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“It’s not the strongest that survive, nor the most intelligent, but the most responsive to change.” 

 

— Popular misquotation of Charles Darwin †1 

 

 

 

 

 

 

 

 

 

1†In fact, a paraphrase of a paraphrase by Leon C. Megginson, Petroleum Management, (1964). 
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Abstract 

In this thesis, I interrogate the mechanisms of association between immune insults in prenatal 

development and psychotic disorders, with a particular focus on schizophrenia. Schizophrenia has been 

cast, from different neuroscientific perspectives, as a polygenic disorder, as a neurodevelopmental 

disorder and as a sensory processing disorder. The dysconnection hypothesis draws together these strands 

of research to construct a coherent picture of how schizophrenia may arise, specifically implicating a 

functional synaptopathy as the aetiological core of psychotic symptoms. One strand that has not yet been 

woven into this tapestry is the immune system, which has been overwhelmingly linked with psychosis 

in recent years. I set out to bridge these interpretations using a variety of methods, namely, statistical 

genetics, cell biology, electroencephalography and theoretical neurobiology. Chapter 1 is a 

transcriptome-wide association study of the mismatch negativity (MMN), exploring the genetic 

underpinnings of sensory processing itself. The MMN is an electroencephalographic signature that is 

consistently altered in patients with psychosis. Chapter 2 is a differential gene expression study of human 

neural progenitor cells stimulated in vitro with pro-inflammatory cytokines, showing suppressed 

transcriptional responses to inflammation in cells from people with schizophrenia. These findings are 

potentially important for the understanding of synaptic dysfunction in schizophrenia that may underwrite 

false inference of the kind associated with delusions and hallucinations. Finally, Chapter 3 considers the 

immune system itself as performing an elementary kind of inference: immunoceptive inference. This 

offers a first principles account of the immune response that extends the reach of immunology in helping 

to understand psychiatric disorders, as well as a new way of understanding interactions between the 

immune system and the brain. 
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Impact Statement 

The work presented in this thesis bridges cognitive neuroscience, psychiatric genetics, cell biology and 

theoretical neurobiology. Each of these fields have their own well-established bodies of literature on the 

aetiology of psychotic disorders, but so far have had minimal overlap. The first chapter addresses two 

major open questions. Firstly, it interrogates the biological mechanisms that underlie the computational 

model of psychosis as a disorder of ‘aberrant precision’; to be able to understand this would have major 

consequences not only for the systems-level conceptualisation of psychosis, but potentially 

computational psychiatry as a whole, where the idea of the brain as a predictive organ predominates. It 

does so by identifying genes whose expression influences the mismatch negativity (MMN), a measure 

of prediction ‘error’. We have assembled here, to my knowledge, the largest dataset of the MMN to date. 

This, as well as the recently developed transcriptome-wide association study approach used, has made it 

possible to conduct the first ever MMN genetic association study. Secondly, therefore, I am able to 

endorse the notion of the MMN as a psychosis endophenotype. MMN amplitude is reliably attenuated in 

people with psychosis and studying the genetics of a well-defined and objectively quantifiable measure 

like the MMN has strong potential to yield key insights into the biological mechanisms of psychosis 

development. However, an important criterion for a trait being a useful endophenotype is genetic overlap 

with the disease, which has not, until now, been possible to validate for the MMN.  

The second chapter identifies new gene targets for future research on the influence of maternal 

immune activation on schizophrenia susceptibility and resilience. These findings exemplify differences 

in how the brains of people with schizophrenia may have responded to infection or inflammation during 

prenatal development and suggest immune insults early in life can alter neurotransmission – and 

therefore, potentially, the course of subsequent neurodevelopment. These findings are also potentially 

important for the understanding of synaptic dysfunction that may underwrite hallucinations and delusions 

in schizophrenia. Finally, the third chapter offers a first principles account of the immune response that 
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extends the reach of immunology in helping to understand psychiatric disorders, as well as a new way of 

understanding interactions between the immune system and the brain. These formulations demonstrate 

the benefit of a surrender of mind-body and brain-body dualisms that may be of particular importance to 

psychiatric practice, where it encourages a holistic treatment of patients. For example, with an embodied 

perspective on the mind, a patient presenting with psychosis is more likely to be treated with reference 

to the mechanisms leading to this syndromic endpoint, whether that be schizophrenia (managed with 

antipsychotics), or an alternative diagnosis such as Cushing’s syndrome, which can be effectively treated 

by normalising cortisol levels. Furthermore, this embodied perspective is fundamental to progressing the 

understanding of psychotropic drugs; for example, why muscle relaxants such as benzodiazepines reduce 

anxiety. 
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Introduction 

Schizophrenia and psychosis 

Schizophrenia is a devastating mental illness that affects over twenty million people worldwide (Disease 

and Injury Incidence and Prevalence Collaborators, 2018). Its most distinguishing symptom is 

psychosis2, which usually occurs in episodes: some individuals experience a single episode, while others 

experience multiple episodes over the course of their lives (American Psychiatric Association, 2013). 

Psychosis is characterised by hallucinations (percepts that do not correspond with ‘reality’3) without 

insight, and delusions (strongly held beliefs that, again, do not correspond with reality). Importantly, 

these hallucinations and delusions are usually persecutory in nature, which is one of the things that makes 

this a particularly distressing illness: the most common psychotic hallucinations involve ‘hearing voices’ 

that are often threatening or critical4 (Nayani & David, 1996; Thorup et al., 2007), and the most common 

delusions involve paranoia about, for example, being followed or poisoned (American Psychiatric 

Association, 2013; Nayani & David, 1996). In addition, a range of other (non-episodic) symptoms may 

be observed in patients with schizophrenia; for example, confused thoughts, cognitive deficits, low 

motivation and difficulties with concentration (American Psychiatric Association, 2013). There are 

effective antipsychotic medications that can alleviate some of these symptoms – albeit with common and 

potentially serious side effects (Lally & MacCabe, 2015; Rummel-Kluge et al., 2010). However, a 

mechanistic understanding of why these medications work (when they do), and indeed what causes 

psychosis, is largely elusive: why does a dopamine receptor antagonist make a person less likely to hear 

malevolent voices?  

 

2 Psychosis can also occur as a symptom of other neuropsychiatric disorders such as bipolar disorder or major depression. 

3 ‘Reality’ in this diagnostic criterion implicitly refers to ‘objective’ percepts as agreed upon by a majority of observers. 

4 Although, interestingly, the nature of the voices may be highly dependent upon cultural influences (Luhrmann et al., 2015). 
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What is clear is that schizophrenia is a hugely multi-faceted disorder: it has a significant genetic 

component (Brainstorm Consortium, 2018; Hilker et al., 2018; Pardiñas et al., 2018); there are associated 

cognitive deficits in, for example, working memory (J. H. Thygesen et al., 2020) and well-established  

electrophysiological correlates (Bramon et al., 2004; Bramon et al., 2005; Erickson et al., 2016; Naatanen 

et al., 2012; Shelley et al., 1991); there are strongly-associated pharmacological risk factors such as 

cannabis use (D'Souza et al., 2005; Hajos et al., 2008; van Os et al., 2008); there are several links with 

autoimmune disorders and infection (Benros et al., 2011); and, of course, there is a neurodevelopmental 

factor, which is still not well understood (Insel, 2010). What we are currently in need of is a way to 

integrate these lines of evidence into a coherent aetiology. 

 

Schizophrenia as a genetic disorder 

Schizophrenia has been estimated to have a heritability as high as 60-80% (Bergen et al., 2012; 

Brainstorm Consortium, 2018; Hilker et al., 2018) and has a well-established polygenic profile: a seminal 

genome-wide association study (GWAS) by the Psychiatric Genetics Consortium (PGC) linked 108 

genetic loci with the disorder in a large cohort of European ancestry (Schizophrenia Working Group of 

the Psychiatric Genomics, 2014). A more recent study found 19 schizophrenia-associated loci in a large 

East Asian sample, with effects of common genetic variants that were highly similar to the European 

ancestry cohorts, suggesting that the biology of schizophrenia is shared between populations (Lam et al., 

2019). Each of these loci, or single nucleotide polymorphisms (SNPs), have small odds ratios 

individually (generally less than 1.2) for the risk of developing schizophrenia, but collectively contribute 

considerably to the variance in liability (Bray & Hill, 2016). However, many of these loci are in non-

coding regions of the genome, which has made it challenging to interpret how variants at these loci elicit 

psychopathology (Hall, Pain, et al., 2020; Schizophrenia Working Group of the Psychiatric Genomics, 
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2014). It is likely that many of these variants are, rather, regulatory elements that influence genes at a 

distance (Bray & Hill, 2016; Gusev et al., 2018).   

Translating these genetic associations into molecular mechanisms requires, first and foremost, an 

understanding of which genes are impacted by the variants; and how, when and where these effects 

transpire (Bray & Hill, 2016; Gusev et al., 2018; Hall, Pain, et al., 2020). A recent update from the PGC 

with an even larger European ancestry sample has been released as a preprint, showing genome-wide 

significant associations with 270 loci (Ripke et al., 2020) and enrichment for genes involved in synaptic 

biology, including the glutamate receptor subunit gene GRIN2A.  

In addition to these common risk variants that collectively contribute to schizophrenia risk, there 

are also a number of rare risk variants (present in <1% of the general population) and de novo mutations 

that are known to contribute as well (Flint, 2016; Marshall et al., 2017; Singh et al., 2016; Singh et al., 

2017). These rare variants often carry much higher odds ratios for schizophrenia risk (Bray & 

O'Donovan, 2019; Flint, 2016), as evidenced by exome sequencing studies (Schizophrenia Exome Meta-

Analysis (SCHEMA) Consortium et al., 2020; Singh et al., 2016; Singh et al., 2017) and copy number 

variants (CNVs), which are deletions, duplications or insertions of large sequences of DNA (>1 kb) 

(Marshall et al., 2017). Indeed rare CNVs appear twice as frequently in genomes of people with 

schizophrenia than those of the general population (Bray & O'Donovan, 2019). Moreover, one of the 

highest risk groups are people with DiGeorge syndrome (a.k.a. velocardiofacial syndrome) who bear a 

CNV in the 11.2 region of chromosome 22. Individuals with this congenital disorder are ~30 times more 

likely to develop schizophrenia than the general population (Charlson et al., 2018; Murphy et al., 1999); 

and although 22q11.2 deletion occurs in only 1 out of every 4000 live births, it is present in around 1 in 

100 people with schizophrenia (Scambler, 2000). This tends to be a very large deletion (~1.5-3 Mb) 

which omits at least 40 protein-coding genes and has systemic effects (e.g., on cognition, immunity, 

endocrinology, heart and lung function). Many of these genes are highly expressed in the brain and are 
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involved in cortical development and neuronal migration (Jonas et al., 2014). A seminal study by 

Marshall et al (2017) showed across a sample of 41,321 subjects that CNV ‘burden’ (the extent of copy 

number variation across the genome) significantly contributes to schizophrenia risk. Exome sequencing 

studies that search large samples for rare variation at the SNP level amidst protein-coding genes also 

show that patients with schizophrenia exhibit a high burden of these rare variants – particularly those 

causing loss of function of SETD1A, which encodes a histone modifier (Singh et al., 2016; Singh et al., 

2017). A recent preprint that uses exome sequencing further identifies rare coding variants in 10 genes 

which confer significant risk for schizophrenia (Schizophrenia Exome Meta-Analysis (SCHEMA) 

Consortium et al., 2020).    

A key approach to further elucidating the mechanisms by which these genes influence disease 

risk are studies of gene expression: the extent to which the genetic ‘blueprint’ (DNA) is transcribed and 

translated to produce proteins. There is an additional level of nuance that can be captured at this level, as 

the expression of a gene is influenced bidirectionally by the DNA sequence that encodes it (and any 

genomic elements regulating it), as well as the environmental influences that may suppress or enhance it 

(Boyce et al., 2020).  

An accepted way of inferring the level of transcription of a gene is to count the RNA ‘reads’ 

corresponding to that gene at a given time-point – traditionally averaged across cells in a tissue sample, 

though single-cell RNA sequencing is now possible (Shapiro et al., 2013). Gene expression studies have, 

in the past, only been possible in relatively small samples and by analysing individual genes, usually 

using animal models or post-mortem tissue (Bray & Hill, 2016; Gusev et al., 2018; Warre-Cornish et al., 

2020). However, novel methods such as transcriptome-wide association studies (Chapter 1) have made 

possible genome-wide profiling of gene expression in much larger cohorts – which has already been 

fruitfully leveraged to yield mechanistic insights, such as the relevance of chromatin activity to the 

development of schizophrenia (Gusev et al., 2018; Hall, Medway, et al., 2020). Differential gene 
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expression analysis in human in vitro neural networks has now also been made possible due to recent 

advances in stem cell biology (Chapter 2) (Brennand & Gage, 2011; Takahashi & Yamanaka, 2006). At 

this stage of schizophrenia research, therefore, gene expression studies offer one of the most relevant 

molecular approaches to elucidating the pathophysiology of the disorder.  

These advances are promising for the current paradigm-shifting struggle in psychiatry to integrate 

a symptom-based5 classification of mental disorders with advances in genetic and neuroscientific 

research on psychopathology (Carcone & Ruocco, 2017; Insel, 2010). An important way of addressing 

this struggle – in the field of psychiatric genetics – has been to identify endophenotypes for psychiatric 

disorders. An endophenotype is a well-characterised behavioural or physiological measure – ideally a 

response measure such as an event-related potential – that sits between genetic aetiology and the 

phenomenology of a disorder (Gottesman & Gould, 2003; Iacono et al., 2017; Insel & Cuthbert, 2009). 

In essence, identifying these intermediate phenotypes is an attempt to understand the mechanisms by 

which genetic variants influence a phenotype, and to stratify a heterogeneous, polygenic disease 

classification by associating a subset of genetic influences with a subset of symptoms or characteristics. 

Such stratification may also make it easier to study schizophrenia in model systems (can a mouse be 

schizophrenic?) by setting the more achievable goal of modelling specific endophenotypes for the 

disorder and/or examining the impact of genes that GWASs and gene expression studies have associated 

them with. 

 

Schizophrenia as a sensory processing disorder 

From a computational perspective, psychosis has also been conceptualised as a disorder of aberrant 

salience or sensory precision (Kapur, 2003; Limongi et al., 2018). This account comes from the notion 

 

5 In many cases externally observed rather than phenomenological (American Psychiatric Association, 2013) 
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of ‘predictive coding’ in the brain, which considers the brain as a statistical organ that maintains a model 

of its environment that generates predictions, compares them to sensory input and updates itself to 

minimise discrepancies (or prediction ‘errors’) (Helmholtz, 1866/1962; Knill & Pouget, 2004). In other 

words, the brain is not just passively taking in sensory information at any given moment, but also 

integrating it with previous experience – such that our experiences are not carbon copies of the external 

world but rather coloured by what our brains deem most likely to be true. The term ‘belief’ is taken from 

probability theory, in the sense of Bayesian beliefs: it applies to any sort of interaction between a brain6 

and its environment – even at the most fundamental, reflexive levels. Crucially, this kind of (Bayesian) 

belief updating depends upon the relative precision of prior beliefs and sensory evidence; ‘precision’ 

being a measure of predictability or certainty (or, strictly speaking, inverse variance of a distribution over 

a belief). If sensory data are imprecise (e.g., as with a blurred image), prior beliefs are less likely to be 

updated. That said, it is important to note that the precisions themselves are also being predicted (i.e., 

high order predictions of predictability): different individuals may have different thresholds of relative 

precision at which they will update a particular belief. An intuitive analogy for this Bayes optimal 

precision weighting could be a scientist ascribing certainty (e.g., signal-to-noise) to experimental data 

and weighing these data against an existing body of prior knowledge, to decide whether to accept or 

reject the hypothesis at hand (Parr & Friston, 2019).  

