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YbAgGe contains a magnetic geometrically frustrated kagome-like lattice that also features significant local
single-ion anisotropy. The electronic state is established by hybridization of 4 f and conduction electrons leading
to heavy electronic masses. The competition between these various interactions leads to nontrivial behavior
under external magnetic field, including a sequence of magnetic phase transitions, non-Fermi-liquid states, and
possibly a quantum critical point. We present a series of neutron diffraction experiments performed in the mK
temperature range and under magnetic fields up to 8 T in the hexagonal plane, revealing the microscopic nature
of the first four subsequent magnetic states of this phase diagram. The magnetic phases are associated with
the propagation vectors k1 = ( 1

3 0 1
3 ) for H < 2 T, k2 = (0 0 0.32) for 2 T < H < 3 T, k1 = ( 1

3 0 1
3 ) for

3 T < H < 4.5 T, and k3 = (0.195 0.195 0.38) for 4.5 T < H < 7 T. Our structural refinements reveal a strong
modulation of the magnetic moment amplitude in all phases. We observe that the ordered moments of the three
magnetically different Yb sites become increasingly different in field, which complies with the principle local
anisotropy directions relative to the field direction. While the ordered moments are aligned predominantly in the
hexagonal plane, we also find a significant out-of-plane component and a ferromagnetic contribution above 2 T.
We discuss possible scenarios that may evolve around the phase boundary at 4.5 T, which is associated with
putative quantum criticality as identified by various bulk probes. We propose further steps that are required to
better understand the microscopic interactions in this material.

DOI: 10.1103/PhysRevB.104.054424

I. INTRODUCTION

Several topical themes of modern solid-state research—
frustrated magnetism, non-Fermi-liquid behavior, and field-
induced quantum criticality—converge in YbAgGe, a system
that has been in the focus of experimental studies for more
than a decade [1–12].

YbAgGe belongs to a family of rare-earth (R) compounds
with noncentrosymmetric crystal structure (ZrNiAl-type,
space group P6̄2m), where the R3+-ions occupy the 3( f )
Wyckoff position (C2v site symmetry) and form a two-
dimensional, distorted kagome-like lattice of corner-sharing
equilateral triangles [13]. Some members of this family, i.e.,
TbPtIn and TmAgGe [14,15], possess a very strong easy-
axis anisotropy in the hexagonal plane, which is imposed
by the crystal-electric field (CEF). This leads to a suscepti-
bility ratio of χab/χc ≈ 30 at 5 K, and triggers a series of
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metamagnetic transitions in which the magnetic moments are
restricted along the three distinct axes defined by the CEF, and
which are selected by the magnetic field direction [15]. The
sister compound HoAgGe features a kagome spin-ice state
that is established through the combination of single-ion axial
anisotropy in the hexagonal plane and effective ferromagnetic
nearest-neighbor exchange interactions [16]. Under field this
state evolves into ordered and partially disordered magnetic
states, all obeying the kagome ice rule.

The magnetic moments in YbAgGe also show axial
anisotropy within the hexagonal plane, but here they couple
antiferromagnetically. The material features a Curie-Weiss
temperature of θCW = −30 K and an anisotropy ratio that
reaches moderate χab/χc ≈ 3 at low temperature [14]. In-
elastic neutron scattering (INS) results suggest a doubly
degenerate CEF ground state |J = 7/2, Jz = ±7/2〉 [9]. The
local quantization axis for the three magnetic Yb sites of the
unit cell [Yb1 = (x,0,0), Yb2 = (0,x,0), Yb3 = (–x,–x,0),
x = 0.58] points along the z = [1 0 0], [0 1 0], or the [1 1 0]
two-fold axes, respectively. Thus the anisotropy is essentially
the same as in the TmAgGe [14] member of the RAgGe
family as well as the isostructural TbPtIn [14].
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FIG. 1. (a) Schematic H -T phase diagram of YbAgGe. Solid lines mark approximate phase boundaries. [(b), (c)] Maps of the magnetic
intensity for selected reflections corresponding to k1 and k2 propagation vectors, respectively [see also dashed region in (a)]. (d) Map of the
magnetic intensity for k3 in the dotted region of panel (a). The yellow and red lines indicate the approximate magnetic phase boundaries, while
black dots indicate the exact measurement points. The magnetic field was applied along the b̂ direction in (b) and (c) and along [1 –1 0] in (d).
The inset in (c) shows a 14×8×8 mm3 YbAgGe single crystal on a copper mount.

Low-temperature thermodynamic and transport results
[1–5,14,17,18] distinguish YbAgGe from other RAgGe com-
pounds with well localised R moments. The electronic
specific-heat coefficient γ ranges from 0.15 to 1 J/molK2

and the entropy release is only ∼5% of Rln2 at 1 K
[1,3,14]. This signifies that YbAgGe may be on the bor-
der of magnetic moment formation, which is established
through hybridization between 4 f and conduction electrons.
Specific-heat and resistivity measurements under magnetic
field and mK temperatures suggest non-Fermi-liquid behavior
and quantum-critical fluctuations at the field values of Hab

crit ≈
4.5 T and Hc

crit ≈ 8 T for field directions in the hexagonal
plane and along the c axis, respectively [1,3,5,7,12].

The complex H-T phase diagram of YbAgGe [Fig. 1(a)],
constructed from detailed bulk measurements [1–5,14,17,18],
contains up to six different phases labeled by the letters a to
f [5]. Earlier magnetic neutron elastic-scattering studies were
able to identify the ordering wave vectors of the first two of
these phases. At zero field the magnetic Yb3+ moments order
below 0.65 K along the wave vector k1 = ( 1

3 0 1
3 ) (phase a)

[8]. Phase b features the incommensurate wave vector k2 = (0
0 0.32) [10] and encapsulates the phase a in the H-T phase
diagram. It extends up to TN ≈ 0.8 K at zero field, after which
magnetic order vanishes. At low temperatures (T < 0.65 K),
phase b exists within 2 T < H < 3 T.

