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This paper investigates some computational issues related to the use of nonlinear static procedures in fragility analysis 
of structures. Such approaches can be used to complement nonlinear dynamic procedures, reducing the computational 
and modelling effort. Specifically, this study assesses the performance of the Capacity Spectrum Method (CSM) with 
real (i.e., recorded) ground motions (as opposed to code-based conventional spectra) to explicitly account for record-
to-record variability in fragility analysis. The study focuses on single-degree-of-freedom systems, providing a basis 20 
for future multi-degree-of-freedom system applications. A case-study database of 2160 inelastic oscillators is defined 
through parametric backbones with different elastic periods, (yield) base shear coefficients, values of the ductility 
capacity, hardening ratios, residual strength values and hysteresis rules. These case studies are analysed using 100 real 
ground motions. An efficient algorithm to perform the CSM with real spectra is proposed, combined with a cloud-
based approach (Cloud-CSM) to derive fragility relationships. Simple criteria to solve the issue of multiple CSM 25 
solutions (i.e., two or more points on the backbone satisfying the CSM procedure) are proposed and tested. It is 
demonstrated that the performance point selection can be performed based on a particularly efficient intensity measure 
detected via optimal intensity measure analysis. The effectiveness of the proposed Cloud-CSM in fragility analysis is 
discussed through extensive comparisons with nonlinear time-history analyses, the code-based N2 method, and a 
simple method involving an intensity measure as a direct proxy for the performance displacement. The Cloud-CSM 30 
provides errors lower than ±20% in predicting the median of the fragility curves in most of the analysed cases and 
outperforms the other considered methodologies in calculating the dispersion.  
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1. INTRODUCTION AND MOTIVATIONS 
 40 
In seismic vulnerability modelling and risk assessment applications, fragility relationships for a considered structure 
or structural type express the probability of reaching or exceeding a damage state (DS) given a value of the earthquake-
induced ground-shaking intensity. Numerical approaches to derive fragility relationships are currently widespread and 
typically preferred to empirical approaches given the scarcity of high-quality post-earthquake damage data for various 
earthquake-prone regions of the world. Such numerical approaches generally rely on a probabilistic seismic demand 45 
model calibrated on a dataset of engineering demand parameter (EDP) vs ground-motion intensity measure (IM) pairs. 
Various EDPs of interest can be computed through refined nonlinear dynamic or simplified nonlinear static analysis 
methods. Nonlinear dynamic approaches enable the prediction of structure- or structural component-specific EDPs 
for an appropriately selected/modified suite of ground-motion records through nonlinear time history analyses 
(NLTHA) of a computational structural model. Conversely, nonlinear static procedures (NSPs) investigate the 50 
structural capacity of an equivalent single-degree-of-freedom (SDoF) system of the investigated structure under 
incremental load patterns, enabling the prediction of the seismic performance (in terms of EDPs) through demand 
spectrum-based approaches. The former approach is arguably the most advanced/accurate one but generally requires 
high modelling efforts (i.e., to define the nonlinear model of the structure under investigation), apart from being 
computationally more expensive than NSPs. The latter approach is simpler/practical, but it generally results in biased 55 



EDP estimates due to the various assumptions in the method, such as the selection of an appropriate load pattern 
representative of the effects of a dynamic excitation or the definition of an equivalent SDoF system [1]. 
In the case of large-scale applications (e.g., assessing the seismic performance and the risk of large building portfolios 
in a region), an analyst has to make a trade-off between computational costs and the (desired) accuracy of the 
assessment, for instance regarding the considered number of sample structures to properly represent a structural type 60 
(or building class) and the considered seismic analysis technique [2]. For example, depending on the resource 
availability (in terms of computational and modelling time and skills), an analyst may consider 1) a large population 
of structures analysed through NSPs, trying to capture the building-to-building variability (e.g., [3]); or 2) few 
archetype (or index) structures analysed through nonlinear dynamic procedures. It is envisaged that nonlinear dynamic 
procedures will be the preferred option and become prevalent in practice in the near future due to increasing available 65 
high-performance computing and required expertise. Alternatively, a hybrid approach could allow using different 
model classes (e.g., few dynamic analyses and many static ones) combined in a Bayesian framework to derive robust 
fragility estimations (e.g., [4]). 
NSPs generally are based on approximate approaches for the inelastic performance displacement prediction of SDoF 
systems and can be divided into two categories. The first category includes methods that estimate the maximum 70 
displacement demand under a given seismic action by multiplying the displacement demand of an equivalent secant-
to-nominal-yielding period linear system by some modification factors. For instance, the well-known N2 method [5,6] 
employs an elastic-perfectly plastic SDoF idealisation of actual pushover curves (i.e. relationships between global 
base shear and displacement of a control node), which is subsequently used to estimate the inelastic equivalent SDoF 
performance displacement. In its original version, this latter is estimated via NLTHA of the equivalent SDoF. 75 
However, a code-based simplified approach (Eurocode 8 part 3 [7]) adopts ductility-based modification factors and 
demand-spectra for predicting the equivalent SDoF performance displacement. Similarly, the Displacement 
Coefficient Method (DCM), proposed by the Federal Emergency Management Agency (FEMA-273 [8]), adopts a 
bilinear idealisation of equivalent SDoF pushover curves and uses modification factors accounting for the bias 
involved by the SDoF idealisation, influence of inelasticity, cyclic degradation of strength and stiffness, P-delta 80 
effects. The second category includes methods that calculate the target displacement of inelastic systems as the over-
damped response of elastic SDoF systems having secant-to-target displacement stiffness. The Capacity Spectrum 
Method (CSM) [9] has been implemented in different guidelines (e.g., ATC-40 [10] and FEMA-440 [11]); it is 
conceptually based on overdamped spectra calculated through equivalent viscous damping coefficients expressing the 
reduction of seismic demands caused by the inelastic response of the structure under investigation. Starting from a 85 
bilinear idealisation of pushover curves, the CSM involves an iterative procedure to identify a performance point (PP) 
indicating the equivalent SDoF performance displacement of the structure.  The CSM has also been slightly modified 
[12] to be implemented together with adaptive pushover procedures. For both the categories, several studies carried 
out in the last decades proposed formulations that can improve the estimation of equivalent SDoF target displacement 
(e.g. [13–16]). Further research efforts focused on comparing the accuracy and practicality of these different 90 
methodologies (e.g. [17,18]) within a displacement-based design or assessment framework, but not for fragility 
estimations. 
As pointed out in recent discussions by experts in vulnerability analysis (e.g., [2]), NSPs usually do not account for 
record-to-record variability since smooth code-based design spectra conventionally represent the seismic demand. 
Consequently, within a fragility analysis framework, only a central value of the fragility relationship can be estimated 95 
(e.g., the IM corresponding to a 50% probability of violating a DS of interest if a lognormal model is used). In this 
case, conventional values of variance, calibrated for different structural types, are usually introduced for describing 
the lognormal probabilistic model [2]. To fill this gap, hybrid methodologies based on pushover analysis of MDoF 
systems together with NLTHA performed on sets of equivalent SDoF systems (to consider aleatory and epistemic 
uncertainties) have been recently proposed [19,20]. In this context, Vamvatsikos and Cornell [21] proposed a semi-100 
empirical analytical approach for predicting the median and record-to-record variability of peak response of SDoF 
systems represented by multi-linear backbones. A set of equations based on specific backbone parameters is provided 
for approximating incremental dynamic analysis curves corresponding to 16, 50 and 84% fractiles.   
To the authors’ knowledge, only a few studies in the literature investigated the effectiveness and shortcomings of 
using NSPs with real (i.e., unsmoothed, record-specific) response spectra to estimate nonlinear seismic performance 105 
and to represent record-to-record variability in fragility analysis explicitly. In the Global Earthquake Model (GEM) 
guidelines [22], an approach to derive a probabilistic seismic demand model through the N2 method is described with 
application to low/mid-rise buildings. Silva et al. [1] investigated the effectiveness of different NSPs applied with real 
response spectra in deriving fragility relationships and risk/loss estimations considering record-to-record variability 
for a class of typical Turkish reinforced concrete-framed buildings. A stripe-based approach is used in [23] for fragility 110 
analysis through the CSM with reference to existing reinforced concrete frames. Recently, Giordano et al. [24] applied 