The hierarchical organisation of the brain is particularly important for predictive coding in the 

brain. ‘Bottom-up’ prediction errors – elicited by signals from sensory receptors – are thought to be 

passed up cortical hierarchies, wherein ‘higher levels’ of the cortex contextualise prediction errors that 

are passed up from ‘lower’ levels. Prediction errors that cannot be resolved at a particular level are passed 

up; each upward progression corresponding to higher degrees of abstraction and likelihood of conscious 

 

6 Indeed, any organism and its environment. This idea will be expanded upon in Chapter 3. 
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control (R. A. Adams et al., 2013; Benrimoh et al., 2019; Limongi et al., 2018). In psychosis, the 

precision-weighting of sensory stimuli and prior beliefs is generally thought to be off-kilter (Limongi et 

al., 2018). This is supported by the fact that patients with psychosis consistently show significantly 

smaller mismatch negativity (MMN) than healthy controls (Erickson et al., 2016; Naatanen et al., 2012; 

Shelley et al., 1991): the MMN is an electroencephalographic signature thought to be representative of 

prediction ‘error’ (Chapter 3). Here, prior beliefs may be ‘overweighted’ in hallucinations (as in, 

perception can even occur in the absence of any incoming sensory information) and ‘underweighted’ in 

the case of illusions (schizophrenic individuals are often more resilient to certain illusions than controls): 

an inconsistency that, it has been suggested, can be better understood in a hierarchical context (Benrimoh 

et al., 2019; Brown et al., 2013; Powers et al., 2017). The current account, put forward by the 

dysconnection hypothesis (unpacked in detail below), is that people with psychosis hold overly precise 

prior beliefs (as may be the case with delusions) as a compensation for a failure of ‘sensory attenuation’, 

which is, heuristically, the ability to ignore sensory stimuli. Sensory attenuation is particularly important 

for sensations that are elicited by self-generated actions7 to protect predictions of an intended movement 

from revision by ascending prediction errors. Failures of sensory attenuation, which create uncertainty 

about control over an action, have been associated with misattribution of agency as seen in psychosis: it 

appears that people with psychosis may ‘explain away’ this uncertainty by assuming their actions are 

under the control of another (R. A. Adams et al., 2013; Brown et al., 2013; Parees et al., 2014).  

However, the synaptic and molecular mechanisms by which predictive coding is realised in the 

brain are still unclear. To understand this would have major consequences not only for the systems-level 

 

7 In healthy subjects sensory attenuation has been demonstrated by the inability to tickle oneself (Blakemore et al., 2000; Van 

Doorn et al., 2014). 
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conceptualisation of psychosis, but potentially computational psychiatry as a whole, where the idea of 

the brain as a predictive organ predominates. 

 

Schizophrenia as an immune disorder 

Prenatal exposure to infection is a significant risk factor for schizophrenia (Byrne et al., 2007; Estes & 

McAllister, 2016; Kepinska et al., 2020; Meyer, 2019; Warre-Cornish et al., 2020). This notion gained 

traction in the 1990s, when epidemiological studies increasingly identified season of birth as a major risk 

factor (Jablensky, 1995; Torrey et al., 1997): babies born in Winter or Spring appeared to have a 

significantly increased risk of developing psychosis later in life (Brown, 2006; Smith et al., 2007). 

Eventually, the finding was interpreted to reflect the fact that Winter or Spring birth would mean a 

coincidence of early- to mid-pregnancy with influenza season (Brown, 2006; Brown et al., 2004; Kunugi 

et al., 1995; Mednick et al., 1988; Sham et al., 1992). A retrospective study of archived maternal serum 

samples indeed found that presence of influenza antibodies in early- to mid- pregnancy sera increased 

the probability of schizophrenia in offspring 7-fold (Brown et al., 2004).  

However, it emerged that this effect of prenatal exposure to infection is not restricted to the 

influenza virus: a similar effect has been seen, for example, with bacterial infections such as pneumonia 

and tonsilitis; as well as the parasite Toxoplasma gondii (Estes & McAllister, 2016; Knuesel et al., 2014; 

Patterson, 2009). Nor is elevated risk due to infection unique to schizophrenia: prenatal infection has also 

been linked to other neuropsychiatric conditions such as autism (Brown & Meyer, 2018; Estes & 

McAllister, 2016; Patterson, 2009) and bipolar disorder (Canetta et al., 2014). This began to suggest that 

it may not be specific antigens that increase the risk of schizophrenia, but rather the immune responses 

that they trigger (Estes & McAllister, 2016; Kepinska et al., 2020; Meyer, 2019). Subsequent studies in 

animal models of prenatal development indeed showed that induction of the maternal immune response, 

in the absence of infection, resulted in phenotypes characteristic of schizophrenia, such as attenuated pre-
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pulse inhibition as well as working memory and synaptic deficits (Meyer, 2014, 2019). Post-mortem 

transcriptomic studies of brain tissue from patients with schizophrenia have shown significant 

enrichment for genes involved in regulating the immune response (Gandal et al., 2018). This is also 

supported by the significant overlap between several autoimmune disorders and schizophrenia; for 

example, systemic lupus erythematosus, psoriasis and rheumatoid arthritis (Chen et al., 2019; Tiosano et 

al., 2017; Ungprasert et al., 2019). Indeed, some accounts even suggest that schizophrenia is an 

autoimmune disorder (Adams et al., 2012; Knight et al., 1992).  

Genetic association studies have also revealed genes involved in immune pathways to be some 

of the most significant schizophrenia risk factors; most notably, genes within the major 

histocompatibility complex (MHC) regions of the genome, such as the human leukocyte antigen (HLA) 

genes (Marshall et al., 2017; Schizophrenia Working Group of the Psychiatric Genomics, 2014; Wright 

et al., 2001) and the gene encoding complement component C4A8 (Sekar et al., 2016). This last is a 

landmark study that uses multiple techniques in addition to genetic association to thoroughly implicate 

C4A expression in the development of schizophrenia. Sekar et al. (2016) further suggest a potential 

mechanism by which C4A confers risk for schizophrenia: stimulation of excessive synaptic pruning. 

They first show, using immunocytochemistry of post-mortem prefrontal and hippocampal tissue, that 

C4A is present at synapses. They then go on to demonstrate that C4A deficient mice exhibit defects in 

synapse remodelling. It has long been speculated that the cortical synaptic pruning that typically occurs 

during adolescence and early adulthood  may be  of particular relevance to schizophrenia, given that this 

period is also when schizophrenia tends to become clinically apparent (Feinberg, 1982). (Please see ‘The 

synaptic pruning hypothesis’, below, for more detail). Complement receptors in the brain are 

 

8 HLA genes encode components of important antigen-presenting proteins on immune cell surfaces; complement components 

are part of a complex molecular cascade involved in the innate immune response – as further detailed in Chapter 3.  
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predominantly expressed by immunity-mediating microglial cells that facilitate pruning of redundant or 

dysfunctional synapses (Lee et al., 2014), which leads Sekar et al. (2016) to put forward the possibility 

that excessive synaptic pruning by microglial phagocytosis – stimulated by the complement cascade – 

causes schizophrenia symptoms to surface during adolescence/early adulthood. This hypothesis has been 

further supported by a more recent study which showed, using in vitro microglial-neuronal cultures 

derived from human cells, that schizophrenia cell lines exhibit increased synaptic elimination by 

microglia (Sellgren et al., 2019). This study also found that the presence of schizophrenia-related risk 

variants at the C4 locus contributed at least in part to this increased synaptic pruning. As we will see in 

the next section, this interaction between immunity and synaptic function is a recurring theme that is of 

central importance to this thesis and may be concurrently necessary for the emergence of psychosis.  

 

Core aetiology 

Given the many factors that contribute to the development of schizophrenia, a key imperative is to 

identify a core aetiology that they converge upon, without which a person would not experience 

symptoms such as psychosis. For intuition, this is analogous to asking who holds the smoking gun in a 

murder mystery, whilst simultaneously recognising that several people share some degree of 

responsibility for creating the circumstances that lead to the outcome (e.g., by stoking animosity or 

manufacturing the weapon). There are several theories as to what the core aetiology of schizophrenia 

may be. Here, I outline five of the leading hypotheses currently in circulation. The first two consider 

schizophrenia as a neurochemical disorder; the third considers schizophrenia a disorder of excessive 

synaptic pruning; the fourth considers schizophrenia a predominantly neurodevelopmental disorder; the 

fifth weaves all of these considerations together, framing schizophrenia as a disorder of synaptic 

dysconnection. 
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The dopamine hypothesis 

The dopamine hypothesis of schizophrenia is a long-standing theory that the neurotransmitter dopamine 

lies at the heart of schizophrenia symptoms (Howes & Kapur, 2009). Three observations were 

particularly influential in the emergence of this hypothesis. First, that antipsychotic medications target 

dopaminergic D2 receptors (Carlsson & Lindqvist, 1963), blocking neuronal reuptake of dopamine (Lally 

& MacCabe, 2015). Second, that their clinical efficacy is dependent upon their affinity for these receptors 

(Seeman & Lee, 1975). Third, that high doses of psychostimulant drugs (that increase dopamine levels 

in synaptic clefts) can induce psychosis (Lieberman et al., 1987). Given these observations, the original 

dopamine hypothesis posited that the core aetiology of schizophrenia is hyperdopaminergia, or, more 

specifically, an excess of dopamine uptake by neurons (Matthysse, 1973; Snyder, 1976).  

There were, however, some shortcomings with this general story. For example, it became evident 

that serum dopamine levels were not universally elevated in patients with psychosis – and that dopamine 

receptors were not uniformly distributed around the brain (Davis et al., 1991; Howes & Kapur, 2009). 

Concurrently, Positron Emission Tomography (PET) studies began to show ‘hypofrontality’ (reduced 

blood flow to the frontal cortex) in patients with schizophrenia, which directly correlated with dopamine 

levels in cerebrospinal fluid (Howes & Kapur, 2009). ‘Version II’ of the dopamine hypothesis therefore 

differentiated between brain regions, suggesting that schizophrenic brains were characterised by 

hyperdopaminergia in the midbrain but hypodopaminergia in the prefrontal cortex (Davis et al., 1991).  

Shortly after this, the literature around “schizophrenia and dopamine” burgeoned: over 6700 

articles were published on the topic between 1991 and 2009. In particular, a gamut of genetic studies 

appeared, many associating dopamine-related genes such as AKT and COMT with schizophrenia 

(Arguello & Gogos, 2008). Around the same time, Kapur (2003)’s influential account of psychosis as a 

result of “aberrant salience” was published, which recognised the increasingly evident role of 

dopaminergic neurons in differentiating salient stimuli from noise. On the basis of these ideas, Howes 
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and Kapur (2009) therefore posited a further updated ‘Version III’ of the dopamine hypothesis that 

suggested that multiple ‘hits’ (e.g., genes, stress, drug exposure) combined to elicit dopamine 

dysregulation as seen in psychosis. Importantly, this version of the hypothesis emphasised dysregulation 

of dopamine transmission across synapses, as opposed to overall reduction in dopamine levels across 

tissues or brain structures. They further suggested that dopamine receptor-targeting antipsychotic drugs 

work downstream of the primary dopamine dysregulation, acting as an effective ‘band-aid’ in the short 

run, but perhaps worsening the primary dysfunction in the long run (leading to the rapid relapses often 

seen in psychosis patients who come off their medication).  

The dopamine hypothesis has been highly influential, but a number of limitations have emerged 

that make it evident that dopamine alone cannot tell the whole story. Firstly, while dysfunction in 

dopamine transmission may induce psychosis, it does not account for the ‘negative’ symptoms (e.g., 

lethargy and flat affect) or ‘cognitive’ symptoms (e.g., deficits in working memory) of schizophrenia 

(Uno & Coyle, 2019; Yui et al., 2000). Antipsychotics (with the possible exception of clozapine) also do 

not tend to address these non-psychotic symptoms. Secondly, although first generation antipsychotics 

bind to dopamine receptors and reduce dopamine levels on the order of minutes, changes in symptoms 

are generally slow to follow (on the order of days) (Sonne et al., 2021; Takano et al., 2004). This suggests 

that psychotic symptoms may not be directly dependent upon dopamine transmission. Furthermore, there 

has been concurrently emerging evidence for other neurochemical hypotheses of schizophrenia, such as 

the glutamate hypothesis, which is overviewed below.   

 

The glutamate hypothesis 

As with the dopamine hypothesis, the glutamate hypothesis of schizophrenia emerged from 

pharmacological interactions with psychotic phenomenology. In this case, it became increasingly evident 

that drugs that target the glutamatergic N-methyl D-aspartate receptor (NMDA-R), such as 
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phenylcyclidine (PCP) and ketamine, can temporarily induce schizophrenia symptoms (Beck et al., 2020; 

Schmidt et al., 2013). Rather compellingly, these drugs induce not only psychosis but also the negative 

and cognitive symptoms, for as long as two weeks after administration (Coyle, 1996; Javitt & Zukin, 

1991; Snyder, 1980). Indeed, Snyder (1980) observed that experienced psychiatrists assessing patients 

with a history of PCP use often mistook them for patients with schizophrenia (before their drug history 

was made available). Additionally, if patients with schizophrenia are given ketamine, their symptoms 

temporarily increase in severity (Malhotra et al., 1997).  

Ketamine and PCP studies therefore began to strongly implicate their primary target, the NMDA 

receptor, in the aetiology of schizophrenia. This was further supported by the presentation of the 

autoimmune disease NMDA-R encephalitis wherein autoantibodies target a component of the NMDA-

R, resulting in symptoms highly resemblant of schizophrenia (Warren et al., 2018; Zandi et al., 2011). 

Genetic studies have also overwhelmingly linked schizophrenia with glutamateric neurotransmission-

related genes – in particular, the NMDA-R subunits GRIN2A, GRIN2C and GRIN2D (Ripke et al., 2020; 

Schizophrenia Working Group of the Psychiatric Genomics, 2014; Yu et al., 2018) have led to the 

‘glutamate hypothesis’, which suggests that the core aetiology of schizophrenia is a dysfunction in 

glutamate neurotransmission (Hu et al., 2015; Uno & Coyle, 2019). This more recent neurochemical 

hypothesis of schizophrenia is still prevalent, although it has been proposed that the effects of dopamine 

and serotonin on psychotic symptoms cannot be ignored – rather, that there is an integration of effects 

upon the pathways these three neurotransmitters are involved in that elicit the symptoms of schizophrenia 

(Stahl, 2018). Furthermore, to understand schizophrenia purely on the neurochemical level potentially 

omits important and consistent observations on other spatial and temporal scales. Indeed, there have been 

two other equally influential theories of schizophrenia aetiology that instead emphasise synaptic pruning 

and neurodevelopment, respectively. These are overviewed below.  
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The synaptic pruning hypothesis 

Between birth and adulthood, the number of neurons in the brain reduces by approximately 15 percent 

(Sakai, 2020). Similarly, the number of connections between neurons tends to progressively reduce over 

the lifespan as well: the circuits that are relevant to survival in the environment a person occupies are 

prioritised, while those that are irrelevant are pruned away (“Use it or lose it”, as the saying goes) (Shors 

et al., 2012). This pruning is particularly extensive in humans – and continues into relatively late in life 

compared to other species – and is considered to be key to our adaptability to a wide range of 

environments (Buckner & Krienen, 2013). There is a particularly concentrated flurry of pruning of these 

synaptic connections during adolescence and early adulthood (Feinberg, 1982). This also happens to be 

the period around which schizophrenia is characteristically diagnosed, leading some researchers to 

speculate whether there may be aberrant synaptic pruning in the brains of people with schizophrenia, that 

particularly comes to the fore during adolescence and early adulthood (Sakai, 2020). People with 

schizophrenia do indeed show abnormal cortical ‘thinning’ and synapse loss in neuroimaging and post-

mortem studies (Keshavan et al., 2020; Sakai, 2020). 