The magnetic order of the higher-field phases c, d , and e
have remained elusive to this date. However, the c − d phase

boundary has been intensively studied because of numerous
anomalous properties. The Hall resistivity is enhanced [2], the
sign of the Grüneisen parameter changes [7], the magnetiza-
tion peaks [19], and the elastic constants soften [6]. Detailed
magnetocaloric measurements [7] classify the sharp transition
at TBCP ≈ 0.3 K and HBCP ≈ 4.5 T as a bicritical point (BCP),
which may be tuned to become quantum critical.

Thus, the evolution of the field-induced magnetic struc-
tures in YbAgGe, especially the ones for phases c and d , is
indispensable for our understanding of the complex interplay
between the geometrical frustration of Yb3+ moments on the
kagome-like lattice, their local orthorhombic CEF anisotropy,
and their interaction with the conduction electrons. Here we
report neutron diffraction experiments on YbAgGe single
crystals in zero and applied magnetic fields. We identify the
corresponding propagation vectors and determine the mag-
netic structures of all four successive states a, b, c, and d .

II. EXPERIMENTAL DETAILS

A. Sample preparation

YbAgGe single crystals were grown from Ag- and Ge-rich
high-temperature ternary solutions and characterized based
on the procedure described in Ref. [14]. In order to grow a
significant number of large single crystals of YbAgGe, the
growth was optimized in several ways.
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Roughly 10 g of high-purity Yb, Ag, and Ge were placed in
a 5 ml Al2O3 crucible in a molar ratio of Yb0.14Ag0.645Ge0.215.
The Yb with 99.99+% purity was obtained from the Ames
Laboratory Materials Preparation Center. A second 5 ml
Al2O3 crucible, filled with silica wool, was placed on top
of the growth crucible to act as a filter and catch for excess
liquid [20]. The growth and catch crucibles were sealed into
an evacuated amorphous silica tube and placed in a resistively
heated box furnace. The furnace was heated to 1100 ◦C over
4 hours, and heated further to 1190 ◦C over an additional hour.
The furnace was then cooled to 1090 ◦C over 5 hours and then
slow cooled to 840 ◦C over 200 hours. The growth crucibles
were removed from the furnace at 840 ◦C and placed in a cen-
trifuge for separation of the excess liquid from the YbAgGe
single crystals. Depending on nucleation, single crystals as
large as 1–2 grams could be obtained [see inset to Fig. 1(c)
for an example].

B. Neutron diffraction setups

A series of neutron-diffraction experiments was performed
on the single-crystal neutron diffractometers D10 and D23 at
the Institut Laue-Langevin (ILL), France, and on the single-
crystal neutron diffractometer Zebra (former TriCS) at the
Swiss Neutron Spallation Source SINQ, Paul Scherrer Institut
(PSI), Switzerland.

D10 was operated with a wavelength of 2.36 Å in four-
circle mode with a dilution refrigerator at 140 mK in zero
magnetic field. The Zebra (TriCS) and D23 experiments used
neutron wavelengths of 2.43 Å and 2.366 Å, respectively.
The last two diffractometers were operated with lifting-arm
normal-beam geometry and were equipped with dilution re-
frigerators inserted into vertical magnets. For the study of
the H-T phase diagram, the YbAgGe crystals were mounted
and cooled to a base temperature of 60 mK on Zebra (TriCS)
and D23. The field was applied in the hexagonal plane, either
along [1 –1 0] or along the b̂ axis. According to bulk mea-
surements [3,9], the essential features of the phase diagram
remain unchanged for these different field directions, but the

phase boundaries may slightly shift. A consistent zero-field
cooling protocol was used in all experiments, i.e., after each
field ramp the crystal was heated to 1 K and cooled in zero
field to base temperature. Data sets for the three field-induced
phases were collected at magnetic fields of 2.2 T, 3.9 T, and
5.5 T applied along H11̄0. Our neutron-diffraction experiments
reveal that magnetic reflections occurring in phases a, b, c, and
d [Fig. 1(a)] can be indexed with the propagation vectors k1
[Fig. 1(b)], k2 [Fig. 1(c)], k1 [Fig. 1(b)], and k3 [Fig. 1(d)],
respectively. The a phase with propagation vector k1 is sep-
arated from the other phases by a first-order transition, and
shows a clear hysteresis. Meanwhile, the phase transition of
phase b is second order when approached from high tempera-
ture or field, but is first order when entered from the a-phase.
We observed weak intensities at the k1 positions that coexist
with the k2 reflections in the b phase, suggesting a competition
between these two magnetic states. Magnetic Bragg reflec-
tions at k1 reappear in the c phase, albeit with a different
domain population and moment direction when compared
to the zero-field state (see further below). The propagation
vector k3 of the d phase was found by extensive reciprocal
(hhl)-plane mapping.

We also searched for new propagation vectors in the e
phase by mapping the reciprocal (h0l) plane from (0.25 0 0)
to (0.87 0 1) and the (hhl) plane from (0.1 0.1 0) to (0.7 0.7 1)
at 8 T. However, no magnetic signal was found.

