This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104805, IEEE Access l E E E ACC@SS

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Detecting Drowsy Learners
at the Wheel of e-Learning Platforms
with Multimodal Learning Analytics

RYOSUKE KAWAMURA', SHIZUKA SHIRAI?, (Member, IEEE), NORIKO TAKEMURAS3,
MEHRASA ALIZADEH*, MUTLU CUKUROVA®, HARUO TAKEMURAS®, (Member, IEEE), and
HAJIME NAGAHARA?, (Member, IEEE)

]Fujitsu Ltd., Kawasaki, KANAGAWA 211-8588 JAPAN (e-mail: k.ryosuke @fujitsu.com)

2Cybermedia Center, Osaka University, Osaka, 560-0043 JAPAN (e-mail: shirai@ime.cmc.osaka-u.ac.jp)

*Institute for Datability Science, Osaka University, Osaka, 565-0871 JAPAN(e-mail: takemura@ids.osaka-u.ac.jp)
4Cybermedia Center, Osaka University, Osaka, 560-0043 JAPAN (e-mail: alizadeh.mehrasa@lab.ime.cmc.osaka-u.ac.jp)
*Institute of Education, University College London, WC1H OAL United Kingdom (e-mail: m.cukurova@ucl.ac.uk)
6Cybermedia Center, Osaka University, Osaka, 560-0043 JAPAN (e-mail: takemura@ime.cmc.osaka-u.ac.jp)

"Institute for Datability Science, Osaka University, Osaka, 565-0871 JAPAN(e-mail: nagahara@ids.osaka-u.ac.jp)

Corresponding author: Ryosuke Kawamura (e-mail: k.ryosuke @ fujitsu.com).

This work was supported by MEXT "Innovation Platform for Society 5.0" Program Grant Number JPMXP0518071489.

ABSTRACT

Learners are expected to stay wakeful and focused while interacting with e-learning platforms. Although
wakefulness of learners strongly relates to educational outcomes, detecting drowsy learning behaviors only
from log data is not an easy task. In this study, we describe the results of our research to model learners’
wakefulness based on multimodal data generated from heart rate, seat pressure, and face recognition.
We collected multimodal data from learners in a blended course of informatics and conducted two types
of analysis on them. First, we clustered features based on learners’ wakefulness labels as generated by
human raters and ran a statistical analysis. This analysis helped us generate insights from multimodal
data that can be used to inform learner and teacher feedback in multimodal learning analytics. Second,
we trained machine learning models with multiclass-Support Vector Machine (SVM), Random Forest (RF)
and CatBoost Classifier (CatBoost) algorithms to recognize learners’ wakefulness states automatically. We
achieved an average macro-F1 score of 0.82 in automated user-dependent models with CatBoost. We also
showed that compared to unimodal data from each sensor, the multimodal sensor data can improve the
accuracy of models predicting the wakefulness states of learners while they are interacting with e-learning
platforms.

INDEX TERMS Drowsiness, online education, e-learning platforms, multimodal learning analytics,
physical learning analytics.

I. INTRODUCTION to the COVID-19 pandemic, there is a burgeoning interest in
e-learning and distance learning, and many schools and uni-
versities all over the world have adopted remote learning and
teaching solutions [3], [4]. Despite the increasing demand for
e-learning globally, there are still significant issues that lead
to high dropout rates in online courses. Studies reveal that
student dropout rates in e-learning are significantly higher

than in traditional learning contexts [S]-[7].

In recent years, e-learning has grown rapidly due to advances
in information technologies. Online education is becoming
mainstream worldwide thanks to the development of un-
derlying ICT which has made it feasible technologically,
economically, and operationally [1]. For instance, according
to a report on distance education in American universities,
from 2002 to 2012 both distance and overall enrollments in