the CSM for fragility analysis of masonry buildings in Nepal, adopting real spectra modified by smoothing-spectrum 
procedures. 
In the context of probabilistic seismic risk assessment, and with the overall aim of explicitly accounting for record-to-
record variability in fragility analysis through NSPs, this study investigates the CSM use with ground motion-specific 115 
spectra to estimate the nonlinear seismic performance of various case-study structural systems. Specifically, this study 
focuses on simple inelastic SDoF systems representative of various structural types. A database of 2160 case-study 
systems defined through parametric multi-linear backbone curves and different hysteresis rules is considered together 
with 100 ground motions selected from the Selected Input Motions for displacement Based Assessment and Design 
(SIMBAD) database [25] to represent strong ground-motion records of engineering relevance. 120 
It is worth mentioning that different error sources can be detected when deriving CSM-based fragility estimates for 
MDoF structures. Among others, these are a) the transformation of the refined MDoF pushover curve to the SDoF 
multi-linear one; b) the simplified SDoF performance displacement prediction for any given SDoF pushover curve, 
including the cases of multiple CSM solutions if as-recorded spectra are used [26]; c) the fitting of a probabilistic 
seismic demand model and fragility curve(s). This study only involves a bias quantification for b), as well as b) coupled 125 
with c). The analysis of the error source a) is considered out of scope here, although crucially needed and worthy of 
investigation. For practical applications on MDoF structures, deemed to be the scope of CSM-based fragility analysis, 
error source a) should be carefully checked on a case-by-case basis before extensive parametric studies are available. 
A first evaluation of the error source a) with reference to four- and eight-story reinforced concrete frames is reported 
in [27]. 130 
Findings from the present study can directly support fragility analysis applications where the SDoF idealisation based 
on the analysed structures’ elastic or effective modal properties is a convenient practice. This is, for example, the case 
of recently proposed displacement-based approaches (e.g., [28–30]) aimed at the seismic design/assessment of 
different structural typologies or applications which adopt an SDoF-based modelling strategy (e.g. [31,32]) to consider 
building-to-building variability in fragility models of structural typological classes.  The adopted investigation scheme 135 
to address the CSM use for fragility analysis is reported in Figure 1. Each block corresponds to a specific section of 
the study. First, the SDoF case-study database is described. In Section 3, an algorithm to effectively adapt the CSM 
for use with real spectra is proposed, and different criteria to select the PP in multiple-solution cases are described, 
based on simple assumptions or efficient IM parameters identified via an optimal IM analysis. Moreover, a description 
of the adopted cloud approach, proposed by Jalayer et al. [33], to compute probabilistic seismic demand models via 140 
the CSM (Cloud Capacity Spectrum Method, or Cloud-CSM) is presented. The last part of the paper includes an 
extensive discussion of results to guide interested users in applying the proposed method in practice. Specifically, 
Section 4 investigates the effectiveness of the criteria to perform the PP selection and discusses both the case of 
individual ground-motion records and the fragility analysis. In Section 5, the accuracy of the Cloud-CSM in 
performing fragility analysis is investigated. To this aim, the main parameters of the fragility curves calculated 145 
employing the Cloud-CSM are compared to the results achieved using the N2 method applied with real spectra, a 
simple approach involving an IM as a direct proxy for the performance displacement, and NLTHA. Finally, Section 
6 provides recommendations for practical applications of the proposed Cloud-CSM. 
 

 150 
2. CONSIDERED INELASTIC SDOF SYSTEMS AND GROUND MOTIONS 
 
The case-study database developed for this study includes simple inelastic SDoF systems with different nonlinear 
behaviour, represented by a multi-linear backbone curve and a hysteresis rule. Various hysteresis rules are used to 
simulate the seismic response of different structural types (Figure 2) [30]. Two different types of Modified Takeda 155 

Figure 1. Investigation scheme and contents of the study (CSM: capacity spectrum method, NSP: Nonlinear 
static procedures). 

 



hysteretic behaviour [34] are selected. The “thin” version (Figure 2a, herein indicated as MTt) is appropriate for 
structures with high axial stress (such as bridge piers, structural walls, or masonry structures), while the “fat” one 
(Figure 2a, MTf) is used in the case of ductile RC frames [30]. Two backbone types of kinematic hardening hysteretic 
behaviour are selected: a bilinear (BIL) and an elastic-perfectly-plastic (EPP) hysteresis laws (Figure 2b). These are 
used to represent the cyclic flexural response of steel structures (neglecting the Bauschinger effect in the members) or 160 
seismic isolated structures (with elastomeric bearings or friction pendulum systems). A flag-shaped (FS) law is finally 
selected (Figure 2c) for simulating the cyclic behaviour of hybrid prestressed structures. The parameters defining the 
backbones (Figure 2) are the elastic period 𝑇!" (related to the elastic stiffness 𝐾!"), the base shear coefficient 𝐹# (yield 
base shear strength normalised by the total weight), the ductility capacity 𝜇, the hardening ratio 𝑟 and the normalised 
residual strength 𝐹$. The assumed values for each parameter are listed in Table 1. Since no strength degradation may 165 
be considered for low-damage structures, the softening and residual strength branches are not accounted for within 
the FS subgroup, and the backbone curve is modified accordingly (Figure 2c). In this case, the ductility parameter is 
only used to define the DS thresholds. Note that in the case of BIL, EPP and FS no cyclic stiffness degradation is 
adopted. In summary, 720 (i.e., eight periods × five base shear coefficients × three values of ductility × three hardening 
values × two values of residual strength) oscillators are associated with the MTt and MTf; 240 cases are considered 170 
for the BIL subgroup (where only a hardening equal to 10% is fixed) and for the EPP (zero hardening by definition); 
a total of 240 oscillators corresponds to the FS subgroup (Table 1).  
 

 
In this study, a suite of 100 unscaled ground motions is used, selected from the SIMBAD database. This includes 467 175 
tri-axial records related to 130 worldwide seismic events (shallow crustal earthquakes) with moment magnitudes 
ranging from 5 to 7.3 and epicentral distance minor than 35 km. In this study, 100 records are selected by first ranking 
the 467 records in terms of their PGA values (by using the geometric mean of the two horizontal components) and 
then (arbitrarily) keeping the component with the largest PGA value (for the 100 stations with highest mean PGA). 
Figure 3 shows the spectra of the selected ground motions. The spectral accelerations corresponding to the case-study 180 
𝑇!" and the yield accelerations (𝑎# = 𝐹# ∗ 𝑔) adopted in the case-study dataset are also represented to provide an 
insight into the nonlinear demand on the case studies. Note that the probabilistic seismic demand models (reported in 
the following sections) of cases with high values of elastic period and base shear coefficient can be biased given the 
low number of ground motions leading to an inelastic response. Although this could be solved by scaling the intensity 
of the adopted records, this is not done herein to avoid considering unrealistically strong records. This record selection 185 
strategy is compatible with the adopted cloud-based approach, which does not require a hazard-specific record 
selection and therefore, it is widely accepted for portfolio analyses. Although such an approach can create a bias in 
the analysis results, this may be mitigated after running the response analysis [35]. The peak ground accelerations of 
the selected ground-motion suite range between 0.29 g and 1.77 g. A total of 216000 NLTHA (100 accelerograms × 
2160 oscillators) are performed using the nonlinear finite element software RUAUMOKO3D [36] using nonlinear 190 
spring models equipped with appropriate multi-linear backbones and cyclic behaviour. As suggested by Priestley et 
al. [30], a constant 5% tangent stiffness proportional damping is selected for all the frequencies.  
 

Table 1. Parameters defining the backbone curves and assumed values 
 MTt MTt BIL EPP FS 
𝑇!" 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2	𝑠 
𝐹# 0.1, 0.2, 0.3, 0.4, 0.5 

Figure 2. Parametric backbone curves and cyclic behaviour of the considered case-study subgroups: a) 
modified Takeda (fat and thin), b) bilinear and elastic-perfectly plastic, c) flag-shaped 



𝜇 1.5, 3, 4.5 
𝐹$ 0.6	𝐹#, 0.3	𝐹# No softening 
𝑟 0%, 5%, 10% 10% 0% 0%, 10% 

 195 

 
 
3. CSM FOR FRAGILITY ANALYSIS 
 
In this section, the CSM algorithm suitable to predict record-specific performance with real spectra is presented. 200 
Different criteria to select the PP in multiple-solution cases are defined. These are based on both simplistic 
assumptions or a particularly efficient IM, identified via an optimal IM analysis described in Appendix A. Finally, an 
overview of the cloud-based methodology (Cloud-CSM) to perform fragility analysis is presented. 
 
3.1 Proposed Algorithm for the CSM 205 
 
The CSM aims to determine the performance of a structure under a given seismic input represented by a response 
spectrum. ATC-40 [10] originally proposed three different procedures (A, B and C) to apply the CSM. A brief 
description of procedure A, which is considered the most convenient to be implemented in simple spreadsheets, is 
outlined in this section. It requires the computation of a pushover curve (i.e., force vs displacement) for the investigated 210 
structure, which can be obtained through a pushover analysis. The pushover curve is converted into the so-called 
“capacity spectrum” of an equivalent SDoF system expressed in an acceleration vs displacement format. The CSM 
consists of an iterative graphical procedure aimed at determining the PP in an acceleration-displacement plane through 
overdamped spectra. First, a tentative performance displacement is assumed. A bilinearisation of the capacity 
spectrum up to the tentative performance displacement is carried out to obtain the equivalent yielding displacement. 215 
The ductility demand corresponding to the tentative performance displacement is calculated. Then, an overdamped 
demand is computed by multiplying the elastic demand (generally a code-based smooth spectrum) for a spectral 
reduction factor (𝜂), derived from a ductility-based equivalent viscous damping coefficient (𝜉) which expresses the 
reduction of the elastic demand given the hysteretic dissipation. A new performance displacement is calculated as the 
intersection between the overdamped demand and capacity spectra. If the calculated performance displacement is 220 
sufficiently close to the guessed one (within a tolerance arbitrarily assumed by the analyst), the algorithm stops. 
Otherwise, the calculated performance displacement is used as the new tentative target displacement, and another 
iteration is carried out. The process continues until the convergence is achieved. The final PP expresses the 
compatibility between the overdamped demand and ductility-based equivalent viscous damping of the structure.   
In this study, the CSM is slightly modified to be applied with real demand spectra. Note that multiple solutions could 225 
be obtained when using real spectra, as mentioned in [11,12,26,37]. Obviously, multiple solutions are not physics-
based since the PP represents the structure’s response under a given ground-motion input. Thus, to apply the CSM 
with real spectra, a final additional step might be needed, if multiple solutions are obtained, to select the PP. Since 

Figure 3. Ground-motion spectra, spectral accelerations at the case-study elastic periods 𝐓𝐞𝐥	and case-study 
yielding accelerations (𝐚𝐲). 



such an iterative process could be unstable in the case of multiple solutions [26], an alternative algorithm is herein 
proposed to easily identify the solution(s) (Figure 4a). Note that other noniterative approaches for performing the 230 
CSM were proposed (e.g. [14]). These are based on a direct closed-form estimation of the secant-to-target period, 
depending on the strength ratio between an equivalent elastic response and the actual one. However, these formulations 
are developed for EPP hysteretic response only and, to the authors’ best knowledge, have not been tested for other 
hysteresis rules. 
A preliminary step of the procedure requires identifying the yielding point using an equivalent bilinear or multi-linear 235 
relationship of the capacity spectrum of the structure [38]. Clearly, if the spectrum intersects the elastic branch of the 
capacity spectrum, an elastic response of the SDoF system is registered, and the PP can be straightforwardly identified. 
If no elastic solutions are detected, the capacity spectrum is discretized in small displacement intervals (∆()*= ∆( +
𝑑Δ) from the yielding point to the ultimate capacity corresponding to different damping levels. The amplitude of 𝑑Δ 
is arbitrarily selected by the analyst and corresponds to the accuracy of the final result (i.e., the final performance 240 
displacement can be expressed as Δ++ ± 𝑑Δ). In this study, 𝑑Δ = 0.001	m is adopted. An equivalent elastic SDoF 
oscillator can be associated with each ∆(, characterised by an effective period (𝑇!,,,(), an equivalent viscous damping 
(𝜉() and a spectral reduction factor (𝜂(). 𝑇!,,,( is calculated via Equation 1 where 𝜇( is the ductility demand at ∆(. 
There is an extended research literature on the approaches for the calculation of 𝜉 and 𝜂, adapted for various specific 
structural typologies [39–41]. In this study, the approach proposed in [30] is used, which is based on a simple ductility-245 
based formulation calibrated for different hysteretic behaviour. The 𝜉( and 𝜂( are thus calculated through Equation 2 
and 3 respectively, where the adopted 𝐶!./ values are reported in Table 2.  
 

