Hu, X;
Zheng, J;
Su, N;
Fan, T;
Yang, C;
Yin, Y;
Fleming, SM;
(2021)
A Bayesian inference model for metamemory.
Psychological Review
10.1037/rev0000270.
(In press).
Preview |
Text
2021-50203-001.pdf - Published Version Download (4MB) | Preview |
Abstract
The dual-basis theory of metamemory suggests that people evaluate their memory performance based on both processing experience during the memory process and their prior beliefs about overall memory ability. However, few studies have proposed a formal computational model to quantitatively characterize how processing experience and prior beliefs are integrated during metamemory monitoring. Here, we introduce a Bayesian inference model for metamemory (BIM) which provides a theoretical and computational framework for the metamemory monitoring process. BIM assumes that when people evaluate their memory performance, they integrate processing experience and prior beliefs via Bayesian inference. We show that BIM can be fitted to recall or recognition tasks with confidence ratings on either a continuous or discrete scale. Results from data simulation indicate that BIM can successfully recover a majority of generative parameter values, and demonstrate a systematic relationship between parameters in BIM and previous computational models of metacognition such as the stochastic detection and retrieval model (SDRM) and the meta-d' model. We also show examples of fitting BIM to empirical data sets from several experiments, which suggest that the predictions of BIM are consistent with previous studies on metamemory. In addition, when compared with SDRM, BIM could more parsimoniously account for the data of judgments of learning (JOLs) and memory performance from recall tasks. Finally, we discuss an extension of BIM which accounts for belief updating, and conclude with a discussion of how BIM may benefit metamemory research. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Type: | Article |
---|---|
Title: | A Bayesian inference model for metamemory |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1037/rev0000270 |
Publisher version: | https://doi.org/10.1037/rev0000270 |
Language: | English |
Additional information: | This article has been published under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/),whichpermitsunrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright for this article is retained by the author(s). Author(s) grant(s) the American Psychological Association the exclusive right to publish the article and identify itself as the original publisher. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Experimental Psychology |
URI: | https://discovery.ucl.ac.uk/id/eprint/10133393 |
Archive Staff Only
View Item |