C. Exploration of the phase diagram

Figure 2 presents the field evolution of the anti-
ferromagnetic reflections ( 1

3 – 1
3

1
3 ), (1 0 0.32), and

(0.195 0.195 0.62) alongside the magnetic contribution to
the nuclear (110) Bragg peak. The different slopes of rising
and decreasing intensities at various phase boundaries suggest
possible crossovers from second- to first-order transitions,
which is in agreement with magnetization, dilation and ther-
mopower results [4,5,14,17,19]. The magnetic contribution to
(110) sets in at the b phase and continues to rise with a similar

FIG. 2. Field dependence of the ( 1
3 – 1

3
1
3 ) (k1) and (0.195 0.195 0.62) (k3) magnetic Bragg peaks overplotted with the nuclear (110) Bragg

intensity, measured with increasing field H[11̄0] at base temperature. The plot also includes the field dependence of the magnetic (1 0 0.32) (k2)
Bragg peak measured with the field along the b̂ axis. The intensities with different colours have been measured in different experiments and
have been rescaled to the same maximum intensity. Thus they are not directly comparable.
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TABLE I. The arms of each propagation vector k (−k arms are
not listed explicitly) and the overview of the data sets measured at
four magnetic fields. � and – denote data sets with significant and
negligible intensity, respectively. The number of reflections consid-
ered for the magnetic structure refinement is given in brackets.

H(T)

k karm 0 2.2 3.9 5.5

k1 ( 1
3 0 1

3 ) � −
(– 1

3
1
3 – 1

3 ) � � (111)

(0 1
3

1
3 ) � −

(0 1
3 – 1

3 ) � (127) −
( 1

3 – 1
3 – 1

3 ) � �
( 1

3 0 – 1
3 ) � −

k2 (0 0 0.32) � (96)

k3 (0.195 0.195 0.380) � (92)
(–0.390 0.195 –0.380) −
( 0.195 –0.390 0.380) −
(0.195 –0.390 –0.380) −
(0.195 0.195 –0.380) � (92)
(–0.390 0.195 0.380) −

slope through the c and d phases, which indicates complex
conical moment arrangements.

D. Domain population and data sets

Each of the identified propagation vectors k is related to
other wave vectors by symmetry operations of the paramag-
netic space group. This forms a unique set, which is called
the star of the propagation vector. During our experiments we
extensively inspected the arms of all propagation vectors and
we summarize their presence in Table I.

The field dependence of the pair of reflections ( 1
3 0 1

3 ) and
( 1

3 – 1
3

1
3 ), belonging to different arms of k1, is shown in Fig. 3.

The first reflection is present only in the a phase, whereas the
second peak appears in both the a and c phases. Thus, the
phases a and c feature the same propagation vector k1, but
a different number of arms are populated. In zero field, all
twelve arms are observed, while at 3.9 T only four arms with
in-plane components directed along the applied field remain
populated (Fig. 4). Similarly, only four out of twelve arms
reveal finite intensity in the d phase at 5.5 T. Their in-plane
components are orthogonal to the field (Table I, Fig. 4). These
observations may be rationalized in terms of magnetic con-
figuration domains, which give rise to magnetic reflections
of different arms. Determination of the domain population is
important for refining the magnetic moment amplitude of a
magnetic state.

The zero-field data set (phase a) collected on D10 con-
tained 581 magnetic reflections belonging to all twelve arms
of k1 = ( 1

3 0 1
3 ). The intensity distribution unambiguously

showed that all six configuration domains were equally popu-
lated. We used 127 reflections of the (0 1

3 – 1
3 ) arm to determine

the magnetic structure. At H = 2.2 T (phase b), 96 magnetic
reflections with propagation vector k2 = (0 0 0.325) were
collected. This phase has only one configuration domain and

FIG. 3. Field evolution of the magnetic ( 1
3 0 1

3 ) and ( 1
3 – 1

3
1
3 )

reflections for H ||[11̄0]. The angle ω is transversal to the scattering
vector.

all reflections were used for the refinement of the magnetic
structure. At H = 3.9 T (phase c), 443 reflections of the prop-
agation vector k1 were measured. We used 111 reflections of

FIG. 4. Schematic view of the in-plane real-space lattice (âb̂),
reciprocal-space lattice (a∗b∗), and projection of the in-plane com-
ponents of the k1 and k3 arms for H ||[11̄0] at 3.9 T and 5.5 T,
respectively. Reflections with components above and below the
hexagonal plane are indicated by ± signs. Four of the k1 arms could
not be reached due to instrumental limitations and were therefore not
measured.
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TABLE II. Overview of representation analysis of the three ob-
served propagation vectors.

k BZ point IRR # Orbits

k1 �1 3
D(α, 0, γ )

�2 2

k2 �1 1
DT(0,0,γ ) �2 1

�3 1

k3 �1 1
C(α, α, γ )

�2 1

the (– 1
3

1
3 – 1

3 ) arm for the magnetic structure determination. At
H = 5.5 T (phase d) 368 reflections for the star of k3 = (0.195
0.195 0.380) were measured. Only 184 reflections belonging
to two configuration domains had significant intensity and 92
reflections of the (0.195 0.195 –0.380) arm were used for
further analysis.

III. MAGNETIC STRUCTURE DETERMINATION

A. Magnetic symmetry and refinement strategy

Symmetry representation analysis is a powerful method
allowing to construct the magnetic structure models according
to physically irreducible representations (IRRs) of the para-
magnetic space group. We performed such analysis with the
program Basireps [21] for k1, k2, and k3. In all three cases, k
and –k are not equivalent, and we considered the extended
little group (k1,−k1). An overview of the basic symmetry
properties of each solution is presented in Table II, while a
more detailed description of the basis functions can be found
in Table V. This approach is justified for second-order phase
transitions and is comparable to considering only maximal
subgroups. In the case of YbAgGe, some transitions are of
first order, and symmetry might therefore be lower, but we de-
cided to stay within this approximation to reduce the number
of refined parameters.