𝑇!,,,( = D
𝜇(

1 + 𝑟(𝜇( − 1)
𝑇!" (1) 

𝜉( = 0.05 + 𝐶!./ F
𝜇( − 1
𝜋𝜇(

H (2) 

𝜂( = D
0.07

0.02 + 𝜉(
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For each equivalent SDoF system, the acceleration-displacement components of the elastic demand are interpolated 250 
at the effective period 𝑇!,,,( and are multiplied by 𝜂(, generating the overdamped demand at 𝑇!,,,(. Thus, a “variable-
damping spectra” is obtained collecting the acceleration-displacement pairs of the overdamped demand calculated for 
each value of 𝑇!,,,(. The CSM solution(s) are the intersections between the capacity spectrum and the variable-
damping spectra. If no intersections are found, the structure is unable to sustain the applied ground-motion input. 
Figure 4b presents three sample ground motions selected for illustrative purposes: one solution (elastic and inelastic, 255 
respectively) is associated with records #3 and #6, while record #10 produces multiple solutions. The issue of choosing 
the PP is addressed in Section 3.2, examining different criteria.  
 

Table 2. Values of 𝑪𝒆𝒗𝒅 for the adopted hysteresis rules [30] 
 MTt MTt FS EPP BIL 

𝐶!./  0.444 0.565 0.186 0.670 0.519 
 260 



 
 
3.2 Candidate criteria to select the PP 
 
Six candidate criteria to select the PP dealing with multiple-solution cases are herein defined and assessed. These 265 
criteria should be simple enough to enable a fast, possibly automatized, selection of the PP within a fragility analysis 
framework involving a large number of ground motions. The criteria are proposed based on a particularly efficient IM 
and simplistic assumption. The adopted IM is based on the geometric average of spectral displacements over an 
appropriate range of periods (𝐴𝑣𝑔𝑆𝑑3), calculated using Equation 4. Consistently with [42], ten equally spaced periods 
(𝑁 = 10) are used to compute 𝐴𝑣𝑔𝑆𝑑3. The efficiency of 𝐴𝑣𝑔𝑆𝑑3 is evaluated through the optimal IM analysis 270 
reported in Appendix A. 
 

𝐴𝑣𝑔𝑆𝑑3 = FN 𝑆𝑑(𝑇()
4

(5*
H
*
4
with	𝑇( ∈ 	 T𝑇!" , U𝑆𝑑(𝑇!") ∆#⁄ 𝑇!"W (4) 

 
• The first criterion (C1) is the most refined one. Regression analysis is carried out to provide a simple relation 

between the NLTHA-based ductility demand, 𝜇67 and two predictors linked to both the demand (ground 275 
motion spectrum) and significant backbone parameters of the single SDoF. Initially, the pairs of ground 
motion-SDoF system characterised by inelastic demand are selected. Nonlinear regression is performed 
according to the parametric model proposed in Equation 5 via the least square method. The ratio between 
𝐴𝑣𝑔𝑆𝑑3 and the yielding displacement of the specific SDoF, Δ#, and the elastic period 𝑇!" are assumed as 
the predictors for 𝜇67. The values of the parameters [𝑎, 𝑏, 𝑐, 𝑑], calculated for the different hysteresis 280 
subgroups, together with the corresponding coefficient of determination 𝑅8 are presented in Table 3. The PP 
is the CSM solution whose ductility demand best mimics the results of the proposed regression model. 

 

𝜇67	 = (𝑎	𝑇!" + 𝑏) ∗	]
𝐴𝑣𝑔𝑆𝑑3
Δ#

^
:6!")/

 (5) 

 
• The second criterion (C2) assumes that, for specific ground motion, the PP is the one for which |𝐴𝑣𝑔𝑆𝑑3 −285 

Δ++| is minimum.  
• The first and the last solutions on the backbones are assumed as the PP within the third (C3) and fourth (C4) 

criteria, respectively. These criteria are proposed to evaluate if it is worth performing a more accurate 
selection consistently with C1 and C2. 

• The last criterion (C5) foresees that the record-specific performance can be approximated by the arithmetic 290 
average of the displacements provided by the various solutions. 

Table 3. Parameters of the regression-based formulation and 𝑹𝟐 for C1 (Equation 5).  
 MTt MTt FS EPP BIL 
𝑎 -0.030 -0.028 -0.021 -0.036 -0.055 

Figure 4. a) Graphical representation of the proposed algorithm to perform the CSM, b) examples of single 
and multiple CSM solutions. 

 



𝑏 1.059 1.033 1.098 1.082 1.095 
𝑐 0.023 0.034 0.017 0.017 0.056 
𝑑 0.860 0.831 0.876 0.751 0.685 
𝑅8 0.8156 0. 8275 0.8643 0.7487 0.8008 

 
 
3.3 Cloud-based procedure for fragility analysis 295 
 
For each specific SDoF system, a cloud of EDP vs IM points is retrieved. The adopted IM is the geometric average of 
the spectral accelerations 𝐴𝑣𝑔𝑆𝑎, whose efficiency, sufficiency and hazard computability were extensively discussed 
in recent literature studies for fragility analysis of various structural types. Given the results of the optimal IM analysis 
(Appendix A), 𝐴𝑣𝑔𝑆𝑎 is computed in the interval [𝑇!" − 1.5𝑇!"] and it can be calculated via Equation A2, by replacing 300 
𝑆𝑑(𝑇() with 𝑆𝑎(𝑇(). The EDP is the performance displacement calculated employing NLTHA or the target 
displacement corresponding to the PP calculated via the CSM. Three DS thresholds (also indicated in Figure 2, Section 
2) are defined, corresponding to the yielding point (𝜇<=* = 1), the peak strength point (𝜇<=8 = 𝜇) and half of the 
softening branch (𝜇<=> = 1.5𝜇). The cloud-based procedure proposed by Jalayer et al. [33] is adopted in this study to 
perform fragility analysis. The cloud data are divided into “collapse” and “no-collapse” to derive the fragility 305 
functions. Collapse herein corresponds to a global dynamic instability of the numerical analysis detected by NLTHA 
(mainly due to 𝑃 − Δ effects for SDoFs) or exceeding a conventional displacement threshold. This is equal to the 
reaching of the residual strength branch (𝜇:?""@AB! = 2𝜇). Equation 6 shows the generic analytical form used in this 
study for a given fragility relationship, where the probability of violating a given DS, 𝑃(𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝!"|𝐼𝑀), is 
calculated applying the total probability theorem, aggregating the probability of reaching or exceeding the DS for the 310 
non-collapse cases, 𝑃(𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝!"|𝐼𝑀,𝑁𝑜𝐶), and the probability that the collapse occurs, 𝑃(𝐶|𝐼𝑀) [33]. Note that 
since all the collapse cases certainly exceed the DS threshold (𝑒𝑑𝑝<=), 𝑃(	𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝<=|𝐼𝑀, 𝐶) is equal to 1. The 
fragility model related to the non-collapse cases is expressed by the normal cumulative distribution function 𝜙(∙) 
based on the probabilistic seismic demand model for non-collapse cases. This latter is calculated by fitting a power-
law model, 𝐸𝐷𝑃 = 𝑎𝐼𝑀C , for the non-collapse cases in the log 𝐼𝑀 − log𝐸𝐷𝑃 plane[33]. The parameters 𝑎 and 𝑏 are 315 
estimated through regression analysis resorting to the least square method. The dispersion 𝜎4?D is calculated through 
Equation 7 using the 𝑒𝑑𝑝EF-	𝑖𝑚EF pairs corresponding to the gm-th record. 𝑃(𝐶|𝐼𝑀) is computed by fitting a logistic 
regression model suitable to binary (collapse-no collapse) variables. 
 
𝑃(𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝<=|𝐼𝑀)

= 𝑃(𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝<=|𝐼𝑀,𝑁𝑜𝐶)r1 − 𝑃(𝐶|𝐼𝑀)s + 𝑃(	𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝<=|𝐼𝑀, 𝐶)𝑃(𝐶|𝐼𝑀) =

= 𝜙]
ln 𝑒𝑑𝑝<= − ln𝑎	𝑖𝑚C

𝜎4?D
^ r1 − 𝑃(𝐶|𝐼𝑀)s + 𝑃(𝐶|𝐼𝑀) 

 

(6) 

𝜎𝑁𝑜𝐶 = 	
!∑ #ln 𝑒𝑑𝑝𝑔𝑚 − ln 𝑎	𝑖𝑚𝑔𝑚

𝑏 $
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𝑁
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𝑁 − 2
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Consistently with the study by Jalayer et al. [33], the probabilistic seismic demand model representing the median 
EDP (having the 50% probability of being reached, 𝑒𝑑𝑝PQ) given IM, considering both collapse and non-collapse 
cases, can be calculated with Equation 8.  
 