The current understanding of the synaptic pruning hypothesis has been significantly influenced 

by (Sekar et al., 2016)’s study showing the involvement of the complement gene C4 in schizophrenia 

and synaptic pruning (Keshavan et al., 2020). As outlined above, this study showed that genetic variants 

that elicit higher expression of complement component C4 are related to schizophrenia. Furthermore, C4 

was most highly expressed by microglia, which it had previously been suggested are involved in pruning 

of redundant neuronal synapses (Weinhard et al., 2018). This was expanded upon recently by Sellgren et 

al. (2019), who demonstrated engulfment of neuronal synapses by microglia – augmented in cells derived 

from patients with schizophrenia – as well as a direct relationship between the C4 variants Sekar et al 

(2016) identified and this heightened synaptic elimination. They also examined long-term medical 

records to assess whether adolescents exposed to the tetracycline antibiotics doxycycline and 
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minocycline (prescribed for acne) were less likely to develop psychosis. They found that this was indeed 

the case with exposure to these tetracyclines (albeit moderately so) and not so with exposure to non-

tetracycline antibiotics. This is particularly interesting because they further showed, in vitro, that 

tetracycline antibiotics reduce microglial phagocytosis of neuronal synapses in a dose-dependent fashion. 

In other words, the same medications that reduce synaptic pruning by microglia also moderately but 

significantly reduce the risk of psychosis onset.  

Despite this compelling evidence, there are a few hurdles presented to the synaptic pruning 

hypothesis as well. The first is specificity: brains of people with schizophrenia show abnormalities in 

other cellular domains such as myelination and endothelia; complement variation and excessive pruning 

is not specific to schizophrenia (it is also implicated, for example in Alzheimer’s disease); dendritic spine 

loss has been demonstrated only in deeper layers of the cortex (Keshavan et al., 2020). We are also still 

in need of more studies demonstrating excessive pruning in schizophrenia in real-time. Most of all, we 

are still in early stages of integrating these observations of immune-mediated synaptic pruning with 

findings supporting the neurochemical hypotheses of schizophrenia. That said, the synaptic pruning 

hypothesis is an integral component of a broader hypothesis of schizophrenia as a neurodevelopmental 

disorder. 

 

The neurodevelopmental hypothesis 

Emil Kraepelin’s early description of ‘dementia praecox’ (Kraepelin, 1919), now called schizophrenia, 

characterised the disorder as an adult-onset neurodegenerative disease. When it was found that patients 

with schizophrenia have enlarged lateral brain ventricles and deficits in cognition, this was interpreted 

as confirmation of the neurodegeneration hypothesis (Johnstone et al., 1978). However, a seminal twin 

study later showed that patients with schizophrenia had larger ventricles than their monozygotic twin, 

suggesting an environmental contribution to the ventricular enlargement (Reveley et al., 1982). Studies 
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showing complications in prenatal development and maternal infection as risk factors of schizophrenia 

were also emerging (Murray et al., 1985). These developments led to two groups independently 

proposing a ‘neurodevelopmental hypothesis’ of schizophrenia (Murray & Lewis, 1987; Weinberger, 

1987).  

Since then, this has been backed by cohort studies found that early cognitive and motivational 

symptoms seen as early as eight years of age can predict schizophrenia later in life (Jones et al., 1994; 

Reichenberg et al., 2010). Further evidence for both environmental factors – such as childhood  adversity 

(Matheson et al., 2013) and cannabis use (D'Souza et al., 2005)  –  and genetic contributors (Marshall et 

al., 2017; Murray et al., 1986; Pardiñas et al., 2018; Psychosis Endophenotypes International Consortium 

et al., 2014; Ripke et al., 2020) to psychosis risk also accumulated, leading to a ‘two-hit’ model of 

cumulative risk over neurodevelopment. In essence, this ‘two-hit’ theory suggests that a combination of 

genetic risk and environmental insult is necessary to alter neurodevelopment to the point that 

schizophrenia symptoms become clinically apparent (Feigenson et al., 2014; van Os et al., 2008).  

The most recent and perhaps most convincing evidence for the neurodevelopmental hypothesis, 

however, comes from studies of synaptic pruning and cortical thickness. Cannon et al. (2015) conducted 

an extensive multi-site, longitudinal neuroimaging study which showed that cortical thickness 

progressively reduces as patients develop psychosis. Psychosis usually manifests in late adolescence or 

early adulthood, when the frontal cortex is still developing (American Psychiatric Association, 2013; 

Insel, 2010). While the reasons for this characteristic age of onset is not yet fully understood, it has been 

observed (as mentioned above) that this corresponds to a critical period for synaptic pruning (Feinberg, 

1982), and there is increasing evidence for the relevance of synaptic pruning – especially in the frontal 

cortex – to the aetiology of schizophrenia (Sakai, 2020; Sekar et al., 2016; Sellgren et al., 2019). 

Interestingly, this is a critical period for the formation of concepts of self, other, and their interrelation, 

which also tend to be distorted in schizophrenia, and have also been linked to frontal cortical pruning (R. 
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A. Adams et al., 2013; Blakemore & Choudhury, 2006; Brown et al., 2013; Burnett et al., 2011; Kilford 

et al., 2016). The general consensus at this point is indeed that schizophrenia is a neurodevelopmental 

disorder (Insel, 2010).  

 

The dysconnection hypothesis 

The dysconnection hypothesis (Friston et al., 2016; Friston & Frith, 1995; Stephan et al., 2009) attempts 

to draw together many of these hypotheses and varied strands of research to create a coherent picture of 

how schizophrenia arises. It posits that schizophrenia is a result of a failure of functional integration in 

the brain, specifying that the core pathophysiology of the disorder is aberrant synaptic gain control9. This 

is distinct from an anatomical disconnection syndrome, or a ‘cutting of the wires’; rather, the idea here 

is that the processes that are causally affected in schizophrenia are governed by neurotransmitters that 

regulate communication between synapses. There are two key lines of evidence that this theory is based 

upon. The first is the convergence of literature from genetics, psychopharmacology and other fields upon 

disruption of the glutamatergic NMDA receptor in schizophrenia, licensing the suggestion that 

interactions between NMDA-Rs and other neurotransmitters are causally responsible for psychotic 

symptoms. The second is the possibility of temporarily inducing psychotic symptoms in healthy adults 

without abnormal neurodevelopmental trajectories or anatomical lesions, by administering 

 

9 Synaptic ‘gain control’ refers to the modulation of responsiveness of a (post-synaptic) neuron to input (Ranlund et al., 2016). 

In this thesis, this may be used interchangeably with ‘neuromodulation’ (Katz et al., 1994; Moran et al., 2013). These processes 

are highly related to ‘synaptic efficacy’, which is the ability of a presynaptic neuron to influence a post-synaptic neuron 

(Friston, 2005). All of these processes depend heavily on ‘neurotransmission’, which (in computational literature) may be 

used interchangeably with neuronal ‘message passing’ (Lawson et al., 2014; Parr et al., 2019). All of these terms broadly refer 

to communication between neurons. Aberrances in synaptic gain control may be referred to as ‘synaptopathies’.  
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psychomimetic drugs such as ketamine, which dysregulate neurotransmission and even disrupt the 

mismatch negativity (Beck et al., 2020; Schmidt et al., 2013).  

Friston et al. (2016) take a multi-tiered approach to contextualising the current evidence. They 

propose that a) the SNPs that have been associated with schizophrenia must directly or indirectly 

influence synaptic gain control (as has now been backed up by the most recent PGC paper (Ripke et al., 

2020)); b) This influence is likely exerted on a molecular level via the NMDA receptor, which responds 

abnormally to the activity of neurotransmitters such as dopamine in psychosis; c) Structural changes at 

a cellular level and in neuroimaging of patients with psychosis are a result of activity-dependent pruning 

(which may also explain the cognitive deficits seen in schizophrenia); d) At the level of neural networks, 

altered synaptic gain control manifests as aberrances in synchronous (electrical) activity between 

different regions of the cortex, or loss of excitation-inhibition balance; e) On a computational level, these 

deficits are seen as aberrant encoding of the precision of prediction errors (usually ascribed to superficial 

pyramidal cells); and f) The prefrontal cortex, which is particularly implicated in psychosis, is  still 

developing into early adulthood and therefore may show psychological vulnerability disclosed by 

neuromodulatory deficits at later stages of neurodevelopment.  

However, one strand that is notably missing from this tapestry is immunology. As outlined above, 

the immune system plays a key role in the development of psychosis. This leaves open the questions, 

“Does this strand also have a place within the overarching picture of the dysconnection hypothesis? If 

so, how? If not, why not?” It is evident that prenatal development is a critical stage, in which 

environmental phenomena (and their interactions with genetic influences) have especially significant and 

enduring consequences for the neurodevelopment and mental health of the offspring (Brown & Meyer, 

2018; Hall, Pain, et al., 2020; Langenhof & Komdeur, 2018; Van den Bergh et al., 2020). The question 

then is, “What is it about the immune response (as an environmentally-triggered phenomenon) that elicits 

or exacerbates wide-ranging psychopathology at this stage?” A reasonable, if general, explanation is 
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offered by the notion of ‘allostatic load’. This term is broadly defined as “wear and tear” endured by an 

entire organism as a result of deviations from a homeostatic balance (McEwen, 1998). Allostasis literally 

means homeostasis through change, and refers to the process of adaption in the face of stress (or 

uncertainty, in computational terms (Peters et al., 2017)). This conceptual framework is highly applicable 

to both the immune system (which must maintain a delicate balance of response to threat) and the notions 

of risk and resilience, inasmuch as allostatic load tends to be higher in organisms that are unable to 

flexibly turn compensatory mechanisms on and off in accordance with the degree or presence of threat 

(McEwen, 1998; Peters et al., 2017). Indeed, the concept of allostatic load has recently been applied to 

explain the cumulative aetiology of psychosis – largely in terms of stress and endocrinology, but with 

some reference to the immune response (Misiak, 2019). The implication here is that it is possibly not 

infection, nor the immune response directly that elicit the pathophysiology of schizophrenia; but rather 

the allostatic load that is incurred because of them. 

 

Aims 

Friston et al. (2016) conclude by calling for studies that, “...close the explanatory gap between 

pathophysiology at the molecular (synaptic) level and the psychopathology experienced by patients,” 

admitting that, “...we still need to identify the links between abnormal synaptic integration, polygenetic 

predisposition, epigenetics, region-specific gene expression and the implications for hierarchical 

inference in the brain.” In light of this, the aims of this thesis are threefold: 

1. To further ‘close the explanatory gap’ and attempt to bridge some of these disparate literatures 

by exploring the molecular mechanisms that underlie predictive coding and aberrant precision in 

psychosis. 

2. To find a place for immunology within the framework of the dysconnection hypothesis and 

predictive coding. 

3. To find a place for predictive coding in immunology to provide a complete account of allostasis 

as embodied inference – that rests upon both the brain and the immune system. 



 29 

 

To this end, I call on three distinct, yet equally rich, bodies of psychosis research in this thesis: namely, 

theoretical neurobiology, cell biology and psychiatric genetics. Chapter 1 is a transcriptome-wide 

association study of the MMN, exploring the genetic underpinnings of perceptual synthesis and synaptic 

gain control. Chapter 2 presents a gene-environment interaction study showing how immune insults may 

interact with a genetic background associated with schizophrenia. Finally, Chapter 3 generalises the 

notion of inference and applies it to the immune system. This generalisation can be summarised as 

embodied or immunoceptive inference – offering a first principles account of the immune response and 

its interactions with the brain.  
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Chapter 110 

Transcriptome-wide association study reveals two genes that influence 

mismatch negativity 

 

Abstract 

The mismatch negativity (MMN) is a differential electrophysiological response measuring cortical 

adaptability to unpredictable stimuli. The MMN is consistently attenuated in patients with psychosis. 

However, the genetics of the MMN are uncharted, limiting the validation of the MMN as a psychosis 

endophenotype. I therefore perform a transcriptome-wide association study of 728 individuals, which 

reveals two genes (FAM89A and ENGASE) whose expression in cortical tissues is associated with the 

MMN. Enrichment analyses of neurodevelopmental expression signatures show that genes associated 

with the MMN tend to be overexpressed in frontal cortex during prenatal development but significantly 

downregulated in adulthood. Endophenotype Ranking Value calculations comparing the MMN and three 

other candidate psychosis endophenotypes (lateral ventricular volume and two auditory-verbal learning 

measures) find the MMN considerably superior. These results yield promising insights into sensory 

processing in the cortex and endorse the notion of the MMN as a psychosis endophenotype.  

 

 

 

 

 

10 This chapter is adapted from Bhat, Irizar et al., Cell Reports (2021). 
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Introduction 

 

Mismatch negativity as a measure of prediction error 

The mismatch negativity (MMN) is an event-related potential that measures the cortical response to 

occasional “oddball” stimuli in an otherwise repetitive series (Näätänen, 1992; Naatanen et al., 1978). 

The MMN is interpreted as a “prediction error signal”: the brain’s response to sensory information that 

deviates from its prior “beliefs” (Friston, 2005; Garrido et al., 2009). This does not refer to propositional 

beliefs (participants in the MMN paradigm are instructed not to pay attention to stimuli presented); rather, 

an unconscious predictive processing that frames the brain as a statistical model of its environment which 

generates predictions about sensations, compares it to actual sensory input and updates itself to minimise 

discrepancies (Helmholtz, 1866/1962; Knill & Pouget, 2004). This updating depends upon the relative 

precision of prior beliefs and sensory evidence. Here, ‘precision’ is a measure of certainty and 

physiologically represents post-synaptic gain (excitability) of neurons reporting prediction errors (Parr 

& Friston, 2019). The lower the precision of sensory data (e.g., the more muffled a sound) or the higher 

the precision of prior beliefs (e.g., the more times the sound has been heard), the less readily these neurons 

fire action potentials – much as a scientist would ascribe reliability to experimental findings and weigh 

them against an existing body of literature (Parr & Friston, 2019). The MMN oddball paradigm is widely 

used because of its profundity, replicability and simplicity as a measure of how a brain adapts to a 

changing environment. The most common MMN paradigm involves presenting participants with 

‘standard’ and ‘deviant’ tones (Erickson et al., 2016). The deviance can be in a variety of domains – 

including intensity, frequency or duration – as long as it departs from an established pattern (Kathmann 

et al., 1999). The MMN waveform is quantified as the difference between the event-related potentials 

elicited by the standard and deviant stimuli (Baldeweg & Hirsch, 2015). 
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MMN in psychosis  

Psychosis is a highly heritable mental disorder characterised by hallucinations, delusions and cognitive 

deficits (American Psychiatric Association, 2013; Bergen et al., 2012; Brainstorm Consortium, 2018; 

Hilker et al., 2018; Johan H. Thygesen et al., 2020). It has recently been conceptualised as a disorder of 

aberrant precision: the precision-weighting of sensory stimuli are skewed (Limongi et al., 2018). This 

literature is very recent so the specific mechanisms of this aberrant precision are not well understood, but 

it has been suggested that prior beliefs may be ‘overweighted’ in hallucinations (Benrimoh et al., 2019; 

Powers et al., 2017) and ‘underweighted’ in the case of the MMN (R. A. Adams et al., 2013; Sterzer et 

al., 2018) relative to new sensory information. This is supported by the fact that patients with psychosis 

consistently show significantly smaller MMN than healthy controls (Erickson et al., 2016; Naatanen et 

al., 2012; Shelley et al., 1991). Moreover, the MMN is attenuated in patients before illness onset (Bramon 

et al., 2004; Hong et al., 2012) and is predictive of transition to psychosis in high-risk patients (Bodatsch 

et al., 2011; Erickson et al., 2016). The MMN also progresses with the disorder: first-episode psychosis 

patients show less attenuated MMN than chronic patients (Erickson et al., 2016; Haigh et al., 2017). The 

MMN is therefore considered a strong candidate endophenotype for psychosis.  