higher education institutions witnessed annual growth, yet
since 2012 distance education has grown in demand steadily
despite overall enrollment decline [2]. Moreover, in response
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High dropout rates in e-learning are caused by various fac-
tors. Lee and Choi [8] have reviewed studies conducted over
10 years on factors leading to dropouts in online courses and
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have classified them into three categories that affect learn-
ers’ decision to drop out: student factors, course/program
factors, and environmental factors. Student factors include
psychological and behavioral attributes such as motivation
and satisfaction during students’ interaction with e-learning
platforms. These measures and similar ones are difficult
to identify in e-learning settings with traditional learning
analytics approaches that are limited to the use of log data.
For instance, learner wakefulness during e-learning is vital
to effective engagement, which in turn impacts educational
attainment [9]. However, mere clickstream data, widely de-
ployed in learning analytics studies, is not sufficiently ac-
curate to detect student wakefulness. On the other hand,
the emerging area of multimodal learning analytics [10] is
providing new methods and innovations to leverage and make
sense of physical data to interpret constructs that are hard
to measure and support with traditional learning analytics
approaches.

In this paper, we present our approach to measuring learn-
ers’ wakefulness as they interact with an e-learning platform
using multimodal learning analytics. More specifically, we
explore the following research questions.

RQ1 What factors from multimodal data collected can be
used to inform teacher and learner dashboards for feed-
back and reflection on learners’ wakefulness?

RQ2 To what extent can students’ wakefulness be detected
with the help of multimodal data from their heart rate,
seat pressure, and facial expressions?

The current study contributes to the existing literature in
the following ways: (1) The results of the first research ques-
tion can have implications for the development of teacher and
learner dashboards to help generate explainable insights into
students’ wakefulness states. (2) The findings of the second
research question can have immediate implications for adap-
tive e-learning platforms to provide appropriate feedback and
notifications to enhance students’ learning experience. (3)
The findings of both research questions have direct implica-
tions for student engagement and their learning outcomes in
e-learning settings.

The paper is structured into 6 sections. Section II describes
the motivation of the study and the literature on learner
engagement and wakefulness detection. Section III describes
the methodology we have adopted, and section IV presents
the findings. The results are discussed in section V, which is
followed by a conclusion and future work.

Il. BACKGROUND AND RELATED WORK

In face-to-face learning contexts, teachers can often iden-
tify learners’ internal states, such as engagement, boredom,
concentration, and wakefulness, and are able to adapt their
pedagogical approaches and teaching materials/methods ac-
cordingly. In e-learning settings, however, real-time adapta-
tion is not easy due to physical distance and asynchrony. To
address this problem, prediction methods are used to infer
a variable based on other variables extracted from learning
log data, such as response times to predict engagement

2

[11] and conversational cues to predict affective states of
boredom, confusion, flow, and frustration [12]. However, due
to the complexities of learning processes and the non-linear
relationships between observed and reported cognitive and
emotional states, exclusively relying on log data to decipher
complex internal states of learners is insufficient [13], [14].
To validate findings from log data, new technologies such as
biometric sensors are used to unobtrusively gather physio-
logical data from learners, but systems that use such data to
monitor and predict learners’ internal states as inferred from
their physiological signals are still under development.

One aspect of learners’ psychophysiological states that
has garnered significant attention is engagement. Fredricks
and colleagues have identified three forms of engagement,
namely behavioral, emotional, and cognitive [15]. Behavioral
engagement is associated with learners’ participation and
involvement in the learning process. Emotional engagement,
as the name suggests, refers to learners’ emotional attitudes
towards teachers, peers, and learning, and cognitive engage-
ment involves components that foster the learning process
such as focused attention, memory, and creative thinking
[16]. Wakefulness during online coursework can be consid-
ered an instance of behavioral engagement and thus essential
to ensure improved learning outcomes. However, this type of
behavioral engagement is largely under-researched in learn-
ing contexts.

There is very limited research specifically measuring stu-
dents’ wakefulness with multimodal learning analytics dur-
ing their engagement with e-learning platforms. For example,
in the context of writing tasks, [17] deployed a video-based
estimation approach to investigate learners’ engagement with
the platform. In particular, they analyzed facial expression
data as captured by Microsoft Kinect Face Tracker and
heart rate measures from video-based sensing, using pho-
toplethysmography. They were able to estimate engagement
with a high level of accuracy as measured against concurrent
and retrospective learner self-reports. Area under the ROC
Curve (AUC) was used to evaluate classifier accuracy and
AUC = .758 for concurrent annotations and AUC = .733 for
retrospective annotations were achieved. Despite the fact that
fusion of multimodal data yielded overall best results, face
tracking data alone was shown to be the best indicator. In
another study, [18] examined students’ drowsiness in online
classes using a smart chair with a pressure sensor. There
was no robust evaluation of the results; however, the average
accuracy of 75.2% for student engagement measure was
reported. In addition to these two studies, a past publication
from our research group is one of the few previous studies we
know of to date that explores learner wakefulness using facial
expression and head pose analysis in a video-based online
learning context [19]. Due to the limited number of such
studies, it can be argued that existing research on measuring
wakefulness during students’ engagement with e-learning
platforms is at its early maturity level.

