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Abstract— In this paper, we explore the problem of task-
consistent path planning for printing-in-motion via Mobile
Manipulators (MM). MM offer a potentially unlimited planar
workspace and flexibility for print operations. However, most
existing methods have only mobility to relocate an arm which
then prints while stationary. In this paper we present a new
fully autonomous path planning approach for mobile material
deposition. We use a modified version of Rapidly-exploring
Random Tree Star (RRT*) algorithm, which is informed by
a constrained Inverse Reachability Map (IRM) to ensure task
consistency. Collision avoidance and end-effector reachability
are respected in our approach. Our method also detects when
a print path cannot be completed in a single execution. In
this case it will decompose the path into several segments and
reposition the base accordingly.

I. INTRODUCTION

Construction is one of the most important human activi-
ties, yet it remains a largely labour-intensive process. It is
dangerous [1], [2] and can be very wasteful [3]. As a result,
there is a rising interest in the use of robotic Construction
Automation Systems (CAS) to aid low-skilled activities,
reduce accidents and reinvigorate stagnating productivity [4]
in the sector. It could also help in satisfying demands for new
housing, boosted by the rapid growth of urbanisation [5]. It
could complement the shrinking workforce of our ageing
populations [6], [7].

3D printing (or material deposition) has proven to be a
cost effective [8] construction method, and several types of
printing CAS have been developed [9]–[11]. However, to
date only stationary gantry or crane-type systems [12] have
achieved commercial success [13], [14].

In this paper, we focus on the use of Mobile Manipula-
tors (MM) for 3D-Printing in construction. An MM consists
of an agile, articulated arm that is mounted on a mobile base
which can traverse the construction site (see Fig. 1). MMs
have several advantages over gantry systems. They have a
potentially unlimited workspace. They are easy to deploy.
The agility of the high Degree of Freedom (DoF) base-arm
system means that they can reach into difficult or confined
spaces.

Two paradigms for MMs have been proposed: printing-
while-stationary, and printing-in-motion. In a printing-while-
stationary CAS [15]–[18], the robot moves itself to a number
of different locations. At each location it holds its base
stationary and printing is carried out. Printing-in-motion
generalises this concept and allows the robot to print ma-
terial while the base is in motion. Although printing-while-
stationary is technically easier to achieve, it has a number
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Fig. 1: Problem illustration: a tether-less Mobile Manipulator,
equipped with an extruder is depositing material along a pre-
described task path.

of limitations. To print something larger than the robot, such
systems require many relocations, which might lower print
quality, introduce unnecessary discretisation of the print and
give rise to task-sequencing problems [19], [20].

There have been only a handful of works that have
explored printing-in-motion. The first is the Digital Con-
struction Platform (DCP) [16], which consists of a high-
DoF manipulator mounted on a mobile hydraulic crane. It
printed a 10 m wide circular foam formwork while station-
ary, but only deposited a single line on the ground while
moving. The second was our earlier work, Mobile Agile
Printer (MAP) [21] which aimed to validate the printing-
in-motion approach. Given a manually specified base path,
the system showed that the end-effector error when path-
tracing in-motion is only marginally greater than when
the base is stationary. Another work comes from Nanyang
Technological University (NTU) [22] and it is the first system
to deposit concrete from a moving platform. Like MAP, it
used a manually-specified base path to keep the printing task
within the arm workspace. Subtracting this path from the
task allowed arm motion to be planned in the local arm
frame. Although these systems demonstrate the feasibility
of printing-in-motion, they required manual specification of
the base path and thus fall short of being fully autonomous.
Our last work Youwasps [23] demonstrated autonomous clay
deposition where only the print path had to be specified.
However, the crude assumptions made by the path planning
method only further highlights the need to explicitly explore
path planning for mobile 3D printing.