The wave vector k1 = ( 1
3 0 1

3 ) relates to the D point of
the structural Brillouin Zone (BZ), D(α, 0, γ ). In our case
the variables α and γ attain the rational value 1

3 . None of
the symmetry elements of the space group P6̄2m leave the
wave vector k1 invariant. The little group contains only the
identity in standard representation analysis, and this leads to
three independent Yb atoms. As we consider the extended
little group (k1,−k1), two possible irreducible representations
(IRRs) result. The first IRR, �1, leaves the magnetic moments
of the three Yb atoms in the unit cell independent. The second
one, �2, couples the moments of Yb1 and Yb3 (they form one
orbit), while Yb2 remains independent.

The wave vector k2 = (0 0 0.325) belongs to the DT-point
of the BZ, DT(0,0,γ ). Since we consider the extended little
group (k2,−k2), the magnetic moments of the three Yb atoms
are related by symmetry forming one orbit. Therefore three
IRRs exist.

The wave vector k3 = (0.195 0.195 0.38) is the C point of
the BZ, C(α, α, γ ). In this case the symmetry analysis with
the extended little group (k3,−k3) implies one orbit and two
IRRs.

For each of the models, the modulated magnetic moment
is represented as

ml (t) = 1

2

∑

j

[
Cj�

l
j exp(−i2πk · t)

+ (
Cjψ

l
j

)∗
exp(i2πk · t)

]
, l = 1, 2, 3, (1)

where � l
j denotes the jth basis function of moments at site l ,

k is the propagation vector, and t = (ta, tb, tc) is a translation
vector defining the unit cell. Cj are refinement parameters
that can be flagged as either real or imaginary, such that any
model, including amplitude modulated ones defined by only
real parameters or completely general helices defined by both
real and imaginary parameters, can be considered.

To better understand the evolution of the magnetic mo-
ments with field, we introduce an orthogonal coordinate
system (ξ , η, ζ ) where ξ is parallel to the magnetic field
direction [1,–1,0], η is along [1,1,0], and ζ is along [0,0,1].
The moment on site l = 1 . . . 3 in unit cell t can then be
written

ml (t) = mH
l (t) ξ̂ + m[1,1,0]

l (t) η̂ + mc
l (t) ζ̂ , (2)

where mH
l is the moment component parallel to the applied

field and m⊥
l (t) =

√
[m[1,1,0]

l (t)]2 + [mc
l (t)]2 .

For each magnetic phase, we attempted refinements for
all symmetry-allowed structures and for all possible permuta-
tions of real/imaginary Cj flags. Parameters resulting from the
best refinements for each IRR are listed in Table III, while the
magnetic moment amplitudes of these structures are presented
in Table IV. The determined magnetic structures are presented
in Fig. 5.

B. Zero-field k1 phase

The zero-field refinement results of Table III reveal that the
best solutions for the �1 and �2 IRRs have similar goodnesses
of fit and refinement parameters. This is likely a result of
the high number of free parameters for both IRRs, which put
only few restrictions on the magnetic moment. Therefore both
IRRs are capable of approximating the experimental data well.
Plots and further discussion of the zero-field model are based
on parameters from the slightly better �2 solution.

Figure 5(a) depicts a t = (ta, tb, 0) layer of the zero-field
amplitude-modulated moment arrangement. The in-plane
components of the Yb1 and Yb2 magnetic moments are
aligned along the [1 0 0] and [0 1 0] directions, respectively,
while the Yb3 moments are arranged along the diagonal
[1 1 0]. These orientations correspond to the principal di-
rections of the CEF anisotropy due to the orthorhombic
point symmetry of the 3(f) site [9]. The maximum mo-
ment value of 2.6(1) μB is reduced compared to the free-ion
value of 4.5 μB for Yb3+. The average ordered moment
amplitude, 〈|ml (t)|〉, is 1.87(4) μB for Yb1 and Yb3 and
1.04(4) μB for Yb2 (Table IV). Thus, the average moment
associated with the amplitude modulated arrangement sig-
nificantly exceeds the estimates of a static ordered moment
of 0.1 μB from the magnetic entropy calculations [3]. It
might well be that the correlations probed in our diffraction
experiment are not entirely elastic, but contain significant
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TABLE III. Refined basis-vector coefficients for selected arms. The ith element of each entry in the “Flags” column refers to the designation
of the corresponding refinement parameter Ci as being either real or imaginary.

IRR kmeas Flags C1 C2 C3 C4 C5 C6 C7 C8 C9 χ 2 RF RF2 RF2w

karm
1 = (0 1/3 −1/3), H = 0 T

�1 011011100 –2.6(1) 0.3(2) –1.1(3) 1.05(7) 0.28(7) 0.5(1) –1.7(1) –0.7(2) 0.2(2) 31.8 14.7 24.2 26.8
�2 000011111 –0.7(1) –0.17(9) –0.7(2) –1.2(1) 2.38(6) –0.39(9) –0.4(1) 0.7(1) –0.6(2) 25.2 12.4 21.3 23.9

k2 = (0 0 0.32), H = 2 T
�1 0 –1.5(1) 73.9 36.7 59.0 68.0
�2 10 –1.16(5) 0.6(1) 42.6 26.3 44.6 51.2
�3 000001 0.5(2) 0.9(2) 0.6(1) –1.1(2) –1.2(3) 0.2(2) 29.5 22.9 38.3 41.5