 

MMN as an endophenotype of psychosis  

Endophenotypes are biomarkers of structure or function that characterise an illness and indicate genetic 

liability (Bramon et al., 2005; Gottesman & Gould, 2003). Psychotic disorders such as schizophrenia and 

bipolar disorder with psychotic symptoms are heterogeneous and highly polygenic: more than 100 

genetic loci have been associated with schizophrenia and over 30 with bipolar disorder with psychotic 

symptoms (Pardiñas et al., 2018; Psychosis Endophenotypes International Consortium et al., 2014; Stahl 

et al., 2019). The mechanisms by which these genetic variants affect the disease pathway remain unclear. 

Studying the genetics of a well-defined and objectively quantifiable endophenotype like the MMN has 
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strong potential to yield key insights into the biological mechanisms of psychosis development. However, 

an important criterion for a trait being a useful endophenotype is a substantial overlap in genetic 

architecture with the disease itself (Calafato & Bramon, 2019; Iacono et al., 2017). The likelihood of 

such an overlap has been indicated by research that shows attenuated mismatch in unaffected relatives 

of people with psychosis (Psychosis Endophenotypes International Consortium et al., 2014), but targeted 

genetic association methods have yet to be applied to the MMN to substantiate this phenomenon. 

 

Transcriptome-wide association studies 

Transcriptome-wide association studies (TWAS), like Genome-Wide Association Studies (GWAS), are 

a useful hypothesis-free method of studying how genetic variation influences a trait. Both GWAS and 

TWAS have been central to the study of psychosis, having identified 270 genetic loci and 175 genes 

reliably associated with schizophrenia, respectively (Gusev et al., 2018; Pardiñas et al., 2018; Psychosis 

Endophenotypes International Consortium et al., 2014; Ripke et al., 2020). While GWAS evaluate 

variation at the single nucleotide polymorphism (SNP) level, TWAS evaluate variation at a gene level 

(Gamazon et al., 2015; Gamazon et al., 2019; Gusev et al., 2018; Huckins et al., 2019). This is valuable 

for phenotypes like the MMN that are laborious to obtain and rarely collected in combination with genetic 

data, as the lower multiple-testing burden of gene-level associations allow TWAS to be well powered 

with much smaller sample sizes. Analysing gene expression also allows more direct inference of 

biological mechanisms: it is often difficult to deduce which biological pathways are implicated by 

GWAS-significant SNPs due to linkage disequilibrium and the poorly understood dynamics of non-

coding regions of the genome (Gusev et al., 2018). The TWAS approach makes it possible to infer gene 

expression in a discovery dataset without having to collect tissue expression data. Specifically, TWAS 

evaluate the association between individual differences in genetically regulated gene expression and an 

outcome of interest. Expression levels are inferred based on a pre-existing reference dataset that contains 
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both genotype and tissue expression data (for example, Genotype-Tissue Expression (GTEx) Project 

database, which I use in the current study). For these reasons, I considered a TWAS to be the most 

appropriate method of exploring the genetics of the MMN. 

The tissues I have selected from GTEx are the Brodmann Area 9 (BA9) region of the frontal 

cortex, as well as the whole cortex; chosen for their relevance to the phenotype. Previous functional 

magnetic resonance imaging (fMRI) studies have shown that the auditory MMN localises to the inferior 

frontal gyrus (IFG) and superior temporal gyrus (STG) (Doeller et al., 2003; Opitz et al., 2002). Although 

gene expression data are derived from post-mortem tissue samples which do not benefit from the task-

based localisation afforded by neuroimaging methods such as fMRI, a broader level of localisation is 

sufficient for the purposes of this study as there is a very high likelihood of shared genetic signals between 

adjacent tissues (Ip et al., 2018). The two tissues overlap but I have chosen to analyse both for two 

reasons. Firstly, the STG is best accounted for by the ‘whole cortex’ tissue as tissue samples localised to 

the STG are not currently available in the GTEx database – or, to my knowledge, any other open-source 

databases. Secondly, there is a larger (and not entirely overlapping) set of genes available from GTEx 

for the whole cortex than for the frontal cortex. 

 

Aims 

Studying the genetic architecture of processes that underlie the MMN may elucidate biological and 

neurodevelopmental mechanisms that underlie sensory processing as well as psychosis. In this study, I 

aim to identify genes whose expression in cortical tissues are associated with the MMN, assess their 

relevance over the lifespan and evaluate the MMN as a psychosis endophenotype. 
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Methods 

Collaboration statement 

For this study, I used MMN and genetic data that were collected previously by other experimenters. I co-

facilitated the formation of the consortium by which these datasets were combined along with my 

supervisors, Elvira Bramon and Aritz Irizar. PrediXcan models were developed by (Gamazon et al., 

2015; Gamazon et al., 2019; Huckins et al., 2019; Wheeler et al., 2016) based on existing data from  the 

Genome-Tissue Expression database (GTEx v7). I was responsible for the statistical analysis as well as 

write-up.  

 

Participants 

Participants were drawn from a consortium of three centres: University of Maryland (n=429), Harvard 

University (n=1736) and the London sub-sample of the Psychosis Endophenotypes International 

Consortium, n=5635 (Psychosis Endophenotypes International Consortium et al., 2014; Ranlund et al., 

2016; Shaikh et al., 2012). All samples include patients with psychosis (schizophrenia or bipolar disorder 

with psychotic symptoms) and healthy controls. MMN data were acquired in a subset of each sample 

(see Supplementary Table 1). The London sample additionally contains unaffected relatives of patients 

with psychosis (n = 82). These relatives do not significantly differ in MMN from healthy controls in the 

same sample (n = 84; see results), so were treated as healthy controls for the purposes of this study. The 

collection of data used for this research was approved by the ethics committees at the participating 

institutions (including King’s College London [References 011/99 and 038/00], the Metropolitan Multi-

centre Research Ethics Committee [MREC/03/11/090] and University of Maryland). All participants 

gave written informed consent before they contributed to the study.  
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Measures 

Clinical Assessments 

To confirm a DSM-IV or V diagnosis, participants were assessed by a psychiatrist or trained researcher 

using the following scales: the Positive and Negative Syndrome Scale (Kay et al., 1987), the Schedule 

for Affective Disorders and Schizophrenia-Lifetime version, for the London and Harvard groups 

(Endicott & Spitzer, 1978) or the Structured Clinical Interview for DSM-V Axis 1 Disorders, for the 

Maryland group (First et al., 1997). Family history of any mental disorder was obtained using the Family 

Interview for Genetic Studies.  

 

Procedure 

MMN data collection 

Electroencephalography data were collected using near-identical paradigms at the three centres where 

participants were recruited (Supplementary Table 1). Subjects were seated with their eyes open while 

wearing an electrode cap and presented, through earphones, with sequences of repetitive (standard) 

auditory stimuli, interspersed with occasional deviant stimuli. To ensure a pre-attentive event-related 

potential was being measured, the subjects were instructed not to pay attention to the sounds presented. 

 

Auditory stimulus characteristics 

The stimuli presented in the oddball paradigm were 73-80 dB, 1000 Hz tones, with a 0.3 second inter-

stimulus interval (from offset to onset of consecutive stimuli). In the Maryland sample (n=429), 800 

tones were presented in one block. In both the London (n=464) and Harvard (n=135) samples, 1200 tones 

were presented in three blocks of 400 tones. The standard stimuli were 60 (Maryland) or 25 (London and 

Harvard) milliseconds long with a 5ms rise/fall time. These comprised 80% (Maryland) or 85% (London 
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and Harvard) of tones presented. The deviant stimuli were 150ms (Maryland) or 50ms (Harvard and 

London) long with a 5ms rise/fall time. 

 

 EEG acquisition 

Electroencephalography (EEG) data were collected using arrangements of 21-64 scalp sites (see 

Supplementary Table 1 for details of electrode arrangements in each sample) according to the 10/20 

International System (all arrangements included the following primary electrodes: FP1, FP2, F7, F8, F3, 

F4, C3, C4, P3, P4, FZ, CZ, PZ, T3, T4, T5, T6). Recordings were grounded at FPZ using silver/silver-

chloride electrodes (Klem et al., 1999) and referenced to the left ear lobe. Eye movements were 

monitored by vertical, horizontal, and radial electro-oculograms (EoGs). Data were continuously 

sampled at 1000 Hz (Maryland) or 500 Hz (London and Harvard) with a DC/100 Hz (Maryland) or 0.03 

to 120 Hz (Harvard and London) band-pass filter (24 dB/octave roll-off). Impedances were kept below 

6 kΩ. 

 

EEG pre-processing 

Data were re-referenced to common average and band-pass filtered 0.03 (London) or 0.1 (Harvard and 

Maryland) to 50 Hz. Ocular contamination from the data was removed using the artefact-aligned average 

procedure (London) (Croft & Barry, 2000) or regression-based weighting coefficients (Harvard and 

Maryland) (Semlitsch et al., 1986). Data were epoched from 100ms pre-stimulus to 300ms (London) or 

400ms (Maryland and Harvard) post-stimulus. Epochs were averaged separately for the standard and 

deviant tones and then baseline corrected. The MMN was defined as the difference between the deviant 

and standard event-related potentials. Then the peak MMN (50 to 200ms post-stimulus for Harvard and 

London; 100 to 250ms post-stimulus for Maryland) was identified by a computer algorithm, which made 

the process blind to clinical group status. To ensure accurate peak detection, visual inspections of the 
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peaks detected by the algorithm were conducted blind to clinical group and other participant 

characteristics (Bramon et al., 2004; Hong et al., 2012). This approach (automated detection with blind 

visual checks) is optimal for large samples and prevents human error and biases.  

 

Genotyping 

DNA was obtained from blood for all participants. The Harvard DNA samples were extracted at the 

Massachusetts General Hospital Center for Human Genetic Research and genotyped at the Broad 

Institute using the Illumina OmniExpress Infinium Platform (Illumina Inc., San Diego, CA, USA).  The 

London samples were genotyped with the Genome-wide Human SNP Array 6.0 at the Affymetrix 

Services Laboratory (www.affymetrix.com) and sent to the Wellcome Trust Sanger Institute (Cambridge, 

United Kingdom) for DNA quality control. The Maryland samples were genotyped on the Illumina 

Omni2.5-8 BeadChip. 

 

Quality control of genotype data 

London 

Single nucleotide polymorphism (SNP) exclusion criteria for the entire London dataset were: study-wide 

missing data rate over 5% (11,610 SNPs excluded); having four or more Mendelian inheritance errors 

identified with PEDSTATS (Wigginton & Abecasis, 2005) (26,585 SNPS excluded); evidence for 

deviation from Hardy-Weinberg equilibrium (p < 10–6; 2,404 SNPS excluded); minor allele frequency 

<0.02 (145,097 SNPs excluded); SNPs from X and Y chromosomes or mitochondrial DNA (38,895) and 

poor genotyping identified by visual inspection of intensity plots in Evoker (Morris et al., 2010) (9499 

SNPs excluded). Sample exclusion criteria for London were: >2% missing SNP data (214 samples 

excluded); divergent genome-wide heterozygosity with inbreeding coefficients F > 0.076 or F < -0.076 

seen in PLINK (Purcell et al., 2007) (70 samples excluded); chromosomal sharing (inferred from a 

genome-wide subset of 71,677 SNPs), where 70 duplicates and monozygotic twins were removed by 

http://www.affymetrix.com/
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excluding one of each pair (whichever had less complete genotype data) of individuals showing identity 

by descent > 95%. 

 

Harvard 

As described in (Hall et al., 2015), quality control for the Harvard sample included the following steps: 

removing individuals with discordant sex information, missing genotype rate >5% or heterozygosity rate 

>3SD, shared IBD >0.125, or were non-European ancestry based on principal component analyses. 

Exclusion criteria for SNPs were as follows: SNPs on the X or Y chromosome, MAF<0.05, call rate 

<98%, and P < 1 × 10−6 for deviation from Hardy-Weinberg equilibrium. A total of 664,907 autosomal 

SNPs passed QC. Quality control steps were carried out with PLINK (Purcell et al., 2007). 

 

Maryland 

Single nucleotide polymorphism (SNP) exclusion criteria for the Maryland dataset were: study-wide 

missing data rate over 5; evidence for deviation from Hardy-Weinberg equilibrium (P < 1 × 10−6) minor 

allele frequency <0.01; SNPs from X and Y chromosomes or mitochondrial DNA. Sample exclusion 

criteria for Maryland were: >5% missing SNP data (0 samples excluded); divergent genome-wide 

heterozygosity; identity by descent > 95%. A total of 1799738 autosomal SNPs passed QC. 

Supplementary Tables 4A-D show a full comparison of SNP and sample exclusion criteria across the 

three datasets. 

 

Genotype imputation 

Genotype imputation was performed separately on each dataset, using information from all individuals 

that passed genetic quality control (QC), regardless of whether MMN data had been acquired from them. 

Quality controlled genotypes were submitted to the Sanger Imputation Server (McCarthy et al., 2016; 

imputation.sanger.ac.uk), where the EAGLE2/PWBT (Durbin, 2014; Loh et al., 2016) pipeline was used 

for pre-phasing and imputation against the Haplotype Reference Consortium panel (r1.1). This yielded 

https://imputation.sanger.ac.uk/
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~39.1 million imputed variants. The resulting genotypes were hard-called using a 0.8 genotype 

probability threshold and all variants with an INFO score < 0.8 were excluded. The original typed 

genotypes were then merged with the new imputed set such that, where the SNP positions were common 

to both, the typed data were given preference. 

 

Quality control of imputed genotypes 

QC was performed on imputed genotypes using PLINK. Imputed SNP exclusion criteria were: missing 

data rate of over 5%; minor allele frequency < 1%; departure from the Hardy-Weinberg equilibrium (p 

< 1e-6); Mendelian error rate > 10%; and cases vs. controls data missingness significance < 5e-6. Sample 

exclusion criteria following imputation were: missing data rate of over 5%, Mendelian error rate > 5% 

and |inbreeding coefficient| > 0.1. LDAK (Speed et al., 2017) was used to identify duplicates or twins as 

pairs of individuals with a kinship coefficient > 0.95 (based on thinned set of SNPs) and remove one of 

each pair. After QC, 4835, 1602 and 411 individuals and ~6.5, ~7.3 and ~10.1 million SNPs were left 

for the London, Harvard and Maryland samples, respectively. Of these, EEG data were available for 254, 

403 and 71 participants in the London, Maryland and Harvard samples, respectively. Supplementary 

Tables 5A-C show a full comparison of QC criteria for imputed data across each of the three datasets. 

 

Statistical Analysis 

Transcriptome-wide association study (TWAS)  

I performed the TWAS using PrediXcan (Gamazon et al., 2015; Gamazon et al., 2019; Huckins et al., 

2019; Wheeler et al., 2016). SNP-gene expression effect-weights were estimated by the PrediXcan 

developers using GTEx v7 data for brain cortex and frontal cortex from PredictDB (predictdb.org). 

Entering these expression weights (and the dosage matrices for the corresponding effect alleles) into 

PrediXcan, I imputed the genetic component of gene expression for 4329 and 3604 genes in the cortex 

http://predictdb.org/
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and frontal cortex, respectively. Note that the genes included in the GTEx data only partially overlap 

between tissues, so although one would expect there to be a high degree of inter-tissue signal sharing, 

this may not be visible in every instance. I then tested for association between the predicted expression 

of each gene in each tissue and the amplitude of the MMN at the Fz electrode. As PrediXcan does not 

allow for the addition of covariates, MMN amplitude values were pre-adjusted for clinical group, age, 

gender and lab where electroencephalographic data were collected. TWASs were run separately on each 

of the three data sets, London (n = 254), Harvard (n = 71) and Maryland (n = 403); and then combined 

them using a fixed-effect precision-weighted meta-analysis.  