In this paper, we develop an algorithm for autonomous
task-consistent path planning for mobile 3D printing. Given
a print path, a kinematic robot description, and constraints
on manipulator orientation for material deposition, the al-



gorithm computes a base path and keeps the task inside
the arm workspace. Our approach extends Rapidly-exploring
Random Trees (RRTs), specifically RRT*, by using modified
Inverse Reachability Maps (IRMs). The IRMs are used to
bias and constrain an RRT* search to ensure task-consistent
paths. The underlying graph is used to detect if the print is
achievable in a single execution, or if relocation is necessary.

The structure of this paper is as follows. The next sec-
tion describes and introduces the task-consistent planning
problem statement. Related work is described in Sec. III.
The proposed algorithm is described in Sec. IV and it is
evaluated in a set of experiments reported in Sec. V. Finally,
conclusions and future directions are discussed in Sec. VI.

II. PROBLEM STATEMENT

Consider the problem illustrated in Fig. 1. A tether-less
Mobile Manipulator, equipped with a single circular-nozzle
extruder, has been tasked with printing a 3D structure. The
print task is defined by layered print paths. The extruder must
follow these paths while depositing material. The deposition
rate is assumed to be slow and constant. The extruder must
be orthogonal to the printing surface, and the material must
form a continuous structure. In this paper, all print surfaces
are parallel to the ground plane, and so the head must be
oriented to point down.

A. Specification of the 3D-Printing Task

Let W be the world-fixed frame and E be the end-effector
frame. The printing task is a parameterised path (∈R3) in the
world frame that E must follow. To capture the orientation
constraint with respect to the printing surface, the task is
assumed to be provided as a trajectory of homogeneous
transformations W T (s)∈ SE(3). The orientation constraint is
defined as the z-axis of E and specified as the third column
of the matrix T (s). In this work, we assume that the task
is layered vertically and E is always constrained to point
downwards.Therefore,

T (s) :=

1 0 0 Tx(s)
0 1 0 Ty(s)
0 0 −1 Tz(s)
0 0 0 1

 . (1)

The scalar parameter s ∈ [0,s f ] denotes the progress along
the task path, e.g. the length of task path printed. The path
is completed when s = s f .

B. Path Planning for Mobile Material Deposition

Given a task T (s), the path planner seeks to produce
a continuous path b(s) = (bx,by,bθ ) ∈ SE(2) that the base
frame will follow. We formalise this as follows.

The frame fixed to the robot base is B. The robot arm is
rigidly fixed to the robot base. The arm root link is the frame
A. The homogeneous transformation expressing pose of A in
frame B is BA.

At a point s along the task, the base pose is W B(s). To
ensure task consistency, the end-effector pose in the arm
frame must be

AE(s) =
(

W B(s)BA
)−1 W T (s). (2)

The base pose determines the task pose in the arm frame.
Therefore, this task-consistency constraint imposes the con-
straint that b(s) must be chosen such that the end-effector
trajectory AE(s) is feasible. This means that, ∀s, the inverse
kinematics (IK) for the pose AE(s) are defined and can form
a continuous solution in the arm’s joint space. Note, that
because the nozzle is circular, there is a symmetry about the
Z-axis of the end-effector. Thus these are 5 Dof IK calls and
the end-effector yaw is left unconstrained.

In addition to the task-consistency described in (2), there
are several important considerations that the path planner
must take into account:

a) Dynamic and Evolving Obstacles: As the material
is deposited, the robot creates and reshapes obstacles in
its environment. The robot must not collide with these
dynamic obstacles otherwise the print will be ruined. One
way to address this problem is to treat the geometry of
the entire print task as a static obstacle. However, this very
crude assumption leads to conservative trajectories and often
renders the solution infeasible. Therefore, the planner must
explicitly plan for dynamic and evolving obstacles.

b) Discontinuous Printing: Although the end-effector
must trace out a continuous path, it might not be possible
to complete the task in a single execution [23]. As the
robot creates dynamic obstacles during the print process, the
robot might not be able to reach the next point in the task
without having to interrupt printing and reposition itself. The
planning algorithm must offer a principled way to detect
when a break in the print process when it is necessary and
find a solution that incorporates it.