karm
1 = (1/3 −1/3 1/3), H = 3.9 T

�1 111100111 –1.3(1) –1.8(1) –0.1(1) 0.11(6) –0.88(5) 0.21(6) 0.6(1) 0.17(8) –0.8(1) 4.16 11.1 19.8 17.5
�1 Fix ani 001101001 0.64(6) 0 0.16(2) 1.00(4) 0.57(7) 0.16(8) 0.5(1) 0 0.3(1) 4.88 11.5 20.9 19.2
�2 111100110 0.92(9) 1.2(1) –0.5(1) –0.4(1) 1.26(7) 1.4(1) –0.2(1) –0.12(5) 0.4(1) 4.19 11.1 19.6 17.6
�2 Fix ani 000010101 –1.0(1) 0 –0.5(2) –0.8(1) 1.17(9) 0 –0.4(1) 0 –0.3(2) 5.14 12.1 22.0 19.8

karm
3 = (0.195 0.195 −0.38), H = 5.5 T

�1 0111110 0.4(1) –0.3(1) –0.2(1) 1.4(2) 1.6(2) –1.1(3) 0.0(1) 23.0 15.9 28.3 28.7
�2 11000000 −0.37(4) –0.53(7) 0.08(7) 2.9(2) –0.5(1) 0.4(2) 0.07(6) 0.3(1) 4.67 8.22 13.8 12.8

inelastic components with energy lower than the energy of
incoming neutrons (which for the wavelength of 2.36 Å is
14.68 meV). Moment values exceeding those expected from
entropy calculations have also been observed with Mössbauer
spectroscopy, where a maximum moment value of ≈1.5 μB

based on a simple magnetic model has been estimated [11].
Tentative estimates from earlier neutron elastic scattering in-
vestigations also indicate moment values beyond the entropy
prediction [10].

C. 2.2 T k2 phase

For the k2 state at H = 2.2 T, the best goodness of fit is
obtained for the �3 magnetic structure. The Yb3 moments
retain their in-plane alignment along the [1 1 0] direction,
while the Yb1 and Yb2 moments swap directions such that
the Yb1 moment is aligned along [0 1 0] and Yb2 along

[1 0 0], hence breaking the CEF site-specific anisotropy.
Attempting to force the moments to be aligned with their
respective CEF anisotropy axes triples the χ2 value, indicating
that the proposed solution is preferred. As evidenced from
Table III, the goodness of fit of the optimal fit is noticeably
worse than any of the solutions for the other phases. This
suggests that lower symmetry solutions should be tried with
an improved data set.

The absent in-plane components of the k2 propagation
vector ensure that there is no amplitude modulation of the
magnetic moments in the hexagonal plane, while the ampli-
tude modulation along the ĉ-axis is maintained. The in-plane
components of the Yb1, Yb2, and Yb3 individual sublattices
are collinear and the canting between the different sublattices
is 60/120◦. The average moment amplitudes of Yb1, Yb2, and
Yb3 are 0.8(1), 1.2(1), and 1.0(1) μB, thus lower than in the
zero-field k1 phase.

TABLE IV. Calculated magnetic quantities in (μB ): Maximum moment components along the three crystal axes â, b̂, and ĉ for each
Ybl (l = 1,2,3), maximum moment amplitude mi,max, average mav and site-specific average mi,av moment amplitudes.

IRR m1,max m2,max m3,max m1,max m2,max m3,max mav m1,av m2,av m3,av

k1 = (1/3 0 1/3), H = 0 T
�1 (–2.59(1), 0.3(1),–1.0(2)) (0.7(2),–1.8(1),0.2(2)) (–2.1(2),–2.1(2),0.9(2)) 2.6(1) 1.7(1) 1.7(1) 1.62(3) 1.95(5) 1.24(4) 1.65(3)
�2 (2.43(8),0.42(9),0.7(1)) (–0.6(1),–1.2(1),–0.5(2)) (–2.42(8),–2.7(1),0.7(2)) 2.6(1) 1.2(1) 2.6(1) 1.59(2) 1.87(4) 1.04(4) 1.87(4)

k2 = (0 0 0.32), H = 2.2 T
�3 (–0.1(2),–1.2(3),0.2(2)) (–1.5(2),0.0(3),0.63(9)) (1.2(3),1.5(3),–0.63(9)) 1.2(2) 1.7(2) 1.5(2) 1.0(1) 0.8(1) 1.2(1) 1.0(1)

k1 = (1/3 0 1/3), H = 3.9 T, Unconstrained
�1 (–1.10(8),–1.6(1),–0.1(1)) (–0.15(7),0.4(1),–0.72(9)) (–1.8(1),–0.2(1),0.4(1)) 1.4(1) 0.9(1) 1.8(1) 0.90(1) 0.92(2) 0.58(2) 1.21(2)
�2 (–1.43(9),–1.7(1),–0.6(1)) (0.10(5),–0.32(1),0.4(1)) (–1.43(9),0.3(2),0.3(1)) 1.7(1) 0.42(8) 1.64(9) 0.93(2) 1.25(3) 0.40(3) 1.14(3)

k1 = (1/3 0 1/3), H = 3.9 T, CEF constrained
�1 (0.64(6),0,0.1(1)) (0,0.5(1),0.2(1)) (–2.3(1),–1.74(7),0.3(1)) 0.64(6) 0.5(1) 2.1(1) 0.81(1) 0.45(2) 0.38(3) 1.60(3)
�2 (1.49(9),0,0.6(1)) (0,–0.8(1),–0.3(1)) (–1.49(9), –1.49(9),–0.6(1)) 1.50(9) 0.8(1) 1.50(9) 0.94(2) 1.12(3) 0.61(3) 1.12(4)

k3 = (0.195 0.195 0.38), H = 5.5 T
�2 (0.37(4),–0.53(6),0.08(7)) (–0.54(6),–0.5(1),0.4(1)) (–3.4(3),–3.3(3),–0.2(2)) 0.78(6) 0.9(1) 3.3(1) 1.10(2) 0.51(1) 0.66(1) 2.12(3)
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TABLE V. Complex basis functions of the physically irreducible representations for the three propaga-
tion vectors k1 = ( 1