Due to the scarcity of research in this area within educa-
tional settings, we draw upon previous research in the field of
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TABLE 1. The overview of the video lectures and the number of slides.

Topic Video Slide
Information Digitization =~ Computer Composition: Hardware 23
Computer Composition: Software 17
Information and Data 31
Information Networks Network Components 18
& Information Security Communication Protocol 23
IP Address & Encryption Technol- 24
ogy
Review Lesson Review Lesson 40
Mechanism of Internet How Internet works 17
Services Server 19
Web Page Structure 20
Information Technology ~ What is Information System 15
used in Society Database and Data Model 24

driver drowsiness. In this area, drivers’ wakefulness measures
have been a significant point of focus with multiple research
examples. As there can be fatal consequences of drowsiness
while driving, there are a large number of technologically
mature studies conducted to detect driver wakefulness, as re-
viewed by [20]. In general, three types of measures have been
identified for monitoring driver drowsiness: (1) vehicle-based
measures (2) behavioral measures, and (3) physiological
measures. The first category of measures includes a number
of metrics specific to the task of driving and not applicable
to learning contexts. On the contrary, behavioral measures,
such as eye closure and head pose, as well as physiological
measures, such as EEG (electroencephalogram) and ECG
(electrocardiogram) signals, can be collected from learners
during e-learning using a range of devices from simple web
cameras to EEG, heart rate, and eye tracking sensors. Those
studies show the benefits of hybrid over single-mode mea-
sures and provide evidence for the potential of multimodal
data to gain insights into detecting drowsy behaviors auto-
matically. Here, we use multimodal data from students’ heart
rate, seat pressure, and facial expressions and implement
them in measuring their wakefulness during their interaction
with an e-learning platform.

lll. METHOD

In this section, we present information on the experimental
design, multimodal data feature extraction, and the wakeful-
ness estimation method based on multimodal data.

A. EXPERIMENTAL DESIGN

1) Participants and Learning Context

Fifty-three first-year undergraduate students who were en-
rolled in an introductory computer science course agreed to
participate in our study. The computer science course is a
blended learning course consisting of an asynchronous e-
learning session and a synchronous face-to-face session per
week. Each e-learning session includes a number of video
lectures of approximately 10 minutes of length each (Table
1). The videos are voice-over PowerPoint slideshows as dis-
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FIGURE 1. Screenshot of a sample video slide

played in Fig 1. Data for this study was collected as students
were watching the video lectures. We asked the participants
to come to an experiment room when they took the e-learning
sessions. Therefore, a number of students were not able to
join the experiment in person for some sessions. To maintain
data balance, we discarded the data from all those students
who took only one lecture in the experiment and had missing
data. The remaining valid data was collected from 48 students
(mean age of 18.4).

2) Data Collection

Three main sources of data informed the findings of this
study: (1) heart rate and other related parameters measured
with wearable heart rate meters manufactured by Union
Tool Co., (2) seat pressure measured with Smart Rubber
Soft Vision seat pressure detection sensors from Sumitomo
Riko Co. Ltd., and (3) facial expression videos recorded
with Bandicam. Heart rate meters recorded R-R interval
(RRI), body temperature, heart rate variability measures
of low frequency/high frequency (LF/HF), and heart rate
(HR). Seat pressure sensors yielded data on moving distance
from center of gravity position, length of moving state,
length/position/pressure of static state, etc.