c) Maintaining Arm Responsiveness: A Mobile Ma-
nipulator is composed of two different systems with very
different fidelity characteristics. A robotic arm has a limited
workspace, but is precisely encoded and has a repeatability
of the order of 0.1 mm. Therefore, when the arm is tasked
to move to a pose AE(s), the arm will achieve this with little
error. By contrast, the robot base can move freely over a
2D surface, but its external pose can only be estimated via
tracking systems such as SLAM or GPS. The errors with
such systems can be at least several centimetres. Also, as the
mobile base moves throughout the construction site, it can
experience disturbances including those due to uneven terrain
or breakaway friction. Although implementing disturbance
rejection is out of scope of this paper, it introduces two
requirements for the planner.Firstly, the algorithm should
minimise the base path b(s) to avoid unnecessary motion.
Secondly, b(s) should be chosen to keep the task in a highly
manipulable or reachable region of the arm. For example,
paths which require the arm to be fully extended would not
allow some corrective motions.

To address these needs, we developed a novel planning
algorithm that uses RRT* as a framework. RRT* was chosen
as it is an optimal algorithm [24] and allows to minimise the
base motion. To address the requirement of arm responsive-
ness requires detailed discussion on robot workspace and
manipulability. These are reviewed next.



III. PREVIOUS WORK ON TASK-CONSISTENT PATH
PLANNING

A. Planning and Manipulability

One of the earliest works in this area was by Nagatani et
al. [25] who developed a mobile manipulator-based robot to
write on a wall. This required the solution of a task-consistent
planning problem. Two key insights were used to address
this. First, they treated the problems of planning the base
and the arm separately to simplify the planning task. Second,
they argued that the arm planner should plan trajectories in
manipulable regions of the configuration space. They used
Yoshikawa’s definition of the manipulability ellipsoid, which
is a representation of a set of possible velocities the end-
effector can take [26]. If the Jacobian of a specific joint
configuration is J, m =

√
det(JJᵀ) can be interpreted as a

distance from singularity configurations [27]. As a result, the
robot arm will be able to reject disturbances quickly. Using
this intuition, they extended an RRT algorithm to validate
graph edges by checking manipulability as well as collisions.

Oriolo et al. [28] showed that injecting a bias into the
RRT sampling step makes it possible to add additional
control to a solution. Therefore, by providing suitable judicial
extensions to RRTs, it is possible to ensure task consistency,
manipulability and other constraints in the path.

Although manipulability provides a measure of robustness
to a solution, Zacharias et al. [27] identified a number
of difficulties based on the fact that the Jacobian is used.
The manipulability measure is only computed locally, is
unable to handle constraints, and mixes spatial and angular
units making the computed solution difficult to interpret. To
overcome these limitations, the Reachability Map (RM) was
developed.

B. Reachability and Inverse Reachability

A Reachability Map (RM) provides a measure, for each
point in the arm’s workspace, of how hard it is for the arm
to place an end-effector at that point. Following Zacharias’
methodology, the RM is built as follows. The arm workspace
is discretised into a set of voxels. Each voxel is assigned a
reachability index.

The reachability index for the jth voxel is calculated by
fitting a sphere inside the voxel and sampling a set of N
random end-effector poses on its surface. The z-axis of these
poses is aligned with the tangential normal vector of the
sphere at each point. For each pose, the Inverse Kinematics
(IK) is computed. Let R j store the total number of IK
solutions that exist. The Reachability Index (RI) for the jth
cell is then given by:

RI j = 100
R j

N
. (3)

The interpretation is as follow [27]. When RI j = 0, no IK
solutions exist and the voxel is not reachable. When RI j =
100 then many IK solutions exist and the voxel is easy to
reach. Intermediate values provide a measure of the degree
of difficultly of placing an end-effector in that voxel.