3 0 1
3 ), k2 = (0 0 0.32), and k3 = (0.195, 0.195, 0.380).

k1

k2

k3

= (1/3 0 1/3)

= (0 0 0.32)

= (0.195 0.195 0.38)

D. 3.9 T phase with re-entrant k1 propagation vector

The k1 propagation vector re-enters at magnetic fields be-
tween 3 and 4.8 T. Nonconstrained refinements with both the
�1 and �2 IRRs yield solutions with moments deviating from
the CEF anisotropy axes. Forcing the Yb1 and Yb2 moments

to be along their respective anisotropy axes results in slightly
worse goodnesses of fit and we thus present all four solutions
in Table III. Overall, the �1 IRR results in slightly better good-
nesses of fit for both the CEF-constrained and nonconstrained
refinements compared to the �2 refinements. Both solutions
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FIG. 5. A (tx, ty, 0) layer of the magnetic structures for (a) 0-T �2 solution with k1 = ( 1
3 0 1

3 ), (b) 3.9-T �3 solution with k1 = ( 1
3 0 1

3 ) and
enforced CEF anisotropy for Yb1 and Yb2 moments, (c) 3.9-T unconstrained �1 solution with k1 = ( 1

3 0 1
3 ), and (d) 5.5-T �2 solution with

k3 = (0.195 0.195 0.38). The magnetic moments of Yb1, Yb2, and Yb3 are coloured blue, red, and green, respectively. The magnetic field
direction is [1 –1 0] in (b), (c), and (d).

are shown in Figs. 5(b) and 5(c), respectively. For both �1

solutions an unequal distribution of moment amplitudes is
obtained. The average values are presented in Table IV. The
unconstrained solution strongly breaks the CEF anisotropy as
seen by the Yb1 and Yb3 moments being oriented primarily
along [1 1 0] and [1 0 0], respectively. There is, thus, a
large variance in the proposed magnetic structures, which all
possess similar goodnesses of fit. This results in a certain
ambiguity in the magnetic arrangement of the c phase.

Both the constrained and unconstrained solutions exhibit
decreased antiferromagnetic contributions, as gauged from
the average magnetic-moment amplitudes of 0.81(1) μB and
0.90(1) μB compared to the zero-field solution with an average
antiferromagnetic moment of 1.62(3) μB. The decrease in the
antiferromagnetic contribution may be compensated by an
increasing ferromagnetic contribution in the c phase as shown
in Figs. 2 and 6.

E. High-field k3 phase

The d-phase propagation vector k3 = (0.195 0.195 0.38)
is observed at 5.5 T, above the suggested bicritical point at
Hab

crit ≈ 4.5 T. The best model, corresponding to the �2 IRR,
results in an amplitude-modulated structure with the in-plane
components of the Yb1, Yb2, and Yb3 magnetic moments
directed along their CEF anisotropy axes. In this structure,
the average increase of magnetic moments is small when
compared to the 3.9-T k1 phase, but a stronger difference
between the Yb3 moment and the Yb1 and Yb2 moments
is apparent. The Yb3 moments reach on average 2.12(3) μB,
while the remaining 2/3 of the moments are less than 1 μB,

i.e., on average 0.51(1) μB/Yb1 and 0.66(1) μB/Yb2. This
difference might be partly compensated by the ferromagnetic
component, which is significant. However, its site variation
has not been addressed yet.

IV. DISCUSSION

We presented results of a series of neutron diffraction ex-
periments on YbAgGe single crystals performed in the mK
regime in zero and under magnetic fields applied in the hexag-
onal plane. We determined models of magnetic arrangements
for the zero-field a and the low-field b phases with the previ-
ously reported k1 and k2 propagation vectors. We discovered
the k1 propagation vector in phase c at 3.9 T and suggested
the associated magnetic structure. The propagation vector in
phase d appearing above the critical field Hab

crit ≈ 4.5 T is
found to be k3 = (0.195 0.195 0.380) and the corresponding
magnetic arrangement is determined. The field-temperature
extent of these four regions agrees very well with the H-T
phase diagrams established by extensive measurements of
magnetization, specific heat, thermal expansion, magneto-
striction, electrical resistivity, Hall effect, and thermoelectric
power [1–5,14,17,18].

Qualitatively, the low-field features of the magnetic phase
diagram of YbAgGe (phases a, b, and c) follow the general
trend for rare-earth systems. In zero-field cooling, the incom-
mensurate magnetic k2 order appears first. It locks into the
commensurate k1 state at low temperatures and then re-enters
upon application of magnetic field. The mean-field model of
Ref. [22] accounts for these features, assigning their origin
to exchange interactions, while crystal electric fields impose
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FIG. 6. Left scale: Parallel (a) and perpendicular (b) contribution
of the magnetic moment with respect to the applied field H[1−10].
All modulated moment amplitudes within the magnetic unit cell of
the best refined models have been included, explaining the multiple
values reported for Yb1, Yb2, and Yb3 at each applied field. For
visual clarity, the moment amplitude for Yb2 and Yb3 have been
shifted slightly on the x axis. The field values of the Yb1 moments
correspond to the actual field values. Right scale: Black circles follow
the field-dependent integrated intensity of the (110) nuclear peak.

the local moment directions and the exact positions of the
magnetic phase boundaries.

Although the low-field phase diagram of YbAgGe retains
all these features, there is still a significant deviation from this
common trend. Usually, equal-moment collinear structures
are favored at low temperatures. In YbAgGe, all magnetic
structures, including the low-temperature zero-field one, are
amplitude modulated. It is not clear to what extent this is
dictated by geometrical frustration in the kagome layers or
by the proximity to the non-Fermi-liquid state. However, it
is apparent that the interplay of the CEF anisotropy of the
three Yb sites, the applied magnetic field, and the frustrated
exchange interactions play a significant role.