 

Gene-set enrichment analysis 

Gene-set enrichment analyses (GSEA) were performed on the cortex and frontal cortex TWAS results 

for 134 nervous-system function gene-sets (Hall, Medway, et al., 2020; Pardiñas et al., 2018; Pocklington 

et al., 2015) from the Mouse Genome Informatics database (Blake et al., 2014). The information required 

from this database is, broadly, lists of genes that are known to interact with each other as a part of a 

‘pathway’ that performs a particular biological function, in order to assess whether these groups of genes 

together show significant associations with the phenotype (MMN) in the current sample. It is easier to 

conduct experiments investigating the functions of gene pathways on mice, which makes this database a 

rich resource. Furthermore, many such pathways are well conserved through mammalian evolution, so 

the Mouse Genome Database is commonly used (Bentley et al., 2019; Grama et al., 2020; Hall, Medway, 

et al., 2020; Lim & Kim, 2019) as a source for pathway-based analyses with human samples. Previous 

human ortholog genome-wide and transcriptome-wide association studies (Grama et al., 2020; Hall, 

Medway, et al., 2020) have indeed shown enrichment of gene sets from the Mouse Genome Database.  

Linear mixed-effects regression-based competitive GSEA was implemented as previously 

described (Pain et al., 2019), using TWAS-GSEA (github.com/opain/TWAS-GSEA). The lme4qtl R 

https://github.com/opain/TWAS-GSEA
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package (Ziyatdinov et al., 2018) was used for mixed model regressions, where the -log10 p-values from 

the TWAS were used as dependent variables. The gene set membership of each gene was included as a 

fixed effect predictor and the matrix of correlations between predicted expression of each gene was 

included as a random effect. The gene correlation matrix was added to the regressions to account for 

linkage disequilibrium. 

 

Neurodevelopmental signature enrichment 

To look for enrichment in the MMN TWAS results of highly expressed or suppressed genes across 

neurodevelopmental stages, expression data for the two tissues of interest were downloaded from the 

BrainSpan Atlas project (www.brainspan.org). The dataset contains RNAseq data (Reads Per Kilobase 

of transcript, per Million: RPKMs) for 524 brain tissue samples from 42 individuals (19 females/23 

males) aged eight weeks post-conception to 40 years old. RPKM values were log2-transformed and lowly 

expressed genes (log2 RPKM < 2-7 in 90% or more of the samples; 17389 genes) were subsequently 

removed. Samples were grouped into nine age-ranges and brain tissue samples were grouped into nine 

brain regions (Supplementary tables 6A and B). To generate gene expression signatures for each age 

group (versus the other age groups), I ran linear regressions (Equation 1). 

 

GEx ~ 𝛽0 +  β1 · AgeGr +  𝛽2 · AgeGr: CortexRg +  𝛽3 · BrainRg +  𝛽4 · Gender +  ε 

 

Equation 1. GEx = gene expression; AgeGr = dummy variable for age-group of interest; CortexRg = dummy variable for 

region of interest (whole cortex/frontal cortex); BrainRg = variable containing 9 broad brain regions. 

 

Correlation between samples from the same individuals was accounted for by incorporating the intra-

donor correlation into the covariance matrix when evaluating regressions. The final age-group expression 

signatures were generated by fitting a contrast with the sum of the coefficients of the age-group (β1) and 

https://www.brainspan.org/
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of the interaction between age-group and brain region of interest (β2). The differential expression 

analysis was performed with the R package ‘limma’ (Ritchie et al., 2015). Enrichment for these 

neurodevelopmental expression signatures in the TWAS results was tested using linear mixed models, 

using lme4qtl (Ziyatdinov et al., 2018). The logarithm of the p-value of each gene in the TWAS (-log10 

p-value) was used as the dependent variable, the signed logarithm of the p-values of the corresponding 

neurodevelopmental signature (sign (effect size) × -log10 p-value) as the fixed effect predictor and the 

matrix of correlations between genes as a random effect. 

 

Endophenotype Ranking of the MMN 

The ERV is an index created to objectively quantify the genetic utility of an endophenotype. It varies 

from 0-1; higher values indicate that the endophenotype and the illness are more strongly influenced by 

shared genetic factors (Glahn et al., 2012). Endophenotype Ranking Value (ERV) for MMN (specifically, 

SNP-based ERV, or ERVSNP) was calculated using the bivariate Genome-Based Restricted Maximum 

Likelihood (GREML) function (Lee et al., 2012; Yang et al., 2010) in the Genome-wide Complex Trait 

Analysis (GCTA) tool (Yang et al., 2011) to estimate the SNP-based heritability of MMN (he
2) in the 

largest dataset (Maryland; n = 403). Age and gender were included as covariates in this estimation. For 

schizophrenia (hi
2), the heritability estimate (0.2002) was extracted based on a population prevalence of 

0.4% (Pardiñas et al., 2018). These two heritability estimates and the genetic correlation (ρg) between 

MMN and schizophrenia were used to calculate the ERV according to the following equation:  

𝐸𝑅𝑉𝑖𝑒 =  | √ℎ𝑖
2 √ℎ𝑒

2𝜌𝑔| 
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Results 

Demographics 

After all quality control procedures, a total of 728 participants (302 with psychosis and 426 healthy 

controls) with both genetic and MMN data were available for analysis (unaffected relatives from the 

London sample were treated as healthy controls in the current study; see Methods). There was no 

significant difference in age between control (M = 40.25 years; SD = 15.28 years) and patient (M = 38.70 

years; SD = 12.92 years) groups across the whole sample (n = 728, t = 1.431, p-value = 0.153). There 

was a significantly smaller proportion of female participants amongst patients (31.79%) compared to 

controls (58.45%) across the whole sample (n = 728, χ² = 49.325, p-value = 2.169e-12). A description of 

the sample can be seen in Table 1.  

 

Table 1. Demographics and clinical characteristics of the sample after genetic quality controlc 

 

          Maryland           Harvard                      London 

 Patient Control Overall Patient Control Overall Patient Relative Control Overall 

N 164 239 403 54 17 71 84 82 88 254 

% Females 28 56.5 44.9 38.9 58.8 43.7 34.5 59.8 62.6 52.4 

Agea,b 36.1  

± 13.5 

38.7  

± 16.1 

37.6 

±15.1 

43.8  

± 11.3 

36.9  

± 15.9 

42.1 

±12.8 

40.5  

± 11.7 

46.7  

± 13.8 

39.2  

± 12.5 

42.0  

± 13.0 

Age rangeb 11-63 9-80 9-80 21-66 21-63 21-66 18-65 17-73 18-62 17-73 

a In years 

b Mean ± Standard deviation  
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MMN amplitude is attenuated in patients with psychosis  

Table 2 shows the average MMN (with standard deviation) for each dataset included in this study, as 

well as for patients, relatives (for PEIC) and controls within each dataset. Please see Supplementary 

Figures 1 and 2 for MMN waveform plots for the Maryland (n = 403) and Harvard (n = 71) samples. 

MMN plots from the London sample (n = 254) have been published previously in (Bramon et al., 2004) 

and (Ranlund et al., 2016). 

 

Table 2. Mean mismatch negativity amplitudeb at FZ (µV) in each of the datasets by group 

Sample Patients Controls Relatives Whole dataset % Decreasec 

Marylanda -1.09 ± 1.43 -1.59 ± 1.78 - -1.39 ± 1.66 31.7% 

Harvarda -1.10 ± 2.20 -2.18 ± 2.27 - -1.36 ± 2.25 49.4% 

PEICa -2.52 ± 1.24 -3.15 ± 1.59 -3.27 ± 1.56 -2.98 ± 1.5 20.1% 

aMean ± Standard deviation (in µV) 
bThese values are unadjusted for covariates 
cPercent reduction in patients compared to unaffected subjects (average of relatives and controls, for PEIC) 

 

Age-, gender- and lab-adjusted linear regressions revealed a significantly attenuated MMN Fz peak 

amplitude in psychosis patients in the whole sample (n = 728, effect size = 0.70µV, 95% CI = 0.45µV to 

0.94µV, p = 3.5e-8) as well as in each of the two largest datasets (Maryland: n = 403, coef = 0.48µV, 95% 

CI = 0.14µV to 0.82µV, p = 6e-3; London: n = 254, coef = 0.66µV; 95% CI = 0.23µV to 1.11µV, p = 3e-

3). There was no difference of the MMN in psychosis patients in the smallest sample (Harvard; n = 71, 

coef = -0.01µV; 95% CI = -1.59µV to 1.57µV, p = 0.99), most likely due to limited statistical power of 

this sample (a sample of 71 is too small to yield meaningful genetic association results on its own). 

However, in the combined sample of 728 participants, the group comparisons are consistent with the 

literature, with significantly reduced MMN in patients with psychosis (Supplementary Table 3).  
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Within the London sample, a linear regression which included age, gender and testing laboratory 

as covariates, showed no significant difference in MMN amplitude at the Fz electrode between unaffected 

relatives of patients with psychosis and healthy controls – indeed, unaffected relatives appeared to have 

slightly (insignificantly) enhanced MMN compared to controls (effect size = -0.297, SE = 0.234, p-value 

= 0.205, 95%CI = -0.76 to 0.16). 

To assess the effect of stimulus duration on the MMN, the cohorts that used shorter stimuli 

(London and Harvard) were compared with the cohort that used longer auditory stimuli (Maryland) in 

their MMN paradigm, by linear regression with age, gender and clinical group as covariates. In the 

Maryland group (n = 403, M = -1.39 µV, SD = 1.66 µV), MMN was smaller than the shorter stimuli 

groups (n = 325, M = -2.63 µV, SD = 1.82 µV). The model explained 17.47% of the variance, and was 

a significant predictor of MMN amplitude, F(5,722) = 30.56, p < 2.2 ×10-16;  stimulus length contributed 

significantly to this difference (effect size = -1.16µV, p = 2.63 x 10-16). The latency of MMN at FZ in the 

Maryland group (M = 186.6ms, SD = 29.63ms) was later than the shorter stimuli groups (n = 166, M = 

132.19, SD = 45.95); stimulus length contributed significantly to this difference (effect size = -44.35, p 

< 2 ×10-16). 

 

Increased FAM89A and ENGASE expression is associated with attenuated MMN  

In the transcriptome-wide association study (TWAS) of MMN peak amplitude, at the Benjamini-

Hochberg-corrected significance threshold (FDR = 0.05), there are two genes that were significantly 

positively associated with MMN (Figure 1): ENGASE in whole cortex (effect size = 1.09; p-value = 

1.06e-05; FDR = 0.045; 95% CI = 0.60 to 1.58) and FAM89A in the frontal cortex (effect size = 0.82; p-

value = 1.1e-05; FDR = 0.045; 95% CI = 0.46 to 1.19). Multiple test correction was performed to account 

for all genes tested across both tissues. A heatmap showing the strength and direction of association for 

the top 10 genes in the TWAS can be found in Figure 2A. For the entire table of TWAS results from all 
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genes included in the analysis, please see Supplementary Table 2. The MMN peak is the negative 

component of the waveform obtained by subtracting the response to the standard stimulus from the 

response to the deviant stimulus. This means here that higher expression of FAM89A or ENGASE results 

in attenuated MMN amplitudes. For the frontal cortex, there were 26 SNPs in the PrediXcan gene model 

for FAM89A (R2 (i.e., prediction accuracy) = 0.2798; p = 2.01 x 10-8). For the whole cortex, there were 

40 SNPs in the PrediXcan model for FAM89A (R2 = 0.3471; p = 1.86 x 10-12) and 23 SNPs in the gene 

model for ENGASE (R2 = 0.0361; p = 0.0426). 
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Figure 1. Transcriptome-wide association of 4329 and 3604 genes in the cortex and frontal cortex, respectively, shows 

FAM89A and ENGASE to be significantly associated with MMN. The Manhattan plots show, by tissue, the significance 

(-log10 FDR) of all genes in the TWAS of MMN, multiplied by the sign of the coefficient to show the direction of the effect 

[(sign(coefficient)]. A. Predicted expression of ENGASE in the whole cortex is significantly positively associated with MMN 

peak amplitude at the FDR<0.05 threshold indicated by the solid line. Genes within the dotted line show a (non-significant) 

association with MMN within a threshold of FDR<0.1. B. Predicted expression of FAM89A in the frontal cortex is 

significantly (FDR<0.05) positively associated with MMN peak amplitude.  
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Genes controlling neurotransmitter levels are enriched in MMN associations 

In the MMN-TWAS results for the frontal cortex, one gene set (“Abnormal Neurotransmitter Level”) is 

significantly enriched (over-represented) at the FDR<0.05 threshold (Table 3). There were no 

significantly enriched gene sets in the whole cortex. 

 

 

Table 3. One gene set enriched for MMN at FDR < 0.05 and two (non-significant) at FDR < 0.1  

Gene set Genes in set Genes tested Beta SEa t-stat p-value FDRb 

Abnormal neurotransmitter level 69 11 0.6579 0.187 3.5213 2.15 x 10-4 0.045 

Abnormal parental behaviour 204 20 0.4624 0.140 3.3027 4.79 x 10-4 0.050 

Abnormal behavioural response to xenobiotic 79 12 0.2945 0.097 3.0354 1.20 x 10-3 0.084 

 

a Standard Error (beta) 
b False Discovery Rate 

 

 

 

Genes that influence the MMN are under-expressed in adulthood 

In the neurodevelopmental signature enrichment analysis, genes more strongly associated to MMN in 

the TWAS for frontal cortex are significantly under-expressed in the adult age categories of eighteen to 

twenty-three years (effect size = -0.0086; p-value = 0.0473; SE = 0.0043) and thirty to forty years (effect 

size = -0.0074; p-value = 0.0185; SE = 0.0032). Although not significant, the prenatal stages show a 

relative upregulation of higher p-value TWAS genes (Figure 2B). A rank-based identification of the top 

ten genes driving the association between the TWAS results and gene expression within the earliest (eight 

to twelve weeks post-conception) and latest (and thirty to forty years) categories (Figures 2C and 2D, 

respectively) reveals four genes (BARD1, RBAK, SLAIN2 and DOCK7 – all ranked within the top thirty 

genes in the MMN TWAS results) that are strongly overexpressed in the early prenatal stage and strongly 

downregulated in adulthood. The top ten genes driving this result also individually show a marked 



 50 

overexpression in the earliest prenatal stage and a gradual decrease in expression over neurodevelopment, 

although ENGASE and FAM89A do not follow this pattern (Figure 2E). The significant downregulation 

in adulthood was not seen in the whole cortex, but nominal prenatal overexpression can also be observed 

here (see Supplementary Figure 3). 
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Figure 2. Gene set and neurodevelopmental stage enrichment analyses of MMN TWAS results show enrichment of 

genes controlling neurotransmitter level and downregulation of MMN-associated genes in adulthood. A. The first 

heatmap shows association strengths (t-statistics) and directions of association (red = positive; blue = negative) of the ten top 

MMN TWAS genes. The other heatmaps correspond to each of the three gene sets enriched for MMN and the constituent 

genes primarily driving these gene set-MMN associations. B. Expression of MMN-related genes across neurodevelopmental 

stages. Each bar of the bar plot represents an age range and the p-value of an underlying association analysis which assessed 

whether the genes more strongly associated to MMN in the TWAS were significantly up- or down-regulated in the frontal 

cortex within that age range. The last 2 bars reach the threshold of p<0.05, showing a significant downregulation of MMN-

related genes in older age-groups. C. The regression analysis represented by the first bar of the bar plot, which tests the 

association between (absolute value of) p-values of genes examined in the MMN TWAS and the (signed -log10) p-values of 

genes assessed in a differential expression analysis between each age range and all the others. The slope shows a slight positive 

relationship between MMN-related genes and the gene expression profile of the 8-12-week post-conception 

neurodevelopmental stage. D. The regression analysis represented by the last bar of the bar plot, showing a negative 

relationship between MMN-related genes from the TWAS and the gene expression profile of the 30-40 years 

neurodevelopmental stage. E. Differential expression across the nine age-range categories of the 16 genes most responsible 

for driving the trend in downregulation of MMN-related genes. 
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MMN ranks higher than verbal recall and ventricular volume as a psychosis endophenotype 