𝑒𝑑𝑝PQ = 𝑎	𝑖𝑚C 	 ∙ 𝑒𝑥𝑝(𝜎4?D 	 ∙ [0.5/(1 − 𝑃(𝐶|𝐼𝑀))]) (8) 
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To facilitate the analysis of the results, 𝑃(𝐸𝐷𝑃 ≥ 𝑒𝑑𝑝<=|𝐼𝑀) is in turn approximated with a lognormal cumulative 
distribution function, whose median (𝛼) and dispersion (𝛽) can be used to compare the large number of fragility curves 
calculated for all the case studies. To this aim, 𝛼 represents the value of IM corresponding to a 50% exceedance 
probability of a given 𝑒𝑑𝑝<= and it is calculated via Equation 6 by setting the left side equal to 0.5. 𝛽 expresses the 
“slope” of the fragility relationship and is approximated as half of the difference between the logarithmic values of 330 
IM corresponding to the 84% and 16% exceedance probability (left side of Equation 6 equal to 0.84 and 0.16). 
 



4. DISCUSSION ON THE CSM ANALYSES WITH MULTIPLE SOLUTIONS 
 
The issue of the multiple solutions detected with the CSM is addressed in this section. First, the effectiveness of the 335 
previously described criteria (Section 3.2) to identify the PP is discussed. In the second sub-section, the sensitivity of 
the fragility curves to the percentage of multiple-solution cases within the ground motion suite is studied. 
 
4.1 Effectiveness of the proposed criteria in single ground-motion response 
 340 
The large analysis database is filtered to consider only the cases (combinations of SDoF oscillators and ground-motion 
records) for which multiple CSM solutions are detected. The PP is selected according to the various criteria (from C1 
to C5). The accuracy of the single criterion is assessed by comparing the chosen PP with the benchmark criterion (C0), 
that is considered the theoretically best solution (benchmark PP). C0 implies the manual selection of the PP, which 
best mimics the NLTHA result. Note that the cases in which the benchmark PP is a collapse case are excluded. 345 
Moreover, the cases characterised by multiple solutions which are all detected beyond the collapse threshold are 
excluded and directly considered as collapse cases (rather than multiple solution cases). First, a preliminary discussion 
about the influence of significant backbone parameters and expected equivalent viscous damping on the occurrence 
of multiple solutions is reported. Figure 5 relates the percentage of multiple-solution cases (calculated as the number 
of ground motions producing multiple solutions divided by the total number of adopted records), varying elastic 350 
period, ductility and the base shear coefficient for MTf and FS subgroups (representative of high- and low-dissipation). 
Figure 5 is related to the oscillators having 𝐹$ and 𝑟 equal to 0.6𝐹# and 0% respectively (selected for illustrative 
purposes). It is worth mentioning that the outcomes reported in Figure 5 could be strictly linked to the amplitude and 
frequency content of the specific ground motions used in this study. It is evident that the number of multiple solutions 
decreases as the elastic period increases. This is influenced by the higher number of elastic responses detected for 355 
longer-period structures. The cases having an elastic period higher than 1.00 s are not considered in the figure since 
they exhibit a negligible number of multiple solutions (less than 5%). For the MTf, it is shown that the 0.25 s-period 
cases exhibit the highest percentage of multiple solutions. This percentage rises as the base shear coefficient and 
ductility capacity increase, with a maximum of 37% for 𝐹# equal to 0.5 and 𝜇 equal to 4.5. An opposite trend is 
detected for 0.75 s-period cases where the percentage of multiple solutions reaches a maximum of 12% for 𝐹# and 𝜇: 360 
equal to 0.3 and 1.5, respectively. For the FS, the number of multiple-solution cases strongly decreases, with a 
maximum of 15% for the case with 𝑇!" equal to 0.25 s and	𝐹# equal to 0.5. In this case, the number of intersections 
between the variable-damping spectra and the backbone decreases. This may be caused by the low cyclic dissipation 
capacity and the absence of the softening branch. It is worth mentioning that the results for other hysteresis subgroups 
are similar to the results shown for MTf (the differences in the percentage of multiple-solution cases are less than 5%). 365 
Moreover, the reported results are only slightly sensitive to the hardening and residual strength values with variations 
less than 5% within each period-strength-ductility subgroup.  
To discuss the effectiveness of the proposed criteria in selecting the PP for a single ground-motion response, the results 
are grouped by elastic period and hysteretic behaviour. The effectiveness of each criterion is evaluated through the 
mean of the ratios (𝑅y) between ∆R	DQ and ∆RD( 	which are the performance displacements related to the benchmark C0 370 
and the generic criterion respectively, for the	𝑗-th case (ground motion-oscillator pair showing multiple solutions). It 
is calculated via Equation 9 where 𝑁FB is the number of multiple-solution cases for a determined subgroup of 
oscillators. The best performing criterion is the one with 𝑅y closest to one.  
 

𝑅%𝐶𝑖 = 	
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𝑁𝑚𝑠
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Figure 6 extensively reports the indexes 𝑅y for all the period-hysteresis subgroups. Different markers correspond to the 
considered criteria, while the variation of colours indicates different hysteresis rules. The effectiveness of C1 is shown 
by the corresponding 𝑅y included in the range [0.94;1.08], demonstrating the accuracy of the regression models 
described in Section 3.2. The effectiveness of C2 is particularly evident for low/medium-period (𝑇!" ≤ 1.25	𝑠) 
oscillators (0.99 ≤ 𝑅y ≤ 1.04), while a loss of accuracy is registered for high-period cases (𝑇!" ≥ 1.50	𝑠) characterised 380 
by EPP and BIL hysteresis behaviour (𝑅y ≥ 1.08). Although its simplicity, C3, which implies the selection of the 
lowest performance displacement, provides a satisfactory accuracy with respect to C0. Indeed, in this case, an 
overestimation of the performance displacement in the range [2%; 14%] (0.86 ≤ 𝑅y ≤ 0.98) is observed, with the 
maximum error registered for EPP at 𝑇!" equal to 0.50 s. In contrast, if the last PP (largest displacement) is chosen 



(i.e., C4), a noticeable loss of accuracy is registered and a displacement overestimation higher than 50% r𝑅y ≥ 1.50s 385 
is generally expected regardless of the elastic period and hysteresis rule. Finally, C5 leads to values of 𝑅y included in 
the range [1.2;1.4] for the FS subgroup and higher for other hysteresis rules. Indeed, C5 provides 𝑅y higher than 1.5 
for low-period cases (𝑇!" ≤ 0.75	𝑠) for MTt, MTf, EPP and BIL hysteresis rules.  
 

 390 
 

 
 
4.2 Influence of multiple solutions on fragility analysis 
 395 
Since the outcomes of the previous sub-section are limited to a single ground-motion response analysis, further tests 
are needed to definitively demonstrate the accuracy of the different criteria in fragility analysis which is the target of 
this study. The influence of the number of multiple solutions and of the adopted PP selection criterion in fragility 
analysis is discussed herein. The fragility curves for DS1, DS2 and DS3 are calculated for all the considered SDoF 
systems according to the procedure outlined in Section 3.3, selecting the PP according to the previously described 400 
criteria. If the selected PP exceeds the collapse threshold, it is classified as collapse. The criterion C0 is taken as a 
benchmark. It is worth mentioning that the oscillators characterised by at least one ground motion leading to multiple 
solutions are selected to perform this task (approximately 75% of the cases; only extremely high-period high-strength 
cases are excluded). Figure 7 helps in understanding the expected effect of the multiple-solution cases in the fragility 
analysis. This shows the cloud data (Δ++ − 𝐴𝑣𝑔𝑆𝑎;	collapse cases are indicated with squared markers beyond the 405 
collapse threshold) and the probabilistic seismic demand models (calculated via Equation 8) of two sample cases 
having an elastic period equal to 0.25 s and 0.75 s with 44% and 14% of multiple solutions, respectively. Only the 
results for the criteria C2, C3, C4 and C0 are reported. In both cases, it is evident that the Δ++ chosen according to C2 
and C3 generally overlap with C0, so that the estimated power-law models are similar, with increasing differences 
approaching DS3. In Figure 7a, several of the Δ++ associated with C4 differ with respect to the other criteria producing 410 

Figure 5. Percentage of multiple-solution cases on varying period, ductility capacity and base shear 
coefficient for MTt (a) and FS (b) subgroups (𝑭𝒓 = 𝟎.𝟔𝑭𝒚; 𝒓 = 𝟎%). 

Figure 6.	𝑹� indexes of the candidate criteria for all the hysteresis-period subgroups. 



different estimations of the parameters of the power-law models. Since in this case C4 overestimates the displacement 
demand, it provides lower values of the median IM at all the three DSs. As expected, this effect is less evident in the 
case shown in Figure 7b, where the percentage of multiple solutions is lower than the previous one.  
 