3) Procedure

The experiment was run on notebook computers (17.3-inch
screen). While the participants took the e-learning session,
we collected the multimodal data mentioned above and
recorded their screens with recording software (Bandicam,
30fps). After the e-learning session, each screen capture and
its corresponding face recording were combined into one
video. The participants watched this video and self-reported
their wakefulness, understanding, and motivation per slide
on a 4-point Likert scale. This study used only wakefulness
data (1: Asleep, 2: Drowsy, 3: Awake, 4: Wide Awake). To
minimize variability of self-assessments, we counted level
3 and 4 as “Awake." Figure 3 shows the number of slides
covered by each learner as well as their wakefulness states
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from the observation data.

B. MULTIMODAL DATA FEATURE GENERATION

As presented in figure 3, the features are calculated for each
slide since the self-reported data were collected per slide to
reduce the burden of annotation work. Table 2 shows 40-
dimensional features that were extracted from multimodal
data.

1) Heart Rate Features

The heart rate sensor we used in the experiment records RRI,
LF/HF, heart rate which are calculated using the data for the
past 60 seconds, and body surface temperature. RRI stands
for R-R interval and is an index of heart rate variability,
showing cardiac beat-to-beat interval. LF and HF are the
ratio of low frequency (0.04 Hz — 0.14 Hz) power and high
frequency (0.14 Hz — 0.4 Hz) power in heart rate variability.
They are frequently used as indices of stress and rest states.
[21]. Two statistical values (mean, standard deviation) were
extracted from RRI, LF/HF, Heart Rate and body surface
temperature. In total 8 features were calculated as heart rate
features.

2) Seat Pressure Features

Seat pressure can be a proxy of a learner’s posture change.
As we presented in section 2, in a recent study Nomura
et al. (2018) used seat pressure data to estimate student
engagement. In this paper, we use some of the features
introduced in that study. For seat pressure features, the first
step was to classify each frame into a moving state (MS)
and a static state (SS) by using the distance of center gravity
position between the current and previous frames. For this
process, we used 0.1 as a threshold of MS and SS by checking
the distribution of the distance as exemplified in previous
research. We calculated the mean time of MS and SS, ratio
of MS. These values represent how much a student’s upper
body moves. In addition, mean pressures and mean absolute
pressure difference between pressure current and previous
frame were also calculated as features. In total 4 features
were calculated from the seat pressure data for each learner.

3) Facial Expression Features

To extract features from students’ facial expressions, we
used the facial action coding system (FACS) created by
Ekman and Friesen [22]. FACS is commonly used to describe
facial expressions in terms of Action Units (AU). AUs are
fundamental motions of a facial muscle or a group of facial
muscles. In learning contexts, head poses are also important
indices of students’ postures. Therefore, we used OpenFace
[23] to extract AUs and head poses from facial images. Open-
Face outputs were intensity and occurrence of 17 AUs and the
3-D transition and rotation of the student’s head (yaw, pitch,
and roll). We calculated the mean and standard deviation
of AU 2, 15, 26, 45, and head pose. These AUs are Outer
Brow Raiser, Lip Corner Depressor, Jaw drop, and Blink,
respectively. More specifically, AU 26 is related to mouth
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opening and AU 2 and 15 are related to expressions when
struggling to stay awake. All these AUs are chosen based
on existing research on measuring wakefulness of drivers
as referred to in Vural et al. [24]. In total, 28 features were
extracted from facial images.

C. WAKEFULNESS ESTIMATION METHOD BASED ON
MULTIMODAL DATA

In order to investigate the relationship between wakefulness
levels and multimodal features described above to recognize
learners’ wakefulness, we conducted two types of analysis.

First, to find useful features to estimate learners’ sleepiness
level, we investigated differences in the features’ means of
each wakefulness level. As mentioned in section three, we
classified all features based on learners’ self-coding of three
wakefulness levels. We examined the mean difference of
three wakefulness levels (Asleep vs. Drowsy vs. Awake), as
well as two levels (Asleep vs. Others and Awake vs. Others).
Before the analyses, we conducted verification for normality
of variances and used the non-parametric Friedman’s test to
investigate the difference in three levels. Wilcoxon signed-
rank test was used to investigate the difference between
levels. All statistical analyses were performed using SPSS
26.0.0.1.