The enhanced moment amplitudes for Yb3 in the phases c
and d are likely related to its local [1 1 0] anisotropy direction.
[1 1 0] is perpendicular to the applied-field direction and thus
the field has no effect on the ordering of this sublattice. In
contrast, the Yb1 and Yb2 magnetic sites are strongly influ-
enced by the competition of the local CEF anisotropy and
magnetic-field direction, such that they align either along their
CEF axes (phases a and d) or normal to them (phases b and c).
Remarkably, we observe significant ĉ components in all

proposed magnetic arrangements, which is hard to reconcile
with the suggested CEF ground state of the Yb3+ ions [9].
Even so, in all these cases the in-plane components of the
moments retain a 60 or 120 degrees canting with respect to
the neighboring spins of the other two sublattices. Such a
canted arrangement is reminiscent of the classical ground state
of Heisenberg kagome antiferromagnets [23]. This implies
that the interaction between the first neighbors in YbAgGe
is antiferromagnetic and substantial.

A better understanding of the complex metamagnetic
behavior in YbAgGe requires insight into Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange interactions of this mate-
rial. This is challenging, as the Fermi surface of YbAgGe is
anisotropic [2] and no reliable calculation of the electronic
structure is available at this point. We attempt here a rough
estimate of RKKY, simplifying the YbAgGe Fermi surface as
being spherical and characterized by a single kF value, which
we estimated from bulk measurements [18].

Given a carrier concentration of n = 3.1×1021 cm−3,
which has been normalized with the unit-cell volume and
number of Yb ions, n∗ = n×178×10−24/3, we calculate

kF = (n∗×3π2)1/3 = 1.76 Å−1 (3)

Figure 7 presents the distance dependence of the RKKY
interaction calculated as J(kF ) = C×F (2kF r), where C is
a normalization constant and F (x) = (sin x − x cos x)/x4.
According to this model the RKKY exchange can be
approximated by the bilinear AF in-plane exchange couplings
up to fourth-nearest neighbor and a mixture of ferromagnetic
and antiferromagnetic out-of-plane exchange couplings.

We note that this simplified picture has to be taken with
caution. The propagation vectors identified for YbAgGe are
not typical for the rest of the RAgGe family and are even more
distant to other kagome or distorted-kagome compounds. The
ordering vector k1 = ( 1

3 0 1
3 ) is very rarely observed in partic-

ular. We performed a Monte Carlo sampling of a Heisenberg
Hamiltonian with up to twelve isotropic nearest-neighbor ex-
changes based on the generalized Luttinger-Tisza method [24]
and detected only a few tiny pockets where the k1 structure
would be energetically stable. Thus presumably a more com-
plex Hamiltonian that includes anisotropic exchanges, has to
be considered.

Because the anomalous Hall effect was observed at the
c–d phase boundary [25], we inspected the topology of the
determined magnetic structures by calculating the average
scalar spin chirality,

χ = 1/N
∑

j

S1 · (S2×S3). (4)

Here, the sum runs over all j triangles formed by the Yb1,
Yb2, and Yb3 moments in the magnetic unit cell. For the
proposed 0-T (phase a), 2.2-T (phase b), and 5.5-T (phase d)
models, the average chirality is zero within errors. In contrast,
the two �1 3.9-T solutions (phase c) reveal a finite average
chirality of 0.3(1) and –0.61(3), respectively. It is possible
that the anomalous Hall effect in YbAgGe is induced by the
spin chirality, similar to the frustrated-noncollinear-triangular-
lattice Mn3Sn [26] and Fe1.3Sb [27]. Thus other nontrivial
properties such as topological band crossing and existence of
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a

b

J1

J3

J2

J4

FIG. 7. An estimate of the RKKY exchange distance dependence (dashed line) plotted alongside markers for the Yb-Yb distances. J1-J4

are the in-plane nearest-neighbor exchanges, shown also in the right figure, Jc, Jcc are exchanges in the ĉ direction across one and two unit
cells, respectively.

topological fermions may be expected in YbAgGe. Also, the
scalar chirality may be driven by chiral fluctuations triggered
by frustrated interactions, as is the case in the kagome-
compound YMn6Sn6 [28].

The high-field features of the phase diagram (phases c and
d) merit further discussion. In phase d , the average moment
amplitude of the Yb3 ion significantly exceeds (by almost four
times) the values of the other two ions. This questions the
role of the Yb1 and Yb2 local moments, i.e., whether they
strongly fluctuate due to frustration, or whether their values
are reduced due to the hybridization of 4 f and conduction
electrons. To establish a site-specific variation of the hy-
bridization for Yb1/Yb2 and Yb3, these sites should become
different under magnetic field. This could happen, if structural
transition splitting the 3(f) site of Yb into two sites takes place.
A possible hint of structural change is seen in the magne-
tostriction data [5], however no signature of an abrupt change
in the crystal structure is observed in our neutron diffraction
data. Thus, the dynamic coupling between the crystal lattice
and the magnetic degrees of freedom has to be inspected
carefully. A coupling between the CE levels and the phonons
may be one possibility, which has been seen in CeAuAl3 for
instance [29]. A strong coupling between CE levels and lattice
vibrations would affect the elastic constants of YbAgGe, and
has indeed been observed in previous reports [6]. Here, the
softening of the elastic constants at Hcrit was attributed to the
broadening of the 4 f level to gain Zeeman energy, which in
turn yields a suppressed heavy-fermion behavior. To confirm
such a scenario, state-of-the-art ab init io electronic-structure
calculations, a study of the Fermi surface evolution when
crossing the BCP, or a verification of the magneto-elastic
nature of the excitations are needed. Furthermore, numer-
ous experimental results on YbAgGe show also evidence of
non-Fermi-liquid behavior at the c-d phase boundary [5,7],
pointing to a scenario in which the Yb1 and Yb2 moments are
strongly reduced due to critical fluctuations. Here theoretical
models that help to understand how the d-phase magnetic
structure and/or its associated excitation spectrum result in a
linear T dependence of the resistivity [3] are desired to make

further progress in clarifying which of the aforementioned
scenarios is dominant.