 415 
 
To systematically investigate the accuracy of the different selection criteria, the relative error between the median IM 
(𝛼) and the dispersion (𝛽) estimated by means of the i-th criterion (Ci) and C0 is calculated. The results are discussed 
in terms of relative error vs percentage of multiple solutions within the 100 ground motions adopted. As indicated in 
Figure 8, the error data, indicated with markers having different shades of grey, are grouped in intervals having 10% 420 
amplitude, and piecewise trend lines are calculated (through the least square method). Figure 8 shows the error trends 
on the median IM value for the MTf subgroup with reference to DS1 (Figure 8a) and DS3 (Figure 8b). For DS1, C1, 
C2 and C3 provide errors lower than 5% regardless of the percentage of the multiple solutions. In contrast, the 
deficiencies of C4 and C5 strongly increase with the number of multiple solutions leading to average errors higher 
than 30%, tending to a percentage of multiple solutions equal to 40%. For DS3, the most accurate criteria are C2, and 425 
C1, with errors lower than +5 and +8%, respectively. C5 is the worst criterion providing errors which increase from -
18% to -35% for 30% to 40% percentage of multiple solutions. Finally, C3, although its simplicity, provides errors 
lower than +10% with a negligible increase for increasing percentages of multiple-solution cases.  
 

 430 
Figure 9 reports the trend lines for the relative errors on 𝛼 related to the MTt, BIL, EPP and FS subgroups. The grey 
trend lines refer to DS1, while the red lines to DS3. It is shown that the results for MTt, BIL and EPP are particularly 
similar to MTf as, for instance, demonstrated by the poor performance of C4 and C5 for an increasing number of 
multiple solutions. For FS, the low number of multiple solutions implies that the average expected error is lower than 
15%, independently of the selection criterion. Finally, Figure 10 reports the relative errors in terms of dispersion 𝛽 for 435 
DS3 with reference to MTf (Figure 10a) and BIL (Figure 10b). It is evident that C4 considerably overestimates the 
dispersion from 10% to 50% approaching 40% of multiple solutions. Differently, C1, C2 and C3 provide 5% errors 

Figure 7. CSM-based probabilistic seismic demand models of two sample SDoF systems within the MTf 
subgroup. 

Figure 8. Relative errors on the median of the fragility curves related to the percentage of multiple-solution 
cases at DS1 (a) and DS3 (b) for the MTf subgroup. 



on average. A similar trend is reported for the other subgroups having different hysteretic behaviours (not shown for 
brevity).  
These outcomes extend the recommendations by Casarotti et al. [12], suggesting selecting the PP corresponding to 440 
the largest displacement (i.e., C4) in multiple-solution cases as a conservative choice. Indeed, it is shown that C4 (and 
also C5) may considerably overestimate the fragility of the investigated structure with a noticeable loss of accuracy 
depending on the percentage of multiple solutions. On the other hand, C1, C2 and C3 can consistently reduce the bias 
induced by the multiple solutions. Although C1 provides good accuracy, it is the most demanding in terms of 
calculation effort and does not involve consistent improvements with respect to C2 and C3. C3 provides good 445 
accuracy, but its results could be not conservative. To conveniently limit the bias induced by the multiple solutions, 
C2 is recommended, allowing a quick but accurate selection of the PP.  
 

 
 450 

 
 
5. EFFECTIVENESS OF THE CLOUD-CSM FOR FRAGILITY ANALYSIS 
 
The fragility analysis is performed for each SDoF system in the dataset. This task is carried out using the performance 455 
displacements calculated through the proposed algorithm for the CSM (Section 3.1), NLTHA and two other NSPs: 
the N2 method and the IM-based method. If multiple solutions are derived with the CSM, the C2 criterion, which 
requires the selection of the nearest solution to the proposed 𝐴𝑣𝑔𝑆𝑑3 is used to select the PP. The fragility analysis is 
performed according to the cloud-based procedure in Section 3.3. The median (𝛼) and the dispersion (𝛽) are used to 
systematically compare the differences in the fragility functions calculated with the different approaches. Given the 460 
wide database of SDoF systems, the oscillators are grouped based on significant backbone parameters and hysteresis 
rules to efficiently discuss the results.  
 

Figure 9. Relative errors on the median IM related to the percentage of multiple-solution cases at DS1 
(continuous grey) and DS3 (dashed red) for the MTt (a), BIL (b), EPP (c), FS (d) subgroups. 

Figure 10. Relative errors on the dispersion (𝜷) of the fragility curves on varying percentage of multiple 
solutions at DS3 for the MTf (a) and BIL (b) subgroups. 



5.1 N2 method with real spectra and proposed IM-based approach for performance displacement evaluation  
 465 
In this study, the effectiveness of the CSM is discussed with reference to the widespread code-based version of the 
N2 method as included in Eurocode 8 part 3 [7]. This method is described in this sub-section, focusing on its 
application with real spectra to compute fragility functions as discussed in [22]. The N2 method is based on capacity 
spectra, obtained from MDoF pushover curves converted in SDoF format and, differently from the CSM, exploits 
displacement modification factors for predicting the inelastic SDoF displacement. This latter can be identified by a 470 
PP on the capacity spectrum, as for the CSM.  
First, the capacity spectrum is simplified in an elastic-perfectly plastic law to determine the elastic period and yielding 
displacement of the investigated structure. The PP is estimated depending on the relation between the elastic period 
and the corner period of the adopted elastic (usually code-based) spectrum (𝑇:) which is the period at the end of the 
constant-acceleration part. If the elastic period is higher than the corner period, the equal-displacement rule is applied, 475 
and the target displacement is equal to the spectral displacement at the elastic period 𝑆𝑑(𝑇!"). On the other hand, if 
the elastic period is lower than the corner period, two conditions may occur. If the spectral acceleration is lower than 
the yielding capacity of the system, an elastic response is expected, and the target displacement equals the spectral 
displacement, again. In contrast, the formulation by Vidic et al. [43] is applied, and the target displacement is 
calculated with Equation 10 where 𝑞Y is the ratio between the elastic spectral acceleration and the yielding 480 
acceleration. 
 

Δ++ =
𝑆𝑑(𝑇!")
𝑞Y

F1 + (𝑞Y − 1)	
𝑇:
𝑇!"
H ≥ 𝑆𝑑(𝑇!") (10) 

 
This methodology is usually applied with smooth code-based spectra, where the interval of periods related to the 
constant acceleration section (from 𝑇Z which is the lowest period of the constant acceleration part, to 𝑇:) of the 485 
spectrum is known. Since this interval is not defined for real spectra, the strategy proposed by Calvi et al. [44] for the 
calculation of 𝑇: of real spectra is used. 𝑇: is defined at the intersection between a line at 90% of the maximum spectral 
acceleration and the response spectrum in the spectral acceleration-period plane. Since more than one intersection will 
occur, the lowest period should be chosen. In this study, the simplified approach implemented in the code-based N2 
method is applied to calculate the performance of multi-linear SDoF systems in which the elastic branch is known. 490 
Consequently, the MDoF-SDoF conversion strategy is not applied, and the bilinearisation is directly performed, 
neglecting the contribution of the hardening and the softening.  
To further benchmark the CSM, another NSP-based methodology is proposed, identified herein as IM-based	method. 
It is based on the results of the optimal IM analysis in Appendix A, which demonstrated 𝐴𝑣𝑔𝑆𝑑3 as the most efficient 
IM. It envisages that the performance displacement of an SDoF system under a given ground-motion input is simply 495 
equal to the value of 𝐴𝑣𝑔𝑆𝑑3 calculated through Equation 4. Similarly to the N2 method, this approach requires the 
knowledge of the elastic period and the multiplying factor (�𝑆𝑑(𝑇!") ∆#⁄ ) for the period elongation related to the 
considered record. It is worth noting that both the N2 and IM-based methods require less computational efforts than 
the CSM. The comparison among these methodologies aims to evaluate whether it is worth performing a more accurate 
and computationally demanding CSM algorithm. 500 
 
5.2 Comparison with other nonlinear static procedures and influence of the yield base shear coefficient 
 
This sub-section shows the sensitivity of the accuracy of the Cloud-CSM with respect to the yield base shear 
coefficient, which is the most critical backbone parameter affecting the inelastic response. The results for the 505 
oscillators having a medium value of ductility (𝜇 = 3), a maximum value of residual strength (𝐹$ = 0.6𝐹#), no 
hardening (𝑟 = 0%) and MTt hysteresis rule (representative of moderate hysteretic dissipation) are selected for 
illustrative purposes. 
Figure 12 quantifies the relative errors on the median IM between the considered NSPs and NLTHA calculated at the 
reaching of the three DSs (indicated with different markers) for all the considered oscillators grouped by period. Figure 510 
12 reports the probabilistic seismic demand models related to three sample cases, appropriately selected to better 
understand the results shown in Figure 12. In Figure 12, the cloud data are reported with filled markers, graphically 
differentiated in collapse (squared markers) and non-collapse cases (circular markers). The median values of the 
fragility curves are represented with empty markers at the intersections between the probabilistic seismic demand 
models and the dotted horizontal lines, which indicate the DS thresholds. The cases with 𝑇!"	equal to 0.25 s and 𝐹#	 515 
lower than 0.2, together with those with 𝑇!"	equal to 0.50 s and 𝐹#	equal to 0.1 are excluded from the database of 