In order to estimate the utility of the MMN to understand more about the genetics of psychosis, the SNP-

based ERV (ERVSNP, a 0-1 scale value representing genetic overlap between phenotype and illness 

(Glahn et al., 2012)) of the MMN was calculated – in addition to that of three comparator phenotypes 

that have previously been associated with psychosis risk (Johan H. Thygesen et al., 2020). The results 

(Figure 3) show that the ERVSNP for the MMN (0.28) is substantially higher (there is no overlap between 

the lower bound of the confidence area and the upper bounds thereof for the other endophenotypes) than 

those of lateral ventricular volume (0.02), RAVLT-delayed (0.10) and RAVLT-immediate (0.13). ERV 

is a standardized covariance so does not have units; it is calculated based on heritability and genetic 

correlation estimates for each phenotype. These estimates have wide confidence intervals in this analysis 

(Supplementary Table 7), so must be interpreted cautiously. 
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Figure 3. MMN ranks higher than working memory and ventricular volume in comparison of Endophenotype Ranking 

Values (ERVSNP) of schizophrenia candidate endophenotypes. The graph shows a comparison of SNP-based 

Endophenotype Ranking Values (ERVSNP) of MMN compared to ERVSNPs of Ray Auditory Verbal Learning Task (RAVLT) 

immediate recall, RAVLT delayed recall and brain lateral ventricular volume (LVV). The colour scale indicates the ERV 

strength: a good endophenotype would sit in darker red or darker blue areas, indicating that it has a high degree of pleiotropy 

with the disease and is strongly heritable itself. ERV here has a maximum value of 0.447, given a SNP-based heritability 

(h2
SNP) for schizophrenia of 0.2002 (Pardiñas et al, 2018). The shaded confidence areas in grey indicate the standard errors of 

the endophenotype heritability estimates (h2
SNP) along the x-axis and of the genetic overlap between the endophenotype and 

schizophrenia along the y-axis. The ERV is a standardized genetic covariance and does not have units. 
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Discussion 

The transcriptome-wide association study (TWAS) of mismatch negativity (MMN) revealed two genes 

whose expression is significantly positively associated with MMN: FAM89A (frontal cortex) and 

ENGASE (whole cortex). This means that increased expression of these genes relates to attenuated MMN 

amplitudes. Both genes are protein-coding, but relatively little is known about their functions. FAM89A 

(Family with Sequence Similarity 89 Member A) encodes a protein that contributes to cytoskeletal 

organization, modulation of protein synthesis and neurite outgrowth (Gurol et al., 2015). It is highly 

expressed in placental tissue, and interacts with the biogenetic protein UBX2NB, which is highly 

expressed in the foetal brain (www.string-db.org), suggesting a role for FAM89A in prenatal 

neurodevelopment. Functionally, FAM89A appears to be primarily involved in the immune response: it 

differentiates between viral and bacterial infections (Gomez-Carballa et al., 2019), is implicated in glial 

tumours (Pan et al., 2019), and is downregulated on exposure to interleukins 10 and 13 (Alevy et al., 

2012; Trandem et al., 2011). 

ENGASE (Endo-beta-N-acetylglucosaminidase) acts as a cytosolic enzyme that breaks down 

oligosaccharides and is involved in degradation of asparagine-linked N-glycans (Shi & Trimmer, 1999; 

Suzuki et al., 2002). Asparagine-linked N-glycosylation patterns influence the unique functional 

properties of potassium channels in the mammalian brain (Shi & Trimmer, 1999). The signalling of 

sensory precision is thought to be physiologically synonymous with neuromodulatory gain control 

(Moran et al., 2013), in which potassium channels play a central role (Delmas & Brown, 2005). It is 

possible that increased expression of ENGASE results in excessive degradation of asparagine-linked N-

glycans, thereby altering the functional properties of synaptic potassium channels. If so, this would 

inevitably affect neuromodulation, which would be consistent with the loss of gain control of pyramidal 

cells computationally associated with aberrant sensory precision and reduced MMN (R. A. Adams et al., 

2013). Deletions of ENGASE have been shown (in mice) to be protective against the embryonic lethality 

http://www.string-db.org/
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of deletions NGLY1, which codes for N-glycanase-1, another deglycosylating enzyme (Fujihira et al., 

2017).  

The gene set significantly associated with MMN in this analysis was ‘Abnormal Neurotransmitter 

Level’, indicating that the genes whose expression influences predictive processing in the brain could 

also be involved in regulating the concentration of neurotransmitters in synaptic clefts.  One of the most 

significantly associated genes within this gene set (shown in the third heatmap in Figure 2) is KCNJ6, 

which encodes the GIRK2 protein, an inward rectifier potassium channel which is ubiquitous in the brain 

and functionally present in glutamatergic synapses (Saenz del Burgo et al., 2008).  The most significant 

(negatively) associated gene in this gene set was DLG4, which encodes PSD95 (Postsynaptic Density 

Protein 95): another well-studied protein that regulates synapses by trafficking (glutamatergic) NMDA 

and AMPA receptors (Coley & Gao, 2018). PSD95 is also implicated in schizophrenia and autism (Coley 

& Gao, 2018). These associations reinforce the notion that MMN and psychosis share a genetic 

component. 

The genes that have more influence over MMN were, overall, under-expressed in adulthood. This 

could be interpreted to mean that genes that influence MMN (i.e., the genes likely to be involved in 

establishing neuronal structures that optimise the short-term plasticity necessary for belief updating) are 

also involved in early neurodevelopment. This would make sense, as there is a higher likelihood of 

encountering novel stimuli earlier in life (Koster et al., 2020). The specificity of the neurodevelopmental 

enrichment results to the frontal cortex is consistent with source localisation of MMN in previous studies 

(Dima et al., 2012; Ranlund et al., 2016).  

The Endophenotype Ranking Value (ERV) analysis endorses the notion of MMN being an 

endophenotype of psychosis. The ERV of MMN (0.28) was substantially greater than those obtained for 

the other three candidate endophenotypes (0.02 – 0.13), considering the maximum possible value in this 

analysis was 0.447. However, due to the small sample size, the standard errors of the heritability and 
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genetic correlation estimates were large, so this result would require independent replication in a larger 

sample. ERV is a recent development in the field, so there is limited precedent upon which to specify a 

minimum sample size for meaningful results. For context, the original paper which proposed ERV as a 

formal approach to the identification of endophenotypes (Glahn et al., 2012) used a sample size of 1222 

individuals to calculate family-based heritability of endophenotypes and their genetic correlation with 

disease liability. There are three factors I consider to be of importance here: the heritability of the 

endophenotype, the heritability of the disease and the novelty of the findings. The first two are important 

as the ERV is directly derived from these measures; in this sense, a good sample size for ERV is a good 

sample size for calculating heritability estimates. Stanton-Geddes et al. (2013) suggest that, with samples 

drawn from relatively well-controlled environments, sample sizes of a few hundred can yield meaningful 

SNP-based heritability estimates). Importantly, it has not been possible before to formally assess the 

utility of MMN as an endophenotype for psychosis, although it is one of the most likely candidates 

thereof. The ERV presented here for MMN therefore presents a principled starting point for gauging the 

value of MMN as a psychosis endophenotype.  

There are some limitations to the current study. Firstly, as genetic association studies benefit from 

large samples, independent replication of this research in another large sample would be important. 

Secondly, in order to assemble a large enough dataset for a genetic association study, I combined samples 

that used slightly different MMN paradigms. These minor differences in methodology were accounted 

for by combining the samples by meta-analysis, as well as by including testing centre as a covariate in 

the regression analyses. However, future studies would ideally use a homogenously tested sample.  

In summary, this study lays important groundwork for developing a clearer picture of the 

neurobiological mechanisms that result in the phenomenon of mismatch negativity and its attenuation in 

psychosis. The findings herein support the use of MMN as an endophenotype for psychosis and implicate 

FAM89A and ENGASE as key components of the physiology of prediction error minimisation. 
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Supplementary Information 

 

 

 

  

PEIC Harvard Maryland 

Demographics 

Subjects with MMN data 464 135 429 

Subjects with MMN and 

genetic data 

254 71 403 

% Patients in the sample 

diagnosed with schizophrenia 

61 77 100 

% Patients diagnosed with 

type 1 bipolar disorder with 

psychosis 

39 19 0 

% Patients with other 

psychotic disorders 

0 4 0 

MMN Paradigm 

Subject position/ 

instructions 

Seated, eyes open/disregard all 

sounds presented 

Seated, eyes open/disregard 

all sounds presented 

Seated, eyes open/disregard all 

sounds presented 

 
Auditory stimulus amplitude 

(decibels)  

80 80 

73 (measured at headphone 

coupler) 
 

Auditory stimulus frequency 

(Hz) 

1000 1000 1000  

Inter-stimulus interval (s) 0.3 0.3 0.3  

Total number of stimuli 1200 1200 800  

Number of stimuli per block 400 400 800  

Supplementary Table 1. Comparison of the sample sizes, data collection and processing procedures used in the three samples 
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Number of blocks 3 3 1  

Standard stimuli  

Duration (ms) 25 25 60  

Rise/fall time (ms) 5 5 5  

Percentage of stimuli 

presented 

85 85 80  

Deviant stimuli  

Duration 50 50 150  

Rise/fall time 5 5 5  

Percentage of stimuli 

presented 

15 15 20  

EEG Acquisition  

Number of scalp sites 21/40/64 (3 systems) 21 64  

Ground position FPZ FPZ Midway between FPZ and FZ  

 
Electrodes Silver/silver chloride Silver/silver chloride Silver/silver chloride  

Reference Left earlobe Left earlobe Nose  

Electro-oculogram Vertical, horizontal, radial Vertical, horizontal, radial Vertical, horizontal  

Acquisition Software Neuroscan Stim Neuroscan Stim Neuroscan Stim  

Amplifier 

Nihon Kohden PV-441A (21 

channels), NeuroscanNuAmps (40 

channels), NeuroscanSynamps (64 

channels). 

Neuroscan Synamps 

Neuroscan Synamps2 and 

Synamps2 RT 
 

Continuous sampling 

frequency (Hz) 

500 500 1000  

Impedance (kΩ) <5 <5 <5  
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Octave Roll-Off/Db 24 24 24  

Acquisition parameters  

High-pass filter (Hz) 0.03 0.03 Direct current  

 
Low-pass filter (Hz) 120 120 100  

 
EEG Pre-processing  

Ocular artefact removal 

Artefact-aligned average (Croft 

& Barry, 2000) or Regression-

based weighting coefficients 

(Semlitsch et al, 1986) 

Regression-based weighting 

coefficients (Semlitsch et al, 

1986) 

Regression-based weighting 

coefficients 

 

 
Re-referencing Common average Common average n/a   

Offline band-pass filter (Hz)  

High-pass 0.03 0.1 0.1  

Low-pass 50 20 30  

Epochs  

Pre-stimulus (ms) (-)100 (-)100 (-) 100   

Post-stimulus (ms) 300 400 400  

Averaging of standard & 

deviant tones 

Separately, then baseline 

corrected 

Separately, then baseline 

corrected 

Separately  

MMN Measurement  

Peak identification 

Algorithm (blind to all clinical 

parameters) 

Algorithm (blind to all 

clinical parameters) 

Algorithm (blind to all clinical 

parameters) 
 

Measurement window (ms) 50 to 200 50 to 200 100 to 250  

Genetic Data  

Genotyping Chip 

Affymetrix Genome-wide 

Human SNP Array 6.0  

Illumina OmniExpress 

Infinium Platform 

Illumina Omni2.5-8 BeadChip  
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Imputation server 

Sanger Imputation Server 

(McCarthy et al., 2016; 

https://imputation.sanger.ac.uk/)  

Sanger Imputation Server 

(McCarthy et al., 2016; 

https://imputation.sanger.ac.

uk/) 

Sanger Imputation Server 

(McCarthy et al., 2016; 

https://imputation.sanger.ac.uk

/) 

 

Pre-phasing The EAGLE2 (Loh et al., 2016) 

The EAGLE2 (Loh et al., 

2016) 

The EAGLE2 (Loh et al., 

2016) 
 

Imputation 

PBWT (Durbin, Bioinformatics, 

2014) 

PBWT (Durbin, 

Bioinformatics, 2014) 

PBWT (Durbin, 

Bioinformatics, 2014) 
 

Imputation Reference Panel 

Haplotype Reference 

Consortium panel (r1.1) 

Haplotype Reference 

Consortium panel (r1.1) 

Haplotype Reference 

Consortium panel (r1.1) 
 

 

 

 

 

 

 

 

 

 

 

 

https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
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Supplementary Table 2. TWAS results for all genes with FDRT < 0.05 