Second, to investigate the potential of machine learning
techniques utilizing multimodal data to predict learners’
wakefulness automatically, we evaluated the classification
accuracy of several models. We opted for supervised machine
learning approaches. Existing research shows that super-
vised machine learning frequently outperforms unsupervised
learning in real-world classification problems [15]. More
specifically, we have tested multi-class support vector ma-
chines (SVM), Random Forest Classifiers (RF) and CatBoost
Classifiers [25] (CatBoost) to build wakefulness estimation
model in user-independent and user-dependent settings for
three types of classification; Awake vs. Others, Asleep vs.
Others and three levels of wakefulness state (Asleep, Drowsy,
Awake). Although in the user-independent setting we tested
potential of the model for unseen users, the influence of
personalization in module building was evaluated in user-
dependent setting. To evaluate the accuracy of the model,
we employed F1 scores as an index of three degrees of
wakefulness recognition.

In essence, model construction and evaluation involved
four main steps:

1) Splitting data into train and test datasets: We split
data for cross validation of user-dependent and user-
independent settings.

2) Over/undersampling to deal with imbalanced label dis-
tribution: To deal with imbalanced distribution of wake-
fulness state in train dataset, we use SMOTE [26] for
oversampling and random sampling for undersampling.

3) Standardizing train and test datasets: Both train and test
dataset are standardized to have zero-mean and unit
variance by using mean and standard deviation of train
dataset.
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FIGURE 2. The number of slides covered by each learner as well as their wakefulness states

TABLE 2. List of multimodal features

Features Metrics

Constructs Represented

Heart rate (HR) Mean/ standard deviation of

RRI, HR, LF/HF, Body surface temperature

Heart rate in general represents the activity of the
autonomic nervous system. RRI is an index of heart
rate variability. HR is the heart rate. Low frequency
(LF) power and high frequency (HF) power represent
stress and rest states. Body surface temperature

is environmental temperature in clothing.

Seat Pressure (SP) Mean pressure

Mean of each frame’s total pressure and mean of
pressure per second.
They are used to estimate a learner’s motions.

Mean time of MS (moving state) and
SS (static state)

Represents how long a learner moves or stays still.

Ratio of MS (moving state)

Represents how often a learner changes posture.

Mean of absolute pressure difference

between pressure current and previous frame.

Represents how large and how often a learner
changes posture along vertical axis.

Facial Expression (Face) (occurrence and intensity)

Mean/ standard deviation of AU 2, 15, 26, 45

AU?2: Outer Brow Raiser, AU15: Lip Corner Depressor,
AU26: Jaw drop, AU45: Blink.

Mean/ standard deviation of head rotation

(yaw, pitch, roll)

Represents how large a learner’s head rotation is.

Mean/ standard deviation of head transition

along x, y, z

Represents how large a learner’s head transition is.

4) Building a model with train dataset and evaluating it
with test dataset: SVM, RF and CatBoost are used to
build the model.

To evaluate the model in the user-dependent setting, we
employed leave one-group out cross validation. We divided
48 subjects into 6 groups, and every group was used as test
dataset at a time.

Similarly, in the user-independent setting, we used leave
one-group out cross validation. The data from One group is
used as test dataset, and the data from other groups is used to
train the model. These steps are repeated until every group’s
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data is used as test. The output task was to recognize three
degrees of wakefulness (Asleep, Drowsy and Awake), two
degrees of wakefulness (Asleep vs Others, Awake vs Others).

In the user-dependent setting, the first one tenth of data
from the test group in each day’s lecture is included in the
train dataset. In this setting, train and test datasets include
data from the same participants. This setting is not an unreal-
istic constraint. As a matter of fact, when a learner starts the
e-learning task, the camera can use the data from the first few
minutes as train data with labels (the person is expected to be
awake).
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IV. RESULTS
A. ANALYSIS OF MULTIMODAL FEATURES