Subsequently, Zacharias et al. [29] showed how the RM
could be used to optimise the placement of a static base
for an object manipulation task. They computed the RM
for a robot. They cross-correlated it with the set of end-
effector tasks the robot had to undertake. This resulted in
the reachable task position in the robot local frame. Then
inverting this position for a given task in world frame
could suggest a base pose such that the task is in a highly
reachable region of the arm. This work demonstrated that,
when determining the robot base pose, the RM can be used.

To avoid expensive correlation operations and generalise
robot base pose evaluation, Vahrenkamp et al. developed
the Inverse Reachability Map (IRM) [30]. While the RM
computes the reachability of a point in the arm frame A, the
IRM aims to evaluate base poses in the task-frame (e.g. the
required end-effector pose to pick up an object). This way
IRM allows derivation of viable base poses given a task pose.
The construction of the IRM is described in the next section.

IV. RRT* FOR TASK-CONSISTENT PATH PLANNING

In this section, we describe our approach for task-
consistent path planning. This consists of two phases. The
first is the off-line construction of the Inverse Reachability
Map (IRM), creating a cached data structure. The second is
to carry out online planning using the cached IRMs and a
modified RRT* planning algorithm.

A. Inverse Reachability Map Construction

We construct a task-specific Inverse Reachability Map
(IRM), which captures the reachability quality of a particular
base placement W b(s) for a printing task W T (s). We start
by constructing a Reachability Map (RM) in the arm frame
A. We construct the RM by extending Zacharias et al.’s
sampling-based method [27] to account for the print head
orientation constraint. This constraint is specified as Tj=3,
the third column of the matrix T (s) in (1) and in general
could be a function of the task process variable s. Since in
this paper we only consider the case when the end-effector
needs to be oriented straight down, Tj=3 = (0,0,−1,0)ᵀ.

An orientation-constrained RM can then be constructed as
follows. The arm workspace is discretised into cubic voxels
(we use side length 5cm) and N (we use N = 200) test poses
are sampled from each as described in Sec. III. We then
discard poses that are not close to the orientation constraint.
We use the condition (acos(|P3,3|)< 0.5)∧(P3,3 < 0) , where
P is the transformation matrix of a test pose. The number of
existent IKs R j then defines the reachability intex of cell j as
in (3). This way the RM is indicative of point in robot arm
space where the constrained task will be reachable. Fig. 2
shows the reachability maps computed using the original
(unconstrained) and modified (constrained) algorithms.

Enforcing the orientation constraint on sample poses re-
duces the number poses considered, and in turn, increases
sensitivity of RI to non-existent IKs. It also reduces the
spatial distribution of the poses inside the voxel, see Fig. 2.
We addressed this by applying an equally weighted 3×
3× 3 smoothing kernel to the voxel grid to produce the



(a) Original reachability map.

(b) Constrained reachability map.

Fig. 2: Comparison of the original and constrained reachability
maps. RI values, normalised over their individual maps, shown in
blue (low) to yellow (high). Left: the sphere in one voxel showing
a set of sampled poses. Right: The resulting Reachability Map.

smoothed Reachability Map in Fig.3. The smoothing does
not take away from the metric as it effectively expands
sampling volume and distribution. Implementation-wise, the
RM is a three-dimensional array describing the function
(x,y,z)→ RI(x,y,z), where x,y,z are the centre coordinates
of a voxel. We used the smoothed RM to compute the

Fig. 3: Smoothed orientation-constrained reachability map.

Inverse Reachability Map as follows. The domain of possible
base poses is a [−r,r]2 × [−π,π], where r is arm reach.
The domain of task heights is [0,r]. We discretise these
domains into a set of voxels using equally spaced points.
We use 5cm increments for Cartesian dimensions and 5◦

for rotations (determined experimentally). The voxel centre
coordinates for the ith voxel are (xi,yi,θi,zi) = (bi,zi). The
first three represent a possible base pose bi. The last is the
task height. An Inverse Reachability Index (IRI) is assigned
to each voxel:

IRI(bi,zi) := RI(R(θi)
−1(xi,yi)

ᵀ,zi), (4)

where R(θi) is a planar rotation matrix and so RI is appro-
priately indexed by an x,y,z tuple. It is not shown in (4),
but indexing into the RM must be done in the arm-frame,
so the indexing is offset by BA. Implementation-wise, the
resulting IRM is a four-dimensional array that stores IRI
values associated with discretised base poses and task heights
i.e. IRM := (bi,zi)→ IRI(bi,zi).