Gene ID Chr Gene Gene type Status Beta T stats P value S.E.1 Tissue FDRT
2 FDRO

3 

ENSG000

00167280 

chr17 ENGASE Protein coding KNOWN 1.08973

7505 

4.4037

22809 

#######

#######

#### 

0.24745

8242 

Cortex 0.04567

0695 

0.04503

0013 
ENSG000

00182118 

chr1 FAM89A Protein coding KNOWN 0.82464

5115 

4.3870

99056 

#######

#######

#### 

0.18797

048 

Frontal Cortex 0.04075

6757 

0.04503

0013 
ENSG000

00182118 

chr1 FAM89A Protein coding KNOWN 0.68683

694 

4.2051

83389 

#######

#######

#### 

0.16333

1031 

Cortex 0.05598

2819 

0.06817

4169 
ENSG000

00272274 

chr13 LINC00551 lincRNA NOVEL -

0.64070

0324 

-

4.0818

82833 

#######

#######

#### 

0.15696

1958 

Cortex 0.06391

1196 

0.08755

7743 
ENSG000

00271811 

chr1 RP1-79C4.4 lincRNA NOVEL -

0.28174

1485 

-

3.9271

06886 

#######

#######

#### 

0.07174

276 

Frontal Cortex 0.15251

7486 

0.12743

4794 
ENSG000

00164188 

chr5 RANBP3L Protein coding KNOWN 0.49753

8391 

3.8966

64364 

#######

#######

#### 

0.12768

3153 

Cortex 0.10464

6072 

0.12743

4794 
ENSG000

00167333 

chr11 TRIM68 Protein coding KNOWN -

0.91336

5341 

-

3.7862

43214 

0.00015

2942 

0.24123

2612 

Frontal Cortex 0.18087

939 

0.17129

5025 
ENSG000

00134769 

chr18 DTNA Protein coding KNOWN 1.22744

2543 

3.6544

82926 

0.00025

7701 

0.33587

3109 

Cortex 0.22121

0376 

0.24140

3391 
ENSG000

00176700 

chr15 SCAND2P pseudogene KNOWN -

0.82643

6358 

-

3.6210

03745 

0.00029

3462 

0.22823

4052 

Frontal Cortex 0.21225

3325 

0.24140

3391 
ENSG000

00141140 

chr17 MYO19 Protein coding KNOWN 0.46698

3154 

3.5559

71291 

0.00037

6585 

0.13132

3657 

Cortex 0.24112

1942 

0.24140

3391 
ENSG000

00230156 

chr13 LINC00443 lincRNA KNOWN -

0.50717

2313 

-

3.5445

68885 

0.00039

3256 

0.14308

4344 

Cortex 0.24112

1942 

0.24140

3391 
ENSG000

00113205 

chr5 PCDHB3 Protein coding KNOWN -

0.46183

378 

-

3.5012

49812 

0.00046

3082 

0.13190

5407 

Cortex 0.24844

3249 

0.24140

3391 
ENSG000

00140548 

chr15 ZNF710 Protein coding KNOWN 0.62431

2569 

3.4718

847 

0.00051

6818 

0.17981

95 

Frontal Cortex 0.21225

3325 

0.24140

3391 
ENSG000

00213015 

chr19 ZNF580 Protein coding KNOWN -

0.71044

2009 

-

3.4616

05368 

0.00053

6964 

0.20523

4836 

Cortex 0.24941

494 

0.24140

3391 
ENSG000

00166206 

chr15 GABRB3 Protein coding KNOWN 2.00640

6434 

3.4528

73932 

0.00055

4648 

0.58108

3026 

Frontal Cortex 0.21225

3325 

0.24140

3391 
ENSG000

00116213 

chr1 WRAP73 Protein coding KNOWN 0.44390

1101 

3.4467

36358 

0.00056

7402 

0.12878

8818 

Frontal Cortex 0.21225

3325 

0.24140

3391 
ENSG000

00163635 

chr3 ATXN7 Protein coding KNOWN 1.30513

4502 

3.4402

78495 

0.00058

1116 

0.37936

8852 

Cortex 0.24941

494 

0.24140

3391 
ENSG000

00174938 

chr16 SEZ6L2 Protein coding KNOWN 0.70893

3726 

3.4327

40218 

0.00059

7514 

0.20652

1228 

Frontal Cortex 0.21225

3325 

0.24140

3391 
ENSG000

00069696 

chr11 DRD4 Protein coding KNOWN 0.75060

6618 

3.4265

09758 

0.00061

1392 

0.21905

8655 

Frontal Cortex 0.21225

3325 

0.24140

3391 
ENSG000

00086619 

chr1 ERO1LB Protein coding KNOWN 0.55797

7914 

3.4245

47148 

0.00061

5825 

0.16293

4803 

Frontal Cortex 0.21225

3325 

0.24140

3391 
ENSG000

00253910 

chr5 PCDHGB2 Protein coding KNOWN 0.36812

4227 

3.4064

82746 

0.00065

8057 

0.10806

5784 

Frontal Cortex 0.21225

3325 

0.24567

4649 
ENSG000

00163050 

chr1 ADCK3 Protein coding KNOWN -

0.46197

9819 

-

3.3577

70381 

0.00078

5739 

0.13758

5292 

Frontal Cortex 0.21383

5435 

0.27563

1546 
ENSG000

00177685 

chr11 EFCAB4A Protein coding KNOWN -

1.54108

5885 

-

3.3493

76308 

0.00080

9937 

0.46011

1299 

Frontal Cortex 0.21383

5435 

0.27563

1546 
ENSG000

00230156 

chr13 LINC00443 lincRNA KNOWN -

0.43918

5639 

-

3.3380

22213 

0.00084

377 

0.13157

0616 

Frontal Cortex 0.21383

5435 

0.27563

1546 
ENSG000

00138376 

chr2 BARD1 Protein coding KNOWN -

0.67390

2797 

-

3.3073

02395 

0.00094

1991 

0.20376

2074 

Frontal Cortex 0.21680

0903 

0.28320

4922 
ENSG000

00161513 

chr17 FDXR Protein coding KNOWN -

0.43373

2298 

-

3.2731

34071 

0.00106

362 

0.13251

2842 

Cortex 0.35437

7705 

0.28320

4922 
ENSG000

00129646 

chr17 QRICH2 Protein coding KNOWN 1.44595

0046 

3.2725

65946 

0.00106

576 

0.44183

985 

Frontal Cortex 0.21680

0903 

0.28320

4922 
ENSG000

00232070 

chr14 TMEM253 Protein coding KNOWN -

0.77812

8727 

-

3.2700

28588 

0.00107

5366 

0.23795

7775 

Cortex 0.35437

7705 

0.28320

4922 
ENSG000

00136883 

chr9 KIF12 Protein coding KNOWN -

1.35671

948 

-

3.2683

33266 

0.00108

1829 

0.41511

0507 

Frontal Cortex 0.21680

0903 

0.28320

4922 
ENSG000

00188599 

chr16 NPIPP1 pseudogene KNOWN 0.60147

5362 

3.2636

44232 

0.00109

9892 

0.18429

5627 

Frontal Cortex 0.21680

0903 

0.28320

4922 
ENSG000

00144504 

chr2 ANKMY1 Protein coding KNOWN 0.74492

7408 

3.2525

65661 

0.00114

3682 

0.22902

7631 

Cortex 0.35437

7705 

0.28320

4922 
ENSG000

00167632 

chr8 TRAPPC9 Protein coding KNOWN 1.14127

7683 

3.2495

35017 

0.00115

5938 

0.35121

2613 

Cortex 0.35437

7705 

0.28320

4922 
ENSG000

00102796 

chr13 DHRS12 Protein coding KNOWN -

0.86587

9033 

-

3.2403

17774 

0.00119

3966 

0.26722

0407 

Frontal Cortex 0.22295

7364 

0.28365

728 
ENSG000

00179774 

chr10 ATOH7 Protein coding KNOWN -

0.67446

8666 

-

3.2217

78913 

0.00127

3974 

0.20934

6663 

Frontal Cortex 0.22600

2985 

0.29376

3413 
ENSG000

00168582 

chr2 CRYGA Protein coding KNOWN 0.73737

3166 

3.1905

58334 

0.00141

9982 

0.23111

1012 

Frontal Cortex 0.23990

9292 

0.31807

5905 
ENSG000

00110218 

chr11 PANX1 Protein coding KNOWN -

0.49988

2166 

-

3.1652

77938 

0.00154

9349 

0.15792

6784 

Cortex 0.44332

0323 

0.33741

3728 
ENSG000

00234444 

chr7 ZNF736 Protein coding KNOWN 0.50305

2276 

3.1220

76706 

0.00179

5801 

0.16112

7456 

Cortex 0.45139

3284 

0.36445

6423 
ENSG000

00091127 

chr7 PUS7 Protein coding KNOWN 1.23314

039 

3.1205

43264 

0.00180

5178 

0.39516

8496 

Frontal Cortex 0.27967

2605 

0.36445

6423 
ENSG000

00166800 

chr11 LDHAL6A Protein coding KNOWN 0.99369

1461 

3.1192

7206 

0.00181

2985 

0.31856

5178 

Frontal Cortex 0.27967

2605 

0.36445

6423 
ENSG000

00181885 

chr17 CLDN7 Protein coding KNOWN -

0.40572

259 

-

3.1020

39847 

0.00192

1921 

0.13079

2191 

Cortex 0.45139

3284 

0.37555

9029 
ENSG000

00164898 

chr7 C7orf55 Protein coding KNOWN -

0.54080

1188 

-

3.0956

19759 

0.00196

402 

0.17469

8842 

Frontal Cortex 0.29034

7687 

0.37555

9029 
ENSG000

00258289 

chr14 CHURC1 Protein coding KNOWN -

0.31224

7515 

-

3.0839

86448 

0.00204

2469 

0.10124

8018 

Cortex 0.45139

3284 

0.38126

0878 
ENSG000

00186567 

chr19 CEACAM19 Protein coding KNOWN -

1.02710

721 

-

3.0670

59636 

0.00216

1757 

0.33488

3352 

Frontal Cortex 0.30679

6587 

0.39414

3645 
ENSG000

00118096 

chr11 IFT46 Protein coding KNOWN 0.73998

0967 

3.0552

51774 

0.00224

8717 

0.24219

9669 

Cortex 0.45139

3284 

0.40068

0414 
ENSG000

00272343 

chr8 RP11-140I16.3 lincRNA NOVEL -

1.30035

2755 

-

3.0469

29568 

0.00231

1919 

0.42677

4799 

Cortex 0.45139

3284 

0.40201

1297 
ENSG000

00138759 

chr4 FRAS1 Protein coding KNOWN 1.19764

4444 

3.0408

97677 

0.00235

874 

0.39384

569 

Cortex 0.45139

3284 

0.40201

1297 
ENSG000

00188611 

chr10 ASAH2 Protein coding KNOWN -

0.32186

9911 

-

3.0218

17827 

0.00251

2617 

0.10651

5326 

Frontal Cortex 0.34287

5598 

0.41912

592 
ENSG000

00141013 

chr16 GAS8 Protein coding KNOWN 0.40840

2319 

2.9834

14475 

0.00285

0517 

0.13689

0909 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00140522 

chr15 RLBP1 Protein coding KNOWN -

0.63131

0411 

-

2.9680

87544 

0.00299

659 

0.21269

939 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00235475 

chr7 RP11-166O4.5 lincRNA NOVEL 0.34858

1366 

2.9674

04093 

0.00300

326 

0.11747

0137 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00105186 

chr19 ANKRD27 Protein coding KNOWN -

0.78864

1434 

-

2.9647

78317 

0.00302

9011 

0.26600

3508 

Cortex 0.45139

3284 

0.44398

2784 
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ENSG000

00144504 

chr2 ANKMY1 Protein coding KNOWN 0.50418

2685 

2.9575

29551 

0.00310

115 

0.17047

4268 

Frontal Cortex 0.39815

8229 

0.44398

2784 
ENSG000

00248593 

chr12 DSTNP2 pseudogene KNOWN 0.58833

7852 

2.9534

75728 

0.00314

2173 

0.19920

1858 

Frontal Cortex 0.39815

8229 

0.44398

2784 
ENSG000

00008838 

chr17 MED24 Protein coding KNOWN 0.66918

7336 

2.9531

38727 

0.00314

5606 

0.22660

2066 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00233196 

chr1 GS1-304P7.1 pseudogene KNOWN 0.77482

6561 

2.9506

58549 

0.00317

0973 

0.26259

4451 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00248673 

chr5 CTC-419K13.1 lincRNA NOVEL 0.43591

8318 

2.9458

4311 

0.00322

0757 

0.14797

7439 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00111962 

chr6 UST Protein coding KNOWN -

0.42644

1728 

-

2.9424

44516 

0.00325

6321 

0.14492

7704 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00215452 

chr20 ZNF663P pseudogene KNOWN 0.74243

8844 

2.9265

70271 

0.00342

7221 

0.25368

9054 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00184731 

chr2 FAM110C Protein coding KNOWN 0.96940

3742 

2.9259

95383 

0.00343

356 

0.33130

7338 

Frontal Cortex 0.41567

8477 

0.44398

2784 
ENSG000

00226981 

chr17 ABHD17AP6 pseudogene KNOWN -

0.74296

803 

-

2.9187

166 

0.00351

4756 

0.25455

2987 

Frontal Cortex 0.41567

8477 

0.44398

2784 
ENSG000

00241218 

chr3 RP11-446H18.1 pseudogene KNOWN 1.74512

5543 

2.9121

4358 

0.00358

9576 

0.59925

807 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00232561 

chr7 GTF2IP1 pseudogene KNOWN -

0.42746

581 

-

2.9113

69659 

0.00359

848 

0.14682

636 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00101443 

chr20 WFDC2 Protein coding KNOWN -

1.31689

3288 

-

2.9105

73053 

0.00360

7666 

0.45245

1549 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00150403 

chr13 TMCO3 Protein coding KNOWN -

1.30444

3103 

-

2.9046

30276 

0.00367

6871 

0.44909

0927 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00118420 

chr6 UBE3D Protein coding KNOWN 0.78295

4645 

2.9042

80704 

0.00368

098 

0.26958

6423 

Cortex 0.45139

3284 

0.44398

2784 
ENSG000

00163378 

chr3 EOGT Protein coding KNOWN 0.43842

9286 

2.8878

75823 

0.00387

853 

0.15181

7222 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00099817 

chr19 POLR2E Protein coding KNOWN -

0.56094

6637 

-

2.8852

97062 

0.00391

0445 

0.19441

5558 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00104517 

chr8 UBR5 Protein coding KNOWN 0.56018

0896 

2.8826

42477 

0.00394

3548 

0.19432

8953 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00182986 

chr19 ZNF320 Protein coding KNOWN 0.44469

696 

2.8778

79069 

0.00400

3586 

0.15452

2462 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00074935 

chr6 TUBE1 Protein coding KNOWN 0.53597

4752 

2.8669

0146 

0.00414

5121 

0.18695

2625 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00159650 

chr3 UROC1 Protein coding KNOWN -

0.34274

9433 

-

2.8543

45659 

0.00431

2558 

0.12007

9862 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00139880 

chr14 CDH24 Protein coding KNOWN 2.42892

6162 

2.8491

50259 

0.00438

3617 

0.85250

8973 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00197150 

chr7 ABCB8 Protein coding KNOWN -

1.33680

2419 

-

2.8449

53472 

0.00444

1791 

0.46988

5512 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00184949 

chr22 FAM227A Protein coding KNOWN -

0.52411

8789 

-

2.8427

09341 

0.00447

3184 

0.18437

2979 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00268225 

chr19 CTD-2331H12.5 pseudogene KNOWN 0.80188

0325 

2.8416

56734 

0.00448

7979 

0.28218

7611 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00166788 

chr11 SAAL1 Protein coding KNOWN 0.45942

0476 

2.8389

61873 

0.00452

6056 

0.16182

6927 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00134222 

chr1 PSRC1 Protein coding KNOWN 0.71790

1436 

2.8382

24493 

0.00453

6526 

0.25294

0329 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00147894 

chr9 C9orf72 Protein coding KNOWN -

0.47819

0926 

-

2.8325

66894 

0.00461

759 

0.16881

8935 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00178809 

chr7 TRIM73 Protein coding KNOWN -

0.74162

9226 

-

2.8292

21331 

0.00466

6142 

0.26213

1922 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00120669 

chr13 SOHLH2 Protein coding KNOWN -

0.29585

3928 

-

2.8270

54656 

0.00469

7831 

0.10465

094 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00002933 

chr7 TMEM176A Protein coding KNOWN 0.47492

6929 

2.8236

04002 

0.00474

8702 

0.16819

8844 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00177302 

chr17 TOP3A Protein coding KNOWN -

0.40117

5969 

-

2.8162

08872 

0.00485

9406 

0.14245

2491 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00186867 

chr4 QRFPR Protein coding KNOWN 0.63308

3389 

2.8153

35865 

0.00487

2628 

0.22486

9579 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00106344 

chr7 RBM28 Protein coding KNOWN 0.74771

612 

2.8145

57859 

0.00488

4438 

0.26566

0241 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00105185 

chr19 PDCD5 Protein coding KNOWN -

1.05057

4106 

-

2.8139

45929 

0.00489

3746 

0.37334

552 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00154099 

chr16 DNAAF1 Protein coding KNOWN 0.67462

4798 

2.8108

08197 

0.00494

1724 

0.24001

0969 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00115109 

chr2 EPB41L5 Protein coding KNOWN -

0.81554

1342 

-

2.8094

0074 

0.00496

3382 

0.29029

0143 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00107614 

chr10 TRDMT1 Protein coding KNOWN 0.56164

4543 

2.8050

48415 

0.00503

0902 

0.20022

6328 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00069974 

chr15 RAB27A Protein coding KNOWN 0.31372

3465 

2.7967

1415 

0.00516

2519 

0.11217

5735 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00100075 

chr22 SLC25A1 Protein coding KNOWN -

0.64091

0633 

-

2.7956

81694 

0.00517

9038 

0.22925

0216 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00243429 

chr3 OR7E29P pseudogene KNOWN -

0.68345

1125 

-

2.7903

3992 

0.00526

5273 

0.24493

4719 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00185591 

chr12 SP1 Protein coding KNOWN 0.61233

7827 

2.7844

35458 

0.00536

2099 

0.21991

4534 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00120262 

chr6 CCDC170 Protein coding KNOWN 0.57553

1458 

2.7838

52519 

0.00537

1745 

0.20673

9206 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00175874 

chr2 CREG2 Protein coding KNOWN -

1.12030

6462 

-

2.7833

83633 

0.00537

9516 

0.40249

8042 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00253251 

chr5 CTC-534A2.2 Protein coding KNOWN -

0.52215

9869 

-

2.7818

57783 

0.00540

4872 

0.18770

1856 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00120669 

chr13 SOHLH2 Protein coding KNOWN -

0.31378

2976 

-

2.7749

46745 

0.00552

1075 

0.11307

7116 

Frontal Cortex 0.41678

2411 

0.44481

4922 
ENSG000

00231184 

chr13 FAM58DP pseudogene KNOWN 0.32148

3769 

2.7716

45438 

0.00557

7375 

0.11599

0222 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00143839 

chr1 REN Protein coding KNOWN -

1.09320

3853 

-

2.7706

60833 

0.00559

4266 

0.39456

43 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00205763 

chr7 RP9P pseudogene KNOWN -

0.77786

4267 

-

2.7663

66153 

0.00566

8485 

0.28118

6302 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00196387 

chr12 ZNF140 Protein coding KNOWN -

0.55290

4833 

-

2.7660

68606 

0.00567

366 

0.19988

833 

Cortex 0.45945

9387 

0.44481

4922 
ENSG000

00114796 

chr3 KLHL24 Protein coding KNOWN -

0.79356

1395 

-

2.7480

41806 

0.00599

5236 

0.28877

3407 

Cortex 0.46743

1682 

0.46282

7025 
ENSG000

00272274 

chr13 LINC00551 lincRNA NOVEL -

0.42771

8161 

-

2.7410

57993 

0.00612

417 

0.15604

1267 

Frontal Cortex 0.45267

8212 

0.46282

7025 
ENSG000

00257335 

chr7 MGAM Protein coding KNOWN -

0.53079

9373 

-

2.7403

92546 

0.00613

6584 

0.19369

4649 

Cortex 0.46743

1682 

0.46282

7025 
ENSG000

00235421 

chr7 RP11-667F9.1 pseudogene KNOWN -

0.80634

6845 

-

2.7396

97386 

0.00614

9578 

0.29431

9675 

Cortex 0.46743

1682 

0.46282

7025 
ENSG000

00232210 

chr7 PHBP15 pseudogene KNOWN 0.44702

4059 

2.7345

43952 

0.00624

6676 

0.16347

2984 

Cortex 0.46743

1682 

0.46282

7025 
ENSG000

00172461 

chr6 FUT9 Protein coding KNOWN 0.61790

6875 

2.7338

01442 

0.00626

0779 

0.22602

4782 

Frontal Cortex 0.45333

1481 

0.46282

7025 
ENSG000

00215908 

chr1 CROCCP2 lincRNA NOVEL 0.59739

945 

2.7308

74902 

0.00631

6644 

0.21875

753 

Cortex 0.46743

1682 

0.46282

7025 
ENSG000

00132535 

chr17 DLG4 Protein coding KNOWN -

0.72174

1311 

-

2.7153

12797 

0.00662

132 

0.26580

4114 

Frontal Cortex 0.46693

1018 

0.48065

8777 
ENSG000

00204991 

chr16 SPIRE2 Protein coding KNOWN 0.58049

7927 

2.7081

7187 

0.00676

5498 

0.21435

0475 

Frontal Cortex 0.46693

1018 

0.48661

9278 
ENSG000

00127952 

chr7 STYXL1 Protein coding KNOWN -

0.49179

1246 

-

2.7037

14109 

0.00685

6926 

0.18189

4692 

Frontal Cortex 0.46693

1018 

0.48825

0867 
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1 S.E. = Standard error 

2 FDRT = Tissue-specific false discovery rate 

3 FDRO = Overall false discovery rate 

 

 

 

 

 

ENSG000

00136235 

chr7 GPNMB Protein coding KNOWN -

0.35002

9505 

-

2.6981

90277 

0.00697

1758 

0.12972

751 

Cortex 0.48926

4877 

0.48825

0867 
ENSG000

00188707 

chr7 ZBED6CL Protein coding KNOWN -

0.59692

059 

-

2.6980

34919 

0.00697

5012 

0.22124

2722 

Frontal Cortex 0.46693

1018 

0.48825

0867 
ENSG000

00153561 

chr2 RMND5A Protein coding KNOWN 1.53765

6364 

2.6903

22413 

0.00713

8302 

0.57155

0962 

Cortex 0.48926

4877 

0.49299

4894 
ENSG000

00160360 

chr9 GPSM1 Protein coding KNOWN 0.63345

8236 

2.6848

12559 

0.00725

7049 

0.23594

1326 

Cortex 0.48926

4877 

0.49299

4894 
ENSG000

00204439 

chr6 C6orf47 Protein coding KNOWN 0.70972

4221 

2.6832

84938 

0.00729

0285 

0.26449

8269 

Frontal Cortex 0.46772

6376 

0.49299

4894 
ENSG000

00251396 

chr8 RP11-163N6.2 lincRNA NOVEL -

0.86526

5328 

-

2.6795

65483 

0.00737

1778 

0.32291

2552 

Frontal Cortex 0.46772

6376 

0.49299

4894 
ENSG000

00012223 

chr3 LTF Protein coding KNOWN 0.58089

299 

2.6790

84417 

0.00738

2378 

0.21682

5191 

Frontal Cortex 0.46772

6376 

0.49299

4894 
ENSG000

00155093 

chr7 PTPRN2 Protein coding KNOWN 1.33012

0293 

2.6716

8972 

0.00754

704 

0.49785

7324 

Cortex 0.48926

4877 

0.49299

4894 
ENSG000

00162782 

chr1 TDRD5 Protein coding KNOWN 0.34731

178 

2.6699

96596 

0.00758

5202 

0.13007

9484 

Frontal Cortex 0.47214

553 

0.49299

4894 
ENSG000

00229212 

chr15 RP11-561C5.4 pseudogene KNOWN -

0.27602

0839 

-

2.6663

72145 

0.00766

7476 

0.10351

9248 

Cortex 0.48926

4877 

0.49299

4894 
ENSG000

00168852 

chr13 TPTE2P5 pseudogene KNOWN -

0.63383

8998 

-

2.6655

45853 

0.00768

6345 

0.23778

9569 

Cortex 0.48926

4877 

0.49299

4894 
ENSG000

00133422 

chr22 MORC2 Protein coding KNOWN -

0.53222

2124 

-

2.6638

40179 

0.00772

5426 

0.19979

5066 

Cortex 0.48926

4877 

0.49299

4894 
ENSG000

00070371 

chr22 CLTCL1 Protein coding KNOWN 0.39208

7399 

2.6634

45837 

0.00773

4486 

0.14721

0577 

Cortex 0.48926

4877 

0.49299

4894 
ENSG000

00176700 

chr15 SCAND2P pseudogene KNOWN -

0.76171

5103 

-

2.6592

30535 

0.00783

1935 

0.28644

1921 

Cortex 0.48926

4877 

0.49354

5931 
ENSG000

00117305 

chr1 HMGCL Protein coding KNOWN -

0.48634

9882 

-

2.6558

22667 

0.00791

1521 

0.18312

5887 

Cortex 0.48926

4877 

0.49354

5931 
ENSG000

00111671 

chr12 SPSB2 Protein coding KNOWN 0.35690

2746 

2.6549

51203 

0.00793

1988 

0.13442

9117 

Cortex 0.48926

4877 

0.49354

5931 
ENSG000

00111666 

chr12 CHPT1 Protein coding KNOWN -

0.32800

2557 

-

2.6517

0819 

0.00800

8572 

0.12369

4816 

Frontal Cortex 0.48141

1063 

0.49438

7458 
ENSG000

00008838 

chr17 MED24 Protein coding KNOWN 0.61537

7317 

2.6455

81219 

0.00815

5071 

0.23260

5717 

Frontal Cortex 0.48141

1063 

0.49558

7578 
ENSG000

00128218 

chr22 VPREB3 Protein coding KNOWN -

0.34937

7135 

-

2.6444

06382 

0.00818

3434 

0.13211

9306 

Frontal Cortex 0.48141

1063 

0.49558

7578 
ENSG000

00008988 

chr8 RPS20 Protein coding KNOWN -

0.80341

5171 

-

2.6405

64781 

0.00827

6797 

0.30425

8838 

Frontal Cortex 0.48141

1063 

0.49558

7578 
ENSG000

00168661 

chr19 ZNF30 Protein coding KNOWN -

0.57031

5001 

-

2.6278

66908 

0.00859

2213 

0.21702

5831 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00163138 

chr4 PACRGL Protein coding KNOWN 0.28371

3888 

2.6271

33644 

0.00861

0751 

0.10799

3702 

Frontal Cortex 0.48662

839 

0.49558

7578 
ENSG000

00260896 

chr16 RP11-314O13.1 lincRNA NOVEL -

0.87936

94 

-

2.6259

47731 

0.00864

0809 

0.33487

6963 

Frontal Cortex 0.48662

839 

0.49558

7578 
ENSG000

00231007 

chr9 CDC20P1 pseudogene KNOWN 0.58666

4155 

2.6248

82462 

0.00866

7888 

0.22350

1114 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00166800 

chr11 LDHAL6A Protein coding KNOWN 0.64251

6527 

2.6224

61361 

0.00872

9717 

0.24500

5145 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00272556 

chr7 RP11-638I8.1 lincRNA NOVEL -

0.91538

6006 

-

2.6223

29503 

0.00873

3095 

0.34907

3602 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00271811 

chr1 RP1-79C4.4 lincRNA NOVEL -

0.40628

9553 

-

2.6206

70154 

0.00877

5712 

0.15503

2694 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00135213 

chr7 POM121C Protein coding KNOWN -

0.30424

7294 

-

2.6177

84703 

0.00885

0263 

0.11622

3192 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00174945 

chr7 AMZ1 Protein coding KNOWN 1.24710

5011 

2.6173

90396 

0.00886

0494 

0.47646

8857 

Frontal Cortex 0.49120

3628 

0.49558

7578 
ENSG000

00174950 

chr1 CD164L2 Protein coding KNOWN 0.40455

7873 

2.6152

75337 

0.00891

5555 

0.15469

0356 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00121905 

chr1 HPCA Protein coding KNOWN 1.16098

0455 

2.6106

98543 

0.00903

575 

0.44470

1077 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00205583 

chr7 STAG3L1 pseudogene KNOWN -

0.55831

892 

-

2.6094

83997 

0.00906

7889 

0.21395

7595 

Cortex 0.48926

4877 

0.49558

7578 
ENSG000

00117598 

chr1 LPPR5 Protein coding KNOWN 2.29462

597 

2.6084

73448 

0.00909

4707 

0.87968

1552 

Cortex 0.48926

4877 

0.49558

7578 
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Supplementary Table 3. Results of the linear regressions performed to compare MMN performance between patients and 

controls. MMN Amplitude (µV) was measured at the Fz electrode. All analyses were adjusted for of age, gender and MMN 

lab/electroencephalography machine. Related to Table 2.  

 

Dataset 

Patients vs. controls 

Intercept Coefficient Standard Error p-value 

London -3.66 0.66 0.22 0.003 

Harvard -4.62 -0.01 0.79 0.99 

Maryland -2.246 0.48 0.17 0.006 

Whole sample -3.84 0.697 0.13 3.46 × 10-08 

 

Reference group: controls 

Effect group: patients 
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Supplementary Tables 4 A-D: Quality control of typed genotypes in each dataset (related to Genetic data collection and 

processing; STAR Methods).  

 

A ORIGINAL DATASET 

    London Harvard Maryland 

 Samples SNPs Samples SNPs Samples SNPs 

 

5602 929556 1692 719665 429 2335809 

B 

      

SAMPLE FILTERS 

 

   London Harvard Maryland 

Filter Criteria Loss Criteria Loss Criteria Loss 

Sex mismatch remove 57 remove 4 remove 0 

Inbreeding <-0.076 / > 

0.076 

70 <-0.1 / > 0.1 31 <-0.15 / > 

0.15 

12 

Missingness <2% 214 <5% 40 <5% 5 

Duplicates 0.95 IDB 70 0.95 IDB 15 0.95 IDB 1 

Mendelian 

errors 

           --          -- 5% 0             -- -- 

Genetic 

Ancestry 

outlier 356           --          --             --          -- 
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C 

 

 

       

SNP FILTERS 

     London Harvard Maryland 

Filter Criteria Loss Criteria Loss Criteria Loss 

Missingness >5% 11610 >5% 17165 >5% 986 

Non-autosomal 

CHR remove 38895 remove 20313 remove 55038 

HI (p-value) < 1e-6 2404 < 1e-6 14863 < 1e-6 26984 

MAF <2% 145097 <1% 43442 <1% 462238 

Mendelian 

errors 4 errors 26585 10% 100 NA NA 

Cluster plots 

poor 

genotyping 9499           --           --            --          -- 

       

D Quality Controlled Dataset 

    London Harvard Maryland 

 Samples SNPs Samples SNPs Samples SNPs 

 

4835 691252 1602 627550 411 1799738 
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Supplementary tables 5 A-C: Quality control of imputed genotypes in each dataset 

 

A 

ORIGINAL DATASET 

   London          Harvard         Maryland 

 Samples SNPs Samples SNPs Samples SNPs 

 

4835 39131578 1602 39131578 411 39131578 

B 

      

SNP FILTERS 

    London          Harvard         Maryland 

Filter Criteria Loss Criteria Loss Criteria             Loss 

INFO score < 0.8 28048155 < 0.8 20351179 < 0.8 13630162 

> 3 alleles     remove 9388           remove 15025          remove 29431 

SNP position 

issues     remove 787           remove 15102          remove 24105 

Missingness > 5% 359398 > 5% 255007 > 5% 145213 

HWE <1e-6 3803 <1e-6 160771 <1e-6 111221 

MAF < 1% 4246037 < 1% 11070085 <1% 15080028 

Mendelian errors        10% 21 10% 2404 NA NA 

Case vs con 

missingness <0.000001 10685               --               --               --                -- 
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C Quality Controlled Dataset 

   London         Harvard         Maryland 

 Samples             SNPs          Samples            SNPs         Samples            SNPs 

 

4835          6454103             1602         7258616             411         10122483 
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Supplementary Table 6 A. Groupings of brain RNASeq samples from the BrainSpan Atlas by brain region. Related to 

neurodevelopmental enrichment analyses (STAR methods).  

 

 

 
 

 

 

 

 

 

 

 

 

 

Brain structure Samples Brain region Samples Subjects 
 

Cortex? 
Samples Subjects 

Anterior (rostral) cingulate (medial prefrontal) 

cortex 
32 

Cingulate 

cortex 
32 32 yes 

361 42 

Dorsolateral prefrontal cortex 35 

Frontal cortex 127 38 yes 
Orbital frontal cortex 31 

Primary motor cortex (area M1, area 4) 26 

Ventrolateral prefrontal cortex 35 

Occipital neocortex 2 
Occipital 

cortex 
35 35 yes Primary visual cortex (striate cortex, area 

V1/V17) 
33 

Parietal neocortex 2 

Parietal cortex 66 35 yes 

Posteroventral (inferior) parietal cortex 33 

Primary motor-sensory cortex (samples) 5 

Primary somatosensory cortex (area S1, areas 3, 

1, 2) 
26 

Inferolateral temporal cortex (area Tev, area 20) 34 

Temporal 

cortex 
101 40 yes 

Posterior (caudal) superior temporal cortex (area 

22c) 
36 

Primary auditory cortex (core) 31 

Cerebellar cortex 29 
Cerebellum 32 32 no 

154 40 

Cerebellum 3 

Dorsal thalamus 5 
Diencephalon 29 29 no 

Mediodorsal nucleus of thalamus 24 

Amygdaloid complex 33 

Subcortical 93 37 no Hippocampus (hippocampal formation) 32 

Striatum 28 
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Supplementary Table 6B. Groupings of brain RNASeq samples from the BrainSpan Atlas by age. Related to 

neurodevelopmental enrichment analyses (STAR Methods).  

 

Stage Age Subjects Samples Age group Subjects Samples 

P
R

E
-N

A
T

A
L

 
8 pcwa 1 12 

8 - 12 pcw 5 66 9 pcw 1 