results, since more than half of the Δ++ − 𝐴𝑣𝑔𝑆𝑎	pairs exceed the collapse thresholds, thus preventing a robust fitting 
of the probabilistic seismic demand model [33]. In the remaining 0.25 s-period cases, the CSM and IM-based method 
lead to errors included in the range [-20%;10%], while the N2 provides errors higher than +20% at DS3. Figure 12a, 
which refers to a short-period high-strength oscillator, shows that the CSM overestimates the NLTHA-based 520 
displacement demands resulting in lower values of 𝛼 with errors equal to -19% and -20% for DS2 and DS3, 
respectively. Contrarily, the N2 method underestimates the NLTHA displacement demand for the entire range of IM, 
thus resulting in an error on 𝛼 equal to +20% for DS3. The IM-based method outperforms the N2 (the maximum error 
with respect to NLTHA is -10% for DS2), proving that in this case 𝐴𝑣𝑔𝑆𝑑3 is a better proxy of the inelastic response 
with respect to the simpler 𝑆𝑑(𝑇!"), since it accounts for the spectral shape in the range of period elongation.  525 
In most of the cases with 𝑇!" between 0.50 s and 1.00 s, the CSM provides high accuracy, with errors included in the 
range [-10%;10%], outperforming the other methods. As an example, Figure 12b reports the cloud data and 
probabilistic seismic demand models for the oscillator having 𝑇!" equal to 0.75 s and 𝐹# equal to 0.2. It is observed 
that the CSM-based probabilistic seismic demand model nearly matches with the NLTHA-based one, providing a 
maximum error of 4% on 𝛼 at DS3. The IM-based method underestimates the median of the fragility curve with a 530 
maximum error equal to -9% at DS2. In contrast, for the DS3 and collapse thresholds, the probabilistic seismic demand 
model estimated by the N2 strongly diverges from the other methods.This is also confirmed by the lower number of 
collapse cases (7) predicted by this method with respect to the CSM (11) and NLTHA (13).  
Figure 12 shows that the accuracy of the N2 and IM-based methods increase with increasing base shear coefficient 
and the resultant decreasing inelastic response. This is also demonstrated by the results corresponding to high-period 535 
(𝑇!" ≥ 1.25	𝑠) cases, where the N2 outperforms both the IM-based method and the CSM. Figure 12c represents the 
probabilistic seismic demand models of an oscillator with a long period (𝑇!" = 1.50	𝑠)	and low strength (𝐹# = 0.1). 
In this case, N2 provides the best accuracy with negligible errors with respect to the NLTHA-based probabilistic 
seismic demand model. The CSM significantly underestimates the displacement demands for higher values of the 
considered IM, overestimating the value of 𝛼 with errors equal to +10%, +20% and +22% at DS1, DS2 and DS3, 540 
respectively. In contrast, the IM-based method underestimates the median with a maximum -14% error at DS3. As 
shown by Figure 12, a significant loss of accuracy of the CSM is generally observed for all the oscillators having 𝑇!" 
higher than 1.25 s and 𝐹# equal to 0.1. However, the accuracy of the CSM consistently increases for a higher value of 
yield base shear strength, producing errors lower than 20% when 𝐹# is higher than 0.2.  



 545 
To further evaluate the divergences in the fragility curves calculated using the NSPs and NLTHA, the differences in 
the dispersion 𝛽  are shown in Figure 13. According to the procedure described in Section 3.3, the global dispersion 
for a given DS accounts for the contribution of the lognormal cumulative distribution function and the logistic function 
modelling the collapse/no collapse variable. It is proved in this study that the former term, which is conventionally 
assumed constant among the different damage states [22], is the most significant contribution to 𝛽. Consequently, 550 
slight differences are registered among the dispersions calculated at the different DSs. As an example, with reference 
to the cases shown in Figure 12, 𝛽<=* and 𝛽<=>	are 0.26 - 0.24, 0.24 - 0.20 and 0.18 – 0.17 for the first (a), second (b) 
and third (c) case, respectively. For this reason, the following discussion is addressed to DS3 only. It is worth noting 
that strategies to derive fragility dispersion estimates depending on the IM level are proposed in the literature (e.g. 
[22,45,46]) and those can be easily included in the Cloud-CSM.    555 

Figure 12. Probabilistic seismic demand models (a, b, c) for three selected sample SDoF systems and 
corresponding fragility curves (d, e, f). 

 

Figure 12. NSP-vs-NLTHA relative errors on the median IM(𝜶) for the SDoF systems characterised by 𝝁 =
𝟑, 𝑭𝒓 = 𝟎.𝟔𝑭𝒚, 𝒓 = 𝟎% and MTt hysteresis rule. 



 
Figure 13a shows the values of 𝛽<=> calculated assuming 𝐴𝑣𝑔𝑆𝑎 as an IM. It is observed that the differences in 
calculating the dispersion become negligible with increasing base shear coefficient and elastic period. Particularly, in 
short-period cases, the CSM overestimates the NLTHA-based dispersion, and it seems that in these cases, the N2 
outperforms the CSM providing negligible errors with respect to the NLTHA. The dispersion provided by the IM-560 
based method is always lower than 0.2, underestimating the one calculated employing NLTHA. On the other hand, 
Figure 13b refers to a fragility analysis carried out using 𝑆𝑎(𝑇!") as an IM. In this case, N2 provides very low 
dispersion with respect to the NLTHA, while a better accuracy is evident for the IM-based method. This low value of  
𝛽<=> is due to an increasing correlation between EDP and IM. Indeed, if the equal-displacement rule is applied, the 
performance displacement provided by the N2 is equal to 𝑆𝑑(𝑇), which is perfectly correlated to the 𝑆𝑎(𝑇) used as 565 
IM (𝑆𝑎(𝑇) = (2𝜋/𝑇)8𝑆𝑑(𝑇)). The value of 𝛽<=> gradually decreases for increasing elastic periods and increasing 
relevance of the equal-displacement rule in calculating the cloud data. Similarly, the low dispersion of the IM-based 
method when the 𝐴𝑣𝑔𝑆𝑎 is used as IM can be explained by an increasing correlation between EDP and IM. It can be 
stated that NSPs that calculate the seismic performance of the investigated structure based on simple spectral ordinates 
can strongly underestimate the effect of record-to-record variability in the dispersion of fragility curves, thus resulting 570 
in potential underestimation of the seismic risk. In contrast, the CSM-based performance displacement is not 
dependent on the adopted IM type since this method does not resort to spectral ordinates calculated at a given period(s) 
to calculate the performance displacement. Indeed, a general overestimation of the NLTHA-based dispersion is 
registered both if 𝑆𝑎(𝑇!") or 𝐴𝑣𝑔𝑆𝑎 are used as IM. Particularly, with reference to Figure 13a, the registered 
overestimation decreases as the base shear coefficient and elastic period increase. The errors with respect to NLTHA 575 
increase if a less efficient IM is adopted (such as 𝑆𝑎(𝑇!")) in cases for which a considerable period elongation is 
expected. Note that an increasing dispersion is on the safe side with reference to seismic risk calculation. 
Consequently, this error can be considered an acceptable trade-off for reducing computational effort associated with 
the CSM with respect to NLTHA.  
 580 

 
 
5.3 Influence of the hysteresis rule 
 
In this sub-section, the sensitivity of the effectiveness of the Cloud-CSM to the hysteretic behaviour is discussed. This 585 
is directly reflected in an evaluation of the accuracy in predicting the NLTHA-based results of the different equivalent 
viscous damping coefficients associated with the considered hysteresis rules. To synthetically address this topic, the 
results discussed in this section refers particularly to the oscillators having the intermediate value of ductility (𝜇 = 3), 
the maximum residual strength (𝐹$ = 0.6𝐹#) and 0% hardening (except for the BIL subgroup where a hardening equal 
to 10% is considered). It is worth mentioning that, differently than the CSM, the N2 and IM-based methods do not 590 
consider modifications in the seismic performance due to different hysteresis rules, thus providing the same target 

Figure 13. Dispersion (𝜷) calculated at DS3 estimated by the NSPs and NLTHA for the considered MTt 
subgroup (𝝁 = 𝟑, 𝑭𝒓 = 𝟎. 𝟔𝑭𝒚, 𝒓 = 𝟎%) using 𝑨𝒗𝒈𝑺𝒂 (a) and 𝑺𝒂(𝑻𝒆𝒍) (b) as IM.  



displacement regardless of the cyclic response. In other words, the fragility curves calculated via these methods do 
not change among the considered hysteresis subgroups. 
Figure 14 reports the results for the MTf and BIL subgroups (which exhibit comparable values of 𝐶!./) for the cases 
having an elastic period equal to 0.25 s, 0.50 s (short period), 1.00 s (medium period) and 1.50 s (high period). Both 595 
Figure 14a (MTf) and Figure 14b (BIL) show that the CSM generally provides good accuracy for the cases with a 
short-medium elastic period leading to errors on 𝛼 lower than 20%. Also, in these cases, a loss of accuracy is registered 
for low-strength cases with high elastic periods. As an example, for the oscillator having an elastic period equal to 
1.50 s and the base shear coefficient of 0.1, the CSM provides errors for DS3 equal to 22% and 27% for MTf and BIL, 
respectively. Since the hysteretic dissipation associated with MTf and BIL slightly differ from MTt (see Table 2), 600 
these results generally agree with the outcomes shown in Figure 12. This also implies that the accuracy of the N2 and 
IM-based methods (providing the same target displacement for all the hysteresis rules) registered for the MTt subgroup 
is approximately confirmed for MTf and BIL.  
Figure 15 reports the results for the FS and EPP, which are characterised by considerably different hysteretic behaviour 
with respect to the cases previously analysed. Referring to the FS, higher values of the CSM performance 605 
displacements are expected given the low hysteretic dissipation (𝐶!./ = 0.186). In this case, Figure 15a shows that 
the CSM properly estimates (with errors included in the range [-18%;12%]) the NLTHA-based median IMfor cases 
with an elastic period equal to or higher than 0.5 s. In contrast, the N2 systematically overestimates it, with the error 
increasing for strong inelasticity. This evidences the general accuracy of the equivalent viscous damping proposed by 
Priestley et al. [30] for an FS hysteresis rule and the low reliability of 𝑆𝑑(𝑇!") in estimating the seismic performance 610 
of low-dissipation structures. Note that the IM-based method provides satisying accuracy in predicting the median of 
the fragility curves for this type of structures.  
 