The computation time for the RM and the IRM strongly
depends on the voxel resolution. To simplify our implemen-
tation, we used serialised service request calls using MoveIt!
[31] and Trac-IK [32]. As such, the computation took about
11 h. A more optimised implementation for computing non-
task-specific RM and IRM is available [33].

In the next section we show how the IRM is used to
validate a base pose. In order to only consider base poses
of high IRI value, we threshold or prune the IRM first. We
do this by ranking all the IRM voxels by their IRI value.
Then, the IRI value of the bottom portion, say 20%, of the
voxels is overwritten to be zero. Portion size is determined
experimentally and is elaborated on in the evaluation. This
way, a voxel having a non-zero IRI value implies it is in
the top 80% of available poses. If this condition is used
to validate a base pose, the algorithm will guarantee a
minimal IRI value throughout the path. Fig. 4 illustrates and
IRM. Such pruning, effectively, discards the low value (blue)
regions shown.

Fig. 4: Visualisation of Inverse Reachability Map. Voxels shown are
projections of SE(2) onto R2, task height is kept constant zi = 0.
The colour brightness indicates value of IRI summed over rotation
dimension θ of SE(2). Non-empty voxels along θ dimension are
shown as red lines drawn from centers of projected voxels.

B. Task-Consistent RRT*

In this section we use the RRT* algorithm as a framework
to solve the task-consistent path planning problem. RRT*
grows a graph using a parent-child relationship between
randomly sampled points in a search space and maintains
the accumulative path costs. For detailed description of RRT*
please see [24]. We adopt RRT* by firstly defining a search
space for the base poses b(s). Then, extend it by redefining



how it samples and validates graph vertices and edges.
Eq. (2) shows that T (s) constrains b(s) to path-dependent

reachable regions in SE(2). To capture this variation, the
search space is extended with the process variable SE(2)×
[0,s f ]. A graph vertex in this space is denoted as q := (b,s) =
(x,y,θ ,s). Moving backwards along s is not allowed and so,
the following metric on the search space is defined:

d(q1,q2) =

{
‖q1	q2‖2 , if s2 > s1
∞, if s2 ≤ s1.

(5)

where 	 means that angle difference is used for θ . We also
define two functions using the cached IRM. These are used
for sampling and validation during path planning. Firstly,
recall that the IRM assigns IRI values to voxels whose
centres are (bi,zi) = (xi,yi,θi,zi), We can approximately
index into IRM by rounding values to nearest voxel centers:

IRI(b,z) = IRI(argmin
bi,zi

(‖(bi,zi)	 (b,z)‖) (6)

We define a function inIRM that, given a graph vertex q =
(qx,qy,qθ ,qs), indexes into the IRM and evaluates if the task
point T (qs) is reachable from (qx,qy,qθ ):

inIRM(q) =
IRI((qx−T (qs)x,qy−T (qs)y,qθ ,T (qs)z))> 0

(7)

The IRM is already thresholded as described in Sec. IV-A
and so, IRI being positive implies the value was above the
threshold, and q is considered suitable.

Furthermore, the IRM can be used to draw samples of
valid base poses for a given s = s∗. First, fix z∗ to be the
task height T (s∗)z rounded to nearest voxels center zi. We can
then use the IRI values as a probability density function to
sample from the IRM. We define pd f IRM and sampleIRM
as such:

z∗ = argmin
zi

(‖T (s)z− zi‖) (8)

pd f IRM(bi) =
IRI(bi,z∗)

∑bi IRI(bi,z∗)
(9)

sampleIRM(T (s∗)) = (T (s∗)x +bx,T (s∗)y +by,bθ ), (10)

where b∼ pd f IRM. Therefore, for a given s∗ we can draw
samples of base poses, from the IRM placed at the task point
T (s∗).