Firstly, we classified all features based on three wakefulness
levels (Asleep vs. Drowsy vs. Awake) and we ran Friedman’s
test, and post hoc tests (Scheffe’s test). We discarded the data
from those students who did not display all three patterns
of wakefulness, and finally analyzed the data from the re-
maining 18 participants. Table 3 shows those features which
yielded a significant difference. Post hoc comparisons show
that the mean occurrence of AU26 (JawDrop) in Drowsy state
is significantly higher than in other states (p < .01). The mean
of intensity of AU26 in Asleep state is significantly lower
than in other states. (Asleep vs. Drowsy: p < .01, Asleep vs.
Awake: p < .05). The mean occurrence of AU45 (Blink) in
Awake state is significantly lower than in other states (Awake
vs. Drowsy: p < .05, Awake vs. Aspleep: p < .01). The mean
of intensity of AU45 in Awake is significantly lower than in
Asleep state (p < .01). Mean body surface temperature has
a significant difference across all states (p < .01). The lower
the participants’ arousal levels, the higher their body surface
temperature.

Secondly, we classified all features based on two wakeful-
ness levels (Asleep vs. Others and Awake vs. Others), and we
ran paired Wilcoxon signed rank test. We present the features
that show a significant difference for Asleep vs. Others in
Table 4, and for Awake vs. Others in Table 5 respectively.

The result of Asleep vs. Others comparison shows that
the SD of occurrence and intensity of AUO2 (Outer Brow
Raiser), the SD of intensity of AU15 (Lip Corner Depressor),
mean intensity of AU45, SD of Pitch and Roll, mean head
transition toward y-axis, and mean body surface temperature
in the Asleep state are higher than the other states. On the
other hand, the mean occurrence and intensity of AU26 (Jaw
Drop), and SD of body surface temperature are lower than in
the other states.

6

The result of Awake vs. Others comparison shows that
the mean and the SD intensity of AU0O2 and mean body
surface temperature in the Awake state are lower than in other
states. Additionally, the SD of body surface temperature in
the Awake state is higher than in other states.

B. EVALUATION OF WAKEFULNESS ESTIMATION

In this section, we initially present the baseline recognition
results of SVM, RF and Catboost classifiers and evaluate
these models in user-independent and user-dependent set-
tings for three types of classification; Awake vs. Others,
Asleep vs. Others and three levels of wakefulness state.

1) Automated detection of learners’ wakefulness state based
on the results of ANOVA and t-test

Through ANOVA, we obtained some potential features
which yielded statistically significant differences across
wakefulness states (Table 3). These features are considered
to be effective for more accurate automated detection of
learners’ wakefulness. Therefore, we evaluated the case of
using these features to build a model and estimate learners’
wakefulness state in user-dependent and independent set-
tings.

Table 6 shows the average macro-F1 scores with features
based on the results of ANOVA. In both user-independent and
user-dependent settings, all three types of classifier marks
same average Fl-macro scores, 0.36 and 0.39. The scores
in the user-dependent setting is higher than that of the user-
independent.

Table 7 and 8 show the average macro-F1 scores with
features based on the results of t-test for recognizing two
degrees of wakefulness state: Asleep vs Others, Awake vs
Others. In Asleep vs Others, the scores of Catboost in both
user-independent and user-dependent settings, 0.62 and 0.66,
are higher than other classifier. In Awake vs Others, RF in
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TABLE 3. Results of Friedman’s test in three-level wakefulness classification

Feature x2 P Ranks
AU26 (Mean occurrence) 13.00 .002  Awake 1.83
Drowsy  2.67
Asleep 1.50
AU26 (Mean intensity) 7.44 024  Awake 2.11
Drowsy  2.39
Asleep 1.50
AU45 (Mean occurrence) 7.00 .030 Awake 1.50
Drowsy  2.17
Asleep 2.33
AU45 (Mean intensity) 8.11 .017 Awake 1.56
Drowsy 1.94
Asleep 2.50
Body surface 2797 .000 Awake 1.11
temperature (Mean) Drowsy  2.03
Asleep 2.86

TABLE 4. Results of Wilcoxon signed rank test in Asleep vs. Others

Feature VA P

AUOQ2 (SD of occurrence) -2.069  .039
AUOQ2 (SD of intensity) -2.286  .022
AUI1S5 (SD of intensity) -2.983  .003
AU26 (Mean occurrence) -2.591  .010
AU26 (Mean intensity) -2.025  .043
AU45 (Mean intensity) -2.940  .003
Pitch (SD) -1.982  .048
Roll (SD) -1.982  .048
Head transition toward y-axis (Mean) -1.982  .048
Body surface temperature (Mean) -3.332 .001
Body surface temperature (SD) -2.243  .025

TABLE 5. Results of Wilcoxon signed rank test in Awake vs. Others

Feature VA p

AUO2 (Mean of intensity) -2.067 .039
AUO2 (SD of intensity) 2274 .023
Body surface temperature (Mean)  -4.775  .000
Body surface temperature (SD) -3.052  .002

user-dependent setting marks better performance than other
classifiers. On the other hand, user-independent setting, SVM
is the highest score, 0.56.