The tuning of the bicritical point at T = 0.3 K and
H = 4.5 T to zero temperature is another exciting area of
research. The application of pressure or chemical substitution,
may push the BCP towards a quantum BCP, and further to
a field-induced quantum spin-liquid state [7]. Actually, even
in not-optimally tuned YbAgGe, spin fluctuations may epit-
omize quantum spin-liquid-like character near Q = k3. A
study of the dynamic spin correlations using inelastic neutron
scattering would be valuable to distinguish which of the two
scenarios—quantum fluctuations of a metallic spin liquid state
or a magnetic site-specific Kondo screening—is realized in
YbAgGe.

Finally, the possibility of magnetic order being associated
with the e phase warrants further experimental investigation.
The Fermi-liquid behavior of the f phase could be consistent
with fully field-polarized Yb moments, which is not associ-
ated with any finite propagation vector. However, the phase
boundary between the e and f phase indicates a different
magnetic order in the e phase anticipating that a finite ordering
vector could occur here. Therefore, it is salient to continue
searching for the e-phase magnetic order either in the not-yet-
explored part of reciprocal space or at k = (0, 0, 0).

ACKNOWLEDGMENTS

This work was performed at SINQ, Paul Scherrer Institute,
Villigen, Switzerland with financial support of the Swiss Na-
tional Science Foundation (Grant No. 200020-182536) and at
ILL, Grenoble, France. Work at UCL was supported by the
Engineering and Physical Sciences Research Council (EP-
SRC) under Grants No. EP/N027671/1 and EP/F032293/1.
Work done at Ames Laboratory (PCC and SLB) was sup-
ported by the U.S. Department of Energy, Office of Basic
Energy Science, Division of Materials Sciences and Engineer-
ing. Ames Laboratory is operated for the U.S. Department
of Energy by Iowa State University under Contract No. DE-
AC02-07CH11358. PCC and SLB would like to acknowledge

054424-10



UBIQUITY OF AMPLITUDE-MODULATED MAGNETIC … PHYSICAL REVIEW B 104, 054424 (2021)

the long-standing interest and enthusiasm of George
Schmiedeshoff in this project. We acknowledge A. S. Wills

and J. Jensen for fruitful discussions and J. Schefer for help
during the TriCS experiment.

[1] S. L. Bud’ko, E. Morosan, and P. C. Canfield, Phys. Rev. B 69,
014415 (2004).

[2] S. L. Bud’ko, V. Zapf, E. Morosan, and P. C. Canfield,
Phys. Rev. B 72, 172413 (2005).

[3] P. G. Niklowitz, G. Knebel, J. Flouquet, S. L. Bud’ko, and P. C.
Canfield, Phys. Rev. B 73, 125101 (2006).

[4] E. Mun, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 82,
174403 (2010).

[5] G. M. Schmiedeshoff, E. D. Mun, A. W. Lounsbury, S. J.
Tracy, E. C. Palm, S. T. Hannahs, J.-H. Park, T. P. Murphy,
S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 83, 180408(R)
(2011).

[6] Y. Nakanishi, R. Kashiwazaki, K. Deto, F. Shichinomiya, M.
Nakamura, H. Kubo, K. Umeo, T. Onimaru, T. Takabatake, and
M. Yoshizawa, J. Phys.: Conf. Ser. 273, 012011 (2011).

[7] Y. Tokiwa, M. Garst, P. Gegenwart, S. L. Bud’ko, and P. C.
Canfield, Phys. Rev. Lett. 111, 116401 (2013).

[8] B. Fåk, D. F. McMorrow, P. G. Niklowitz, S. Raymond,
E. Ressouche, J. Flouquet, P. C. Canfield, S. L. Bud’ko, Y.
Janssen, and M. J. Gutmann, J. Phys.: Condens. Matter 17, 301
(2005).

[9] T. Matsumura, H. Ishida, T. J. Sato, K. Katoh, Y. Niide, and A.
Ochiai, J. Phys. Soc. Jpn. 73, 2967 (2004).

[10] B. Fåk, Ch. Rüegg, P. G. Niklowitz, D. F. McMorrow, P. C.
Canfield, S. L. Bud’ko, Y. Janssen, and K. Habicht, Phys. B:
Condens. Matter 378–380, 669 (2006).

[11] P. Bonville, M. Rams, K. Królas, P. C. Canfield, J.-P. Sanchez,
O. Trovarelli, and C. Geibel, Eur. Phys. J. B 55, 77 (2007).

[12] H. Kubo, K. Umeo, K. Katoh, A. Ochiai, and T. Takabatake,
J. Phys. Soc. Jpn. 79, 064715 (2010).

[13] G. Zanicchi, D. Mazzone, V. Contardi, R. Marazza, G.
Rambaldi, and D. Rossi, Gazz. Chim. Ital. 113, 257 (1983).

[14] E. Morosan, S. L. Bud’ko, P. C. Canfield, M. S. Torikachvili,
and A. H. Lacerda, J. Magn. Magn. Mater. 277, 298 (2004).

[15] E. Morosan, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 71,
014445 (2005).

[16] K. Zhao, H. Deng, H. Chen, K. A. Ross, V. Petříček, G.
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