In order to use the RRT* framework to solve the problem
at hand, we redefine RANDCONFIG and ISVALID routines.
These, as well as the RRT* framework, are presented here:
• Line 1: The input consists of the task T (s) and a set of n

starting base poses {qstart}. The {qstart} are sampled using
sampleIRM(T (0)).

• Line 2: All qstart are set as root nodes.
• Line 4: In each iteration, random configurations qrand are

sampled using RANDCONFIG (described further on).
• Line 5: The graph vertex closest to qrand is found via a

nearest-neighbour search using the measure in (5).
• Line 6: The EXTEND function uses the ISVALID routine to

validate the edge between qnearest and qrand at intervals εinc
and up to a distance εreach. We use εinc = 0.01 and εreach =
0.1. If qnearest is reached, isReached is set to true. EXTEND
could be used to impose motion constraints. For simplicity, in

Task-Consistent RRT∗

1: procedure RRT* FRAMEWORK({qstart},T (s))
2: graph.insert( /0,{qstart})
3: while True do
4: (qrand , isGoal)← RandCon f ig(smax)
5: qnearest ← Nearest(graph,qrand)
6: (qnew, isReached)← Extend(qnearest ,qrand)
7: {qnear}← Near(graph,qnew)
8: qmin←ChoseParent(qnew,{qnear}))
9: graph.insert(qmin,qnew)

10: Rewire({qnear},qnew)
11: if isGoal and isReached then
12: Break

Redefined Routines

procedure ISVALID(q)
valid ← ¬isInCollisionWithEnvironment(q)
valid ← valid ∧ ¬isInCollisionWithTask(q,T ([0,qs]))
valid ← valid ∧ inIRM(q)
return valid

procedure RANDCONFIG(smax)
if rand()< βgoal then

(srand , isGoal)← (s f ,True)
else

(srand , isGoal)← (max(0,min(s f ,s∼ N(smax,svar))),False)
(x,y,θ)← sampleIRM(T (srand))
return qrand = (x,y,θ ,srand)

this paper we use a holonomic base and do not model kino-
dynamic constraints.

• Lines 7–9: Routines NEAR and CHOOSEPARENT find the set
{qnear} of graph vertices in a region of radius εnear around
qnew. We use εnear = 0.3 The closest vertex qmin is made the
parent of qnew. The parent-child assignment is also used to
calculate the accumulative cost cost(qnew) = d(qmin,qnew)+
cost(qmin).

• Lines 10: The REWIRE routine changes the parent of any
vertices in {qnear} to qnew if this leads to a lower cost.

• Lines 12: The algorithm terminates if the qnew added to the
tree is a goal vertex.

• isValid: In the standard RRT*, this only checks for collisions
with the environment. We extend it to detect collisions with
T ([0,qs]). That is, the print task printed up to qs. Also, q is
only considered valid if inIRM(q) is true. This assures that
the edges, which, are validated at increments εinc all satisfy
the task-consistency constraint.

• RandConfig: It is common for state sampling to include a
bias towards the goal. Here, a goal state is returned with
probability βgoal (we use βgoal = 0.01). However, the 3D
printing processes necessitates that the whole task is printed
before reaching the goal. Therefore, we also bias the sampling
towards the task frontier. The main graph keeps track of the
configuration furthest along the printing process qmax. We
can then use smax = qmax,s to bias the random configuration
sampling and draw qrand,s values from a normal distribution
centred at smax with standard deviation svar. Thus, more poses
are drawn around the task frontier. In this paper we use svar =
0.1s f . Note, it is not shown above, but RANDCONFIG samples
new configurations until one is validated using ISVALID

These modifications have three effects. First, collisions
with the task are considered dynamically. Second, the graph
is constructed only using configurations from reachable re-
gions inside the IRM. Lastly, edges are densely validated to
fall inside sufficiently high value IRM voxels.