2) Automated detection of learners’ wakefulness state with
all multimodal features

For this task, we used unimodal (Face, SeatPressure,
HeatRate) and multimodal features as input to the machine
learning model. These features are explained in detail in
section 3.3 and summarized in Table 2. Table 9, 10, and
11 show the average Fl-macro scores of three types of
classification task in SVM, RF, and Catboost with unimodal
and multimodal features in each output task, respectively.

In the user-independent setting, multimodal features and
HeartRate mark the highest scores, and there are no differ-
ences among the three classifiers. Although multimodal fea-
tures outperformed other features in all classifiers in Asleep
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TABLE 6. Average macro-F1 scores with features based on the results of
ANOVA

user-independent  user-dependent

SVM 0.36 0.38
RF 0.36 0.38
CatBoost 0.36 0.38

TABLE 7. Average macro-F1 scores of Asleep vs Others features based on
the results of t-test

user-independent  user-dependent

SVM 0.57 0.60
RF 0.57 0.59
CatBoost 0.62 0.66

TABLE 8. Average macro-F1 scores of Awake vs Others features based on
the results of t-test

user-independent  user-dependent

SVM 0.56 0.60
RF 0.55 0.71
CatBoost 0.55 0.62

TABLE 9. Average macro-F1 scores of three degrees of wakefulness
classification in user-independent setting

HeartRate  SeatPressure  Face  Multimodal
SVM 0.37 0.35 0.37 0.37
RF 0.37 0.34 0.36 0.37
CatBoost 0.37 0.34 0.37 0.37

TABLE 10. Average macro-F1 scores of Asleep vs Others in
user-independent setting

HeartRate  SeatPressure  Face  Multimodal
SVM 0.54 0.53 0.59 0.61
RF 0.53 0.50 0.59 0.62
CatBoost 0.55 0.53 0.62 0.65

TABLE 11. Average macro-F1 scores of Awake vs Others in
user-independent setting

HeartRate  SeatPressure  Face  Multimodal
SVM 0.58 0.53 0.55 0.59
RF 0.56 0.54 0.54 0.55
CatBoost 0.57 0.54 0.55 0.55

vs Others setting, HeartRate feature in RF and CatBoost
marks a higher score than other features and only multimodal
features mark highest score in Awake vs Others setting.
Compared to the results in Table 6, the score of three-level
wakefulness state recognition in user-independent setting,
0.37 is lower than that in selected features based on ANOVA.
On the other hand, the scores of two-level classifications
(Asleep vs Others, Awake vs Others) are higher than three-
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TABLE 12. Average macro-F1 scores of three degrees of wakefulness
classification in user-dependent setting

HeartRate  SeatPressure  Face  Multimodal
SVM 0.41 0.35 0.50 0.54
RF 0.42 0.35 0.46 0.47
CatBoost 0.43 0.37 0.48 0.53

TABLE 13. Average macro-F1 scores of Asleep vs Others in user-dependent
setting

HeartRate  SeatPressure = Face  Multimodal
SVM 0.54 0.49 0.75 0.77
RF 0.50 0.48 0.58 0.71
CatBoost 0.55 0.51 0.73 0.82

TABLE 14. Average macro-F1 scores of Awake vs Others in user-dependent
setting

HeartRate  SeatPressure  Face  Multimodal
SVM 0.65 0.60 0.72 0.75
RF 0.64 0.58 0.66 0.71
CatBoost 0.66 0.59 0.74 0.77

level. These results indicate that effectiveness of feature value
selection is limited.

