pixel. For a given
pixel pi, its original feature fi may have ambiguity in the lo-
cality of disparity plane, but with the help of disparity proto-
types this ambiguity could be reduced and the pixel will be
divided into the correct disparity plane.

2.2. Loss Functions

Replacing regression loss with cross-entropy loss. As
shown in Fig.3, unlike most existing works using regression
loss only, we propose to replace original regression loss with
a cross-entropy loss for every hourglass network and add only
one regression loss at the end of the PCR module. Our design
is for two purposes. First, the cross-entropy loss is favor-
able to get a clean separation of disparity planes; Second,

the cross-entropy loss is helpful to alleviate the well-know
multi-modal problem brought by the weighted average oper-
ation [19]. The cross-entropy loss Lce is defined as

Lce(ŷgt, p) = −
D−1∑
d=0

ŷgt · log p(d), (6)

where p(·) is the estimated probability distribution of possi-
ble disparity candidates; and ŷgt is the one-hot ground-truth
label after quantification. The quantified ground truth d̂gt is
obtained by minimizing |dgt − d̂|, where dgt is continuous
disparity ground truth and d̂ is the integral value of candidate
disparity indexes.
Total loss function. We use a combination of the cross-
entropy loss Lce and the regression loss Lreg to supervise the
training of our network:

L = Lce + λLreg, (7)

where λ(= 0.2) in our work is used to balance the two losses;
the smooth L1 loss is adopted as regression loss; and the
cross-entropy lossLce contains three parts, each of which acts
on a 3D cost volume on each hourglass output and keeps the
same weighting setting as PSMNet.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

Datasets. We evaluate our methods on the SceneFlow [1]
and KITTI [20, 21] datasets. The SceneFlow dataset is a
large scale synthetic dataset with dense ground-truth dispar-
ity maps. The KITTI2012 and KITTI2015 datasets are real-
world datasets providing sparse ground-truth disparity.
Networks and training. We validate our proposal embed-
ded in two 3D CNN based disparity networks: PSMNet and
GwcNet. We use the Adam optimizer, with β1 = 0.9 and
β2 = 0.999. All the data processing and training strategies
are the same as those in the original papers [5, 10]. We train
our model with a batch size of 8 on 4 NVIDIA 2080Ti GPUs.



Fig. 4. Visualization results on KITTI2015. The left-hand panel shows the left input image of the stereo image pair. The
right-hand panels show (upper) the disparity maps and (lower) the error maps obtained by different methods.

3.2. Ablation Studies

We compared three models: the baseline network(PSMNet),
the baseline with the cross-entropy loss replacing the regres-
sion loss (-ce), and our approach (PCR-PSMNet). From Ta-
ble 1, we can see that the cross-entropy loss helps the network
achieve better performance. With the help of cross-entropy
loss, the quality of disparity prototypes is guaranteed thus the
PCR-augmented method achieves a significant performance
boost with EPE drops from 1.09 to 0.94.

Fig. 5. Visualization results on SceneFlow.

Table 1. Performance comparison under different settings
and metrics on the SceneFlow test set.

Method
SceneFlow

1px(%) 2px(%) 3px(%) EPE
PSMNet 10.80 6.06 4.41 1.09
PSMNet-ce 9.54 5.57 4.24 1.00
PCR-PSMNet 9.00 5.01 3.74 0.94

Fig.5 gives some visual comparisons on the SceneFlow
test set. We can find that our proposed approach produces
sharper edges and better recovery of thin structures (left-hand
column) and corrects some regions partitioned to wrong dis-
parity planes(right-hand column). Such improvements could
be attributed to the discriminative division of disparity planes
and the long-range dependency with the help of PCR.

3.3. Benchmark Results

We embed our proposed PCR into PSMNet and GwcNet to
build two new models: PCR-PSMNet and PCR-GwcNet. We
compare them with PSMNet, GwcNet and some other meth-
ods on the test set for the KITTI submission, as shown in
Tables 2 and 3. According to the online leader board, the
PCR-enhanced models achieve better performance in all the
evaluation metrics compared with the original ones.

Table 2. Evaluation Results on KITTI2015.
Method

All(%) Noc(%)
bg fg all bg fg all

GCNet [4] 2.21 6.16 2.87 2.02 5.58 2.61
PSMNet [5] 1.86 4.62 2.32 1.71 4.31 2.14
SegStereo [22] 1.88 4.07 2.25 1.76 3.70 2.08
GwcNet [10] 1.74 3.93 2.11 1.61 3.49 1.92
PCR-PSMNet 1.53 3.62 1.88 1.39 3.32 1.71
PCR-GwcNet 1.49 3.51 1.83 1.36 3.17 1.66

Table 3. Evaluation Results on KITTI2012.
Method

>2px(%) >3px(%) >5px(%)
Noc All Noc All Noc All

GCNet [4] 2.71 3.46 1.77 2.30 1.12 1.46
PSMNet [5] 2.44 3.01 1.49 1.89 0.90 1.15
SegStereo [22] 2.66 3.19 1.68 2.03 1.25 1.52
GwcNet [10] 2.16 2.71 1.32 1.70 0.80 1.03
PCR-PSMNet 2.11 2.63 1.30 1.65 0.79 1.01
PCR-GwcNet 1.97 2.51 1.23 1.60 0.75 0.98

Some resultant maps downloaded from the KITTI eval-
uation server are visualized in Fig.4, showing that our PCR-
enhanced models perform remarkably better in some ill-posed
regions and keep the object structures very well.

4. CONCLUSION

In this work, we propose the concept of disparity prototype
to exploit the disparity-level context. With the parallax con-
textual representation (PCR), the augmented pixel represen-
tation enables a more accurate prediction of disparity maps.
We further propose to integrate advantages of cross-entropy
loss and the widely-used soft-argmin operation. Experiments
on various public datasets and visualization results verify the
effectiveness of our proposal.
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