C. Task Discontinuity Detection

Lastly, using a sampling method to grow a tree along a
print path allows us to detect when the printing task cannot be
accomplished in a single continuous trajectory. Analytically,
this arises when, for some point in process sI , all pairwise
edges between a search graph vertex with base pose bI
(that can reach T (sI)) and base poses bI+εinc (that can reach
T (sI +εinc)) cannot be validated, e.g. are in a collision with
obstacles or previously deposited material. Such an event
will, by construction, cause our proposed RRT search to stall.
The algorithm will grow the graph until smax = sI , at which
point, random configurations qrand will all fail to grow the
tree beyond smax. Therefore, the proposed algorithm counts
how many iterations of the RRT* loop went by with smax not
changing value. If this number breaches a threshold (in this
paper we use 300), an interruption is detected. Then, a set
of new starting poses qstart,new = sampleIRM(T (sI + εinc))
and a new graph path planning problem is started for the
remaining task T (s∈ [I;s f ]). The interruption relationship is
captured by assigning qmax as a separately kept interruption
parent to all configurations qstart,new.

V. EVALUATION

We evaluate the performance of the algorithm using a
model of 7DoF Franka Panda robot arm mounted on Kuka
Youbot robot base. Two print tasks are used. The first task
explores how b(s) is found, and how it avoids obstacles and
already deposited material. We also discuss finding the joint
space solution for the corresponding E(s). The second task
explores interruption detection when the algorithm is given
an unfeasible task.

A. Obstacle and Deposited Material Avoidance

To clearly illustrate how the deposited material is avoided,
we focus on a complex single layer task. This allows us to
capture the shrinking free space that b(s) must traverse.

Fig. 5(a) shows the task. The robot starts in the bottom
left corner and prints a 47.4 m long, single layer curve. It
uses the filling pattern which is often used in concrete 3D
printing. The task travels close to the static obstacles (black),
especially in the middle. Therefore, the simple heuristic
described in Sec. II, of assuming that the whole task is a
static obstacle prior to execution, would render this task
infeasible. Therefore this task is an ideal test case for our
planning approach.

Fig. 5(b) shows the space the RRT* explores to find
a solution b(s). Note that the jagged nature of the base
trajectory arises because, in this initial implementation, we
do not model kino-dynamic constraints. Implementing these
constraints is a topic for future work. The top left corner of
Fig. 5(b) shows that the tree branches do not propagate in
presence of obstacles and the evolving task. The highlighted
solution b(s) found allows the arm to trace the task trajectory
while the base is in motion. In particular, when the robot
passed through the narrow gap in the wall, it has to drive with
the arm oriented so it can print behind it. Rectangles showing
base and arm footprint at a number of points along the print

(a) Illustration of robot executing the task.

(b) A path search illustration. Static Obstacles (Black), Print Task (Blue to
Green), b(s) found (Blue to Red), RRT* tree exploration, visible in blue,
shown only in 2D.

Fig. 5: The first task illustrating task-consistent base path plan-
ning using extended RRT*. Video available at: youtu.be/
guyZEsBgakE

illustrate the scale and how the base path is associated with
the task.

Path planning for this task was carried out 100 times using
the IRMs using the method in Sec. IV-A. Several pruning
values were chosen. Aggregate results for planning time,
success rate, b(s) length and end-effector trajectory error
are presented in Table I. Here, we used ikunc solver of
Robotics Toolbox for Matlab [34] to find the corresponding
end-effector poses E(s). The plan was considered successful
if the combined translational and rotational ikunc error was
less than 0.01. Data illustrates how discarding larger portions
of the IRM increases the strictness of the constraint it
imposes. In turn, this leads to increased planning time, but
also lower error and higher success rate.