Table 12, 13, and 14 show the average Fl-macro scores
of cross validation in SVM, RF, and Catboost with unimodal
and multimodal features in three types of classification. As
the table indicates, multimodal features outperformed uni-
modal features with regard to all classifiers. In addition, the
scores of multimodal features, HeartRate and Face in the
user-dependent setting is higher than the user-independent
setting although there are minor differences in the scores of
SeatPressure. In two-level classification, Awake vs. Others
and Asleep vs. Others settings, multimodal features also
outperformed unimodal features and Catboost marks the
highest score in both Awake vs. Others and Asleep and
Others. Compared to Asleep vs. Others, the scores in HR
and SeatPressure are higher in case of Awake vs. Others.
This result indicates that HR and SeatPressure data have the
possibility to contain different kind information from facial
images. It can be assumed that the features we extracted are
affected by individual differences, and in the user-dependent
setting, the effect of individual differences is decreased since
data from the same person is included in the train and test
datasets.

Compared to the results of features selected based on
ANOVA and t-test in IV-B1, the results of all multimodal
features yielded higher scores. This is because ANOVA does
not take into account combination of features, and thus the
model based on it might be less effective than a model which
considers combined features.

V. DISCUSSION

Although the automated detection approach has good po-
tential for adaptive instruction, in essence, our multimodal
learning analytics approach aims to provide explicit and
comprehensible ways of presenting information to learners
and teachers in order to support them in making informed de-
cisions [27]. Therefore, in our first research question, we in-
vestigated the factors from multimodal data that can be used
to inform teacher and learner dashboards for feedback and
reflections on learners’ wakefulness. Our results showed that
particularly the facial features, the head position, and body
surface temperature were useful to identify characteristics
of learners’ drowsy behaviors. Before falling asleep learners
tended to blink more frequently, turn down their lip at the
corners, and move their heads more. Furthermore, similar to
previous research showing that increasing skin temperature
might affect sleep propensity [28], our investigation also
obtained similar results.

Our second research question was: To what extent can stu-
dents’ wakefulness be detected with the help of multimodal
data from their heart rate, seat pressure, and facial expres-
sions? The results show that we can predict individual learn-
ers’ asleep, drowsy, and awake states with a high accuracy
and confidence with the help of multimodal data. The best
performing machine learning model was built using CatBoost
Classifier algorithm. These results are comparable to and
outperform some of the state-of-the-art results in measuring
learner engagement with e-learning platforms with multi-
modal data [17]. These kinds of automation approaches are
particularly useful for the provision of personalized support
to learners through intelligent tutoring systems and adaptive
e-learning platforms which can be implemented at a scale.

In these investigations, one of our goals was to gener-
ate transparency in models that predict learners’ drowsiness
from multimodal data. These insights can be used to sup-
port teachers’ and learners’ interpretations of the machine
learning decisions in predicting drowsy learner behaviors.
Allowing opportunities for teachers and learners to interpret
and scrutinize analytics suggestions generated can lead to
better feedback and reflection opportunities. These insights
generated from the models can be deployed in multimodal
learning analytics tools that provide suggestions for interven-
tions to teachers and learners. As our answer to the second
research question indicates, accurate detection of drowsy
learner engagement with e-learning platforms is important.
However, learners and teachers also need to know potential
reasons for the analytics’ predictions of learner states. This
increases human agency in transparent models which can
also lead to better adoption in practice [29].

VI. CONCLUSION

In this paper, we focus on the multimodal sensor data to
predict learners’ three states of Asleep, Drowsy, and Awake
during their engagement with an e-learning platform. First,
we generated some insights into the multimodal character-
istics of each state based on the results of the statistical

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104805, IEEE Access

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

analysis. Second, we showed the potential of the multimodal
data and supervised machine learning for the automated
predictions of learners’ three engagement states, especially
in user-dependent settings.

Our findings have significant implications for improving
student engagement, and indirectly their learning outcomes,
in e-learning contexts. Compared to traditional log data anal-
ysis and unimodal investigations, multimodal data provides
significant improvements to the detection of learner engage-
ment in e-learning platforms. In our future research, we plan
to implement our prediction models in teacher and learner
dashboards to evaluate their value in improving learning
outcomes in e-learning contexts.
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