 

(a) 

(b) 

Figure 14. NSP-vs-NLTHA relative errors on the median IM(𝜶) for the SDoF systems with period equal to 
0.25 s, 0.50 s, 1.00 s and 1.50 s and MTf (a) / BIL (b) hysteresis rule (𝝁 = 𝟑, 𝑭𝒓 = 𝟎.𝟔𝑭𝒚, 𝒓 = 𝟎%). 
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On the other hand, lower values of the CSM target displacements are expected for EPP, observing the high value of 
𝐶!./ (equal to 0.670). In this case, Figure 15b shows that for elastic periods equal to 0.50 s, the CSM systematically 
overestimates the NLTHA-based median since it provides lower performance displacements with respect to the 
NLTHA. This can be caused by a too-large value of the EPP-based equivalent viscous damping or by the high 620 
sensitivity to the record duration of the response of SDoF systems characterised by an EPP hysteretic behaviour. 
Further information about this latter phenomenon is reported in Priestley et al. [30], stating that long-duration ground 
motions could involve “crawling” displacement for EPP systems. As an example, the results of the oscillator with 
elastic period and base shear coefficient equal to 0.50 s and 0.2 respectively can be analysed. In this case, 𝛼<=> 
calculated via NLTHA is equal to 0.55 g and 0.64 g if EPP or MTf are respectively used. The higher fragility detected 625 
in the former case disagrees with the corresponding higher value of 𝐶!./ which is a proxy of larger dissipation and 
thus lower ductility demand with respect to the MTf hysteretic behaviour. This shows the loss of accuracy of the CSM 
in this case, which provides 𝛼<=>equal to 0.7 g and 0.67 g respectively. 
For the sake of completeness, Figure 16 reports the values of the dispersion for DS3 calculated through the CSM and 
NLTHA for the MTf and FS subgroups adopting 𝐴𝑣𝑔𝑆𝑎 as IM. The results of the N2 and IM-based methods are not 630 
shown in the figure, given the considerations reported in the previous sub-section. Consistently with the MTt, it is 
evident that the Cloud-CSM induces an overestimation in the dispersion, which is higher for a high inelastic response 
(for example, caused by a low base shear coefficient). Moreover, the CSM-vs-NLTHA differences in 𝛽<=> increase 
in the cases where the accuracy of the CSM concerning 𝛼<=> decreases. This can be easily observed for the oscillators 
having an elastic period equal to 0.25 s for both MTf and FS subgroups.  635 
 

 
 

Figure 16. Dispersion (𝜷) at DS3 estimated by the CSM and NLTHA for the considered subgroup (𝝁 = 𝟑, 
𝑭𝒓 = 𝟎. 𝟔𝑭𝒚, 𝒓 = 𝟎%) for MTf (a) and FS (b). 

(a) 

(b) 
Figure 15. NSP-vs-NLTHA relative errors on the median IM (𝜶) for the SDoF systems with period equal to 

0.25, 0.50, 1.00 and 1. 50 s and FS (a) / EPP (b) hysteresis rule (𝝁 = 𝟑, 𝑭𝒓 = 𝟎. 𝟔𝑭𝒚, 𝒓 = 𝟎%). 



5.4 Influence of other backbone parameters 
 640 
The sensitivity of the effectiveness of the Cloud-CSM to the variation of significant backbone parameters is discussed 
in this sub-section. Particularly, Figure 17 shows the errors on the median of the fragility curves of the CSM with 
respect to the NLTHA for different values of the ductility at maximum strength, the residual base shear strength at 
collapse and the hardening ratio. Various subgroups of oscillators are considered for illustrative purpose, whose 
backbone parameters are listed in the legends of the figures. Figure 17a, b and c are aimed at discussing the influence 645 
of varying ductility capacity equal to 1.5 and 4.5. The results of the SDoF system having a period equal to 0.25 s are 
excluded for the same reason mentioned in Section 5.2. These outcomes demonstrate a low influence of the ductility 
capacity on the results of the Cloud-CSM within the Modified Takeda subgroups. Indeed, the maximum difference is 
detected for the SDoF with an elastic period equal to 1.50 s and MTf where the errors for the DS3 fragility median 
raise from 5% to 12%. In this case, the probabilistic seismic demand models related to low and high ductility are very 650 
similar since the backbones are practically identical until the reaching of the DS2, and only the 6% of the ground 
motions push the former case (low ductility) beyond this limit (i.e., the cloud data almost match). This means that the 
different errors are only linked to the propagation of the differences between the NLTHA- and CSM-based power-law 
models approaching the DS2 and DS3 thresholds, which in the high-ductility cases correspond to high inelastic 
response with respect to the low-ductility one. The sensitivity of the CSM to the variation of the parameter 𝜇 is 655 
enhanced for the EPP rule (Figure 17c). In this case, if the ductility capacity is low, the softening branch is prematurely 
reached, and consequently, the inaccuracies discussed in the previous section are emphasized. Conversely, if the 
ductility capacity increases, the accuracy of the Cloud-CSM increases. 
Figure 17d, e and f report the sensitivity of the CSM-vs-NLTHA relative errors on 𝛼 for oscillators with variable 
residual strength at collapse (𝐹$ equal to 0.6𝐹# and 0.3𝐹#). It is evident that the decreasing residual strength induces 660 
increasing error in the cases with a short-to-medium elastic period where a high number of ground motions pushes the 
SDoF to the softening and residual strength branches. The loss of accuracy of the CSM is caused by the 𝐶!./ 
coefficients which, being originally calibrated to support displacement-based design approaches, may be less reliable 
in considering the decreasing hysteretic dissipation in the softening and residual strength branches. For this reason, 
when a consistent number of ground motions requires a performance displacement higher than the displacement at 665 
DS2, the CSM underestimates the NLTHA-based target displacement, overestimating the median of the fragility 
curves. As an example, for MTf the errors at DS3 are 42% and 38% (out of bounds in the figure) for the oscillators 
with an elastic period equal to 0.75 and 1.00 s (Figure 17d). For the MTt subgroup similar results with respect to the 
MTf one are observed, but not shown for brevity. 
Figure 17g, h, and i show the sensitivity of the accuracy of the CSM on varying values of hardening ratio (𝑟 equal to 670 
0% and 10%) for MTt, MTf and FS subgroups. Note that an increasing hardening ratio induces a decreasing hysteretic 
dissipation which is not considered by the ductility-based equivalent viscous damping formulations. Accordingly, 
Figure 17g and h (MTf and MTt) indicate that, for hardening equal to 10%, the CSM increasingly overestimates the 
median estimated by NLTHA with respect to hardening equal to 0%. As an example, for the oscillator having an 
elastic period equal to 0.75 s and MTt, the error at DS3 increases from 9% to 21%. 675 
 



 
 
6. OVERVIEW OF THE CLOUD-CSM AND FINAL RECOMMENDATIONS  
 680 
This section summarizes the steps of the Cloud-CSM with appropriate recommendations for users interested in 
applying the proposed method, according to the findings of Section 4 and 5. Figure 18 provides a flowchart of the 
Cloud-CSM indicating the different application modules. Recommendations to perform an initial record selection 
(Module 1) and the cloud approach for fragility analysis (Module 4) are provided in [33] and in Section 3.3. Further 
information about the proposed CSM algorithm using real ground-motion spectra (Module 2) is provided in Section 685 
3.1. Note that other state-of-the-art equivalent viscous damping formulations can be adopted, allowing for future 
refining of the method and application for other types of structures. Moreover, other fragility analysis approaches (e.g. 
multi-stripe analysis) can be used (Module 4), provided that an appropriate initial record selection (and scaling) is 
performed.  
Within the analysed values of elastic period and base shear coefficient (0.25	𝑠 ≤ 𝑇!" ≤ 	2.00	𝑠; 0.1 ≤ 𝐹# ≤ 	0.5), the 690 
proposed Cloud-CSM approach shows promising accuracy in estimating seismic fragility, provided that reliable 
hysteresis-dependent equivalent viscous damping formulations are adopted (MTt, MTf, BIL and FS). Ductility 
capacity and hardening can slightly affect the accuracy of the proposed method. However, the authors recommend not 
using the proposed methodology for structures with a combination of high period and low strength (𝑇!" ≥
1.50𝑠	&	𝐹# ≤ 0.2). In this case, the adopted equivalent viscous damping formulations provide unsatisfactory results. 695 
For these cases, the N2 method or the IM-based method proposed in Section 5.1 lead to higher accuracy in performance 
displacement prediction. Note that the accuracy of the Cloud-CSM can decrease for structures characterised by a large 
within-cycle strength degradation (i.e. low residual strength at collapse) for an increasing number of ground-motion 
responses in the softening branch. The estimates of the Cloud-CSM can be also biased for structures having an elastic-
perfectly plastic backbone with kinematic hardening hysteresis behaviour (EPP subgroup), particularly for low values 700 
of ductility capacity. 

Figure 17. CSM-vs-NLTHA relative errors on the median IM (𝜶) on varying ductility capacity (a-c), residual 
strength (d-f) and hardening ratio (g-i) for different hysteresis rules. 



 

 
 
7. CONCLUSIONS 705 
 
In this study, the Capacity Spectrum Method (CSM) effectiveness in performing seismic fragility analysis accounting 
for record-to-record variability is discussed with application to a case-study database of 2160 single-degree-of-
freedom (SDoF) systems and 100 as-recorded, unscaled ground motions. Multi-linear parametric backbone curves 
represent SDoF systems with a different elastic period, yield base shear coefficient, ductility capacity, hardening ratio, 710 
residual strength. Five types of hysteresis are also adopted: Modified Takeda Fat, Modified Takeda Thin, Elastic-
Perfectly Plastic, Bilinear and Flag-Shaped. An efficient algorithm to perform the CSM with real, as-recorded spectra 
is proposed, combined with a cloud-based approach (Cloud-CSM) to derive fragility relationships. Simple criteria to 
solve the issue of multiple CSM solutions (i.e., two or more points on the backbone satisfying the CSM procedure) 
are proposed and tested. The effectiveness of the Cloud-CSM in fragility analysis is discussed through comparisons 715 
with more refined nonlinear time history analyses (NLTHA), the N2 method and a simple method involving an 
intensity measure as a direct proxy for the performance displacement. The results of this study can be summarised as 
follows. 

• The CSM applied with real spectra may produce multiple solutions which are not physics-based. The 
effectiveness of different criteria (based on simplistic assumption or efficient intensity measures) in selecting 720 
the performance point is analysed. It is demonstrated that an effective strategy involves selecting the CSM 
solution with a performance displacement closest to the geometric average of the spectral displacements 
calculated in an appropriate range of periods.  

• The influence of multiple-solution cases in fragility analysis is studied. It is demonstrated that an incorrect 
choice of the performance point may imply errors on the median and dispersion of the fragility curves higher 725 
than 20%, if more than 20% of the adopted ground motions lead to multiple solutions. If an appropriate 
performance point selection is performed, the errors can be strongly reduced (lower than 5%) regardless of 
the number of multiple-solution cases.  

• It is shown that in most of the analysed cases, the Cloud-CSM provides errors lower than ±20% in predicting 
the median. The accuracy of this method decreases (errors higher than 20%) for: cases characterised by a 730 
combination of low strength and long period (𝑇!" ≥ 1.50𝑠	&	𝐹# ≤ 0.2); cases showing very high within-cycle 
strength degradation; cases with an elastic-perfectly plastic backbone and kinematic hardening hysteretic 
model.   

• In most of the analysed short- or medium-period cases, the CSM provides a higher or comparable accuracy 
with respect to the N2 method and the proposed simplistic intensity measure-based method, which predicts 735 
the performance displacement only based on spectral ordinates. The N2 can provide noticeable inaccuracies 
(errors higher than 20%) with reference to flag-shaped hysteresis or an elastic-perfectly plastic backbone and 
kinematic hardening hysteretic model. 

• The N2 and the proposed intensity measure-based method for performance displacement identification can 
strongly underestimate the dispersion in fragility curves (resulting in low predicted seismic risk) depending 740 

Figure 18. Recommendations to apply the Cloud-CSM 



on the adopted intensity measure. Contrarily, the Cloud-CSM can be applied regardless of the selected 
intensity measure. This latter implies an increasing dispersion in the fragility relationships with respect to 
NLTHA. 

Given the low computational effort required, the Cloud-CSM can accurately support applications where a large 
number of analyses is generally involved, such as regional-scale assessment of portfolios of structures or 745 
characterisation of epistemic uncertainties in archetype structures. Future studies aimed at developing more refined 
formulations of equivalent viscous damping coefficients, possibly dependent on the backbone and/or hysteresis 
parameters, could substantially improve the accuracy of the CSM in fragility analysis of existing structures. Also, 
further developments could contribute to test the accuracy of the CSM applied with real spectra, considering the effects 
of specific ground motion characteristics (e.g. pulse-like ground motions [47,48]).  750 
For practical applications on MDoF structures, deemed to be the scope of Cloud-CSM, the bias due to the 
transformation of the refined MDoF pushover curve to the SDoF multi-linear one should be carefully checked on a 
case-by-case basis if no typology-specific literature studies that characterize this bias are available.  
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APPENDIX 
 
A. Optimal IMs to select the PP 
 
An efficient IM is by definition a good proxy of damage potentials, being highly correlated to EDPs such as the 885 
ductility demand or target displacement. In this appendix, an optimal IM analysis is performed. In fact, efficient IM(s) 
are used to define criteria for selecting the PP in CSM cases with multiple solutions (Section 3.2). This preliminary 
analysis examines spectral shape-dependent IMs, which can be easily extracted by the response spectrum which the 
CSM is based on. It is performed with reference to the results of NLTHA.  
The dataset of candidate IMs is composed of both conventional and advanced structure-specific IMs. First, the spectral 890 
displacement at the elastic period, 𝑆𝑑(𝑇!") is selected as a candidate IM. The second candidate IM is the displacement 
demand at corner period (𝑇<), calculated as 90% of the maximum displacement demand, as suggested by Calvi et al. 
[44]. This IM is herein indicated as 𝑆𝑑(𝑇<). It is well-recognized in the literature that efficient spectral shape-based 
IMs allow accounting for the spectral demand in the period elongation range, particularly in the case of strong inelastic 
response. Consequently, the third IM is a displacement-based version of the IM proposed by Cordova [49] (𝑆𝑑D, 895 
Equation A1) which considers the contribution of the ratio of the spectral demands calculated at the elongated and at 
the elastic periods. The authors recommend a value of period elongation equal to 2𝑇!" (𝑐 = 2). Recent studies [42,50] 
investigated the efficiency of IMs based on the geometric average of the spectral accelerations over an appropriate 
range of periods (usually named 𝐴𝑣𝑔𝑆𝑎). In this study, since the displacements are of interest, the geometric average 
of the spectral displacements is added in the IM dataset (Equation A2).  900 
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The period range should be adequate to consider the period elongation (𝑘𝑇!") due to the inelastic response. In contrast, 905 
values of period lower than 𝑇!", which are associated with higher modes, are not considered herein, since this study 
focuses on SDoF systems. Katsanos & Sextos [51] demonstrated that the period elongation of SDoF systems ranges 
from 120% to 250% and strongly depends on the ratio between the yielding displacement with respect to the elastic 
displacement demand at the first period. Therefore, two versions of 𝐴𝑣𝑔𝑆𝑑 are considered, setting 𝑘 equal to 1.5 and 
2 (respectively indicated as 𝐴𝑣𝑔𝑆𝑑*.P, 𝐴𝑣𝑔𝑆𝑑8 hereafter). Finally, a more advanced version of 𝐴𝑣𝑔𝑆𝑑 is proposed 910 
(𝐴𝑣𝑔𝑆𝑑3), assuming that the range of significant periods affecting the inelastic response depends on a specific-record 
proxy of the likely ductility demand as proposed in [52]. Consistently with [42], ten equally spaced periods (𝑁 = 10) 
are used to compute 𝐴𝑣𝑔𝑆𝑑.  
The optimal IM analysis is performed, considering only the NLTHA results leading to an inelastic response. In case 
of an elastic response, no multiple solutions can be retrieved via the CSM, and a perfect and deterministic correlation 915 
is observed between the displacement demand and 𝑆𝑑(𝑇!"). Considering the maximum displacement of the SDoF 
system estimated by NLTHA as the EDP of interest, a power-law model (𝐸𝐷𝑃 = 𝑎𝐼𝑀C) is fitted to the “cloud data” 
in the log 𝐼𝑀 − log𝐸𝐷𝑃 plane and the parameters 𝑎 and 𝑏 are estimated (see Section 3.3). As confirmed by Minas 
and Galasso [42], the higher is the efficiency of the IM, the lower is the standard deviation (𝜎) of the 𝑒𝑑𝑝EF-	𝑖𝑚EF 
pairs corresponding to the gm-th record with respect to the linear statistical model in the logarithmic space. This 920 
logarithmic standard deviation (or dispersion) is quantified via Equation 7 in Section 3.3, where 𝑁 is the number of 
inelastic-response ground motions. 
To analyse the results, all the SDoF systems are grouped by elastic period and hysteretic behaviour; the average value 
of 𝜎 is estimated for each subgroup. Figure A1 shows the results for the MTf and FS subgroups, representative of high 
and low cyclic dissipation. Additionally, Figure A2 reports the regression models calculated for two selected MTf 925 
case-studies (𝑇!" = 0.75	𝑠, 𝜇 = 3, 𝐹# equal to 0.1 and 0.4, respectively) and by using three selected IM candidates. 
These SDoF systems are subjected to different “average” nonlinearity level: in the first case the inelastic 𝑒𝑑𝑝EF are 
homogeneously distributed between the DS1 and collapse thresholds, while in the second case, most of the 𝑒𝑑𝑝EF are 
included between the DS1 and DS2 thresholds. It is evident that 𝑆𝑑(𝑇/) is the least efficient IM being totally 
independent of structure-specific dynamic features (Figure A1). For both the cases reported in Figure A2b and e, 𝜎 is 930 
higher than 0.36. Figure A1 shows that 𝑆𝑑(𝑇!") is a particularly good proxy for high-period oscillators that exhibit a 
low nonlinear demand. As an example, 𝜎 decreases from 0.234 to 0.197 considering the cases in Figure A2a and d. 
𝐴𝑣𝑔𝑆𝑑*.P demonstrates its efficiency for low-period SDoF systems, where a strong inelasticity is usually required and 
the influence of the spectral shape in the period elongation range is significant. It is worth noting that 𝐴𝑣𝑔𝑆𝑑*.P 
outperforms 𝐴𝑣𝑔𝑆𝑑8 proving that elongation of	1.5𝑇!" is likely a better choice than 2𝑇!"	 with reference to the average 935 
features of these case studies. 𝑆𝑑: provides an intermediate efficiency, comparable to the results of 𝐴𝑣𝑔𝑆𝑑8. The best 
predictor is 𝐴𝑣𝑔𝑆𝑑3 which exhibits the lowest average standard deviation for all the subgroups of case studies. This 
is because this advanced IM adapts the period range given a proxy of the inelastic demand. For instance, 𝜎 is 
approximately equal to 0.15 in Figure A2c and f, and thus is negligibly affected by the average nonlinear demand of 
the ground-motion suite. Further analyses could be performed to appropriately calibrate the discretisation of the period 940 
range in which 𝐴𝑣𝑔𝑆𝑑 is calculated [42,53] or the	𝑐 parameter for 𝑆𝑑:, possibly with reference to a narrower 
subgrouping of the case-study dataset (e.g., grouped using the base shear coefficient). However, this task is deemed 
not consistent with the purposes of this study. The comparison between MTf and FS reported in Figure A1a and b 
demonstrates that these results are weakly affected by the adopted hysteresis rule.  
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Figure A1. Average dispersion related to the candidate IMs for the MTf (a) and FS (b) subgroups. 

Figure A2. Regression analysis for two selected SDoF systems (MTf subgroup) varying the adopted IM. 