Fig. 6 shows a segment of a successful base path, task
and E(s), which corresponds to the print task in the local
arm frame. Throughout this path, the reachability index of



Pruning Time (std.) Success b(s) length (std.) Error (std.)
(%) (s) (%) (m) (10−4m)

None 15.9 (6.1) 71 12.2 (0.9) 2.5 (4.2)
10 16.4 (4.1) 74 12.1 (0.9) 1.9 (3.2)
20 15.9 (2.9) 76 12.2 (0.8) 2.3 (3.2)
50 23.5 (12.5) 98 12.0 (0.9) 0.5 (0.7)
70 44.5 (33.4) 100 12.5 (1) 0.2 (0.4)

TABLE I: Planning time and success rate dependency on IRM
pruning over 100 sample runs.

E(s) was on average 91.8 which is in the top 10 percentile
of the forward Reachability Map of the arm. It can be seen
that as the base travels, the local task is situated in a small,
close region that shifts as the task shifts in the arm frame.
The joint-space solution reflects the pattern of the task as
well as the small stutter in the base path solution. Lastly
manipulability,

√
detJJᵀ, computed from j(s), is shown to

tightly oscillate around a constant non-zero value, confirming
that the task remains in a manipulable region. Here, we only
show that arm reachability was maintained. Evaluating how
this would effect disturbance rejection is left for future work.

(a) Top: Joint-space solution for this section of E(s). Bottom: arm manip-
ulability evaluated at the joint values

Fig. 6: Analysis of E(s) in task and joint-space.

(a) Left: Segment of T (s) and b(s). Right: Corresponding E(s)

B. Task Discontinuity Detection

To illustrate task discontinuity, we consider the task shown
in Fig. 7. A letter P is to be printed. The robot starts in the
middle of the letter, proceeding along the arc and to the
base. Then the next layer is elevated above the first one by
3cm and starts at the base of the letter proceeding towards
the top. The algorithm receives both layer trajectory as a
single task definition. An obstacle is deliberately situated in

the environment to make it impossible for the task to be
executed in a single print.

The figure shows how the solution is constrained by the
environment and the evolving obstacles created by the print.
The base must navigate in front of the arm and above the
obstacle. Then as the robot continues to print the second
layer, it can successfully reach the middle of the letter.
However, the task itself prevents the base from reaching the
left side of the second layer. At this point, the search stalls
and an interruption is detected. The base is then allowed to
relocate to the other side and continue printing.

Fig. 7: Robot base path solution when task interruption is necessary.
The series of pictures (top to down) show 25%, 58%, 60% and 90%
task completion. Static Obstacle (Black), Task being printed (Blue
to Green as oldest to newest). Base poses linked through relocation
(Red dashed), RRT* tree is omitted for presentation clarity.

This 11.47m long task takes significantly longer to plan
for, average planning time of 10 attempts being at 116 s.
This is because the interruption detection relies on the
RRT* search stalling. If the stall threshold is decreased,
an interruption can be detected more quickly. However,
this is less reliable and a false positive interruption can



be detected as a small amount of stalling might happen
simply by navigating a narrow path. On the other hand,
throughout experimentation, the algorithm never produced
a false negative. Since RRT edges must be validated and in
small increments, task infeasibility always means the tree
fails to progress and stalls.

VI. CONCLUSIONS AND FUTURE WORK

This paper tackles the Task-Consistent Path Planning prob-
lem in mobile 3D-Printing. Our experiments show that the
proposed solution, based on RRT* and Inverse Reachability
Maps, is able to find base paths that facilitate material
deposition along prescribed task trajectories. However, a
number of limitations will be addressed in future work. The
method proposed makes it likely but does not guarantee the
existence of a continuous joint-space trajectory of the manip-
ulator. This could be addressed by integrating this work with
Cartesian path planner like Descartes [35] or other advanced
path planners [36], [37]. Furthermore, there are examples
in the literature that show that IRM computation could be
made faster [33] or only light-weight features of IRM used
instead [38]. Lastly, perhaps the most interesting implication
of this work is the potential to use it in task decomposition.
Task discontinuities, as described in this paper, could make
for a natural way to segment long trajectories and allocate
them to multiple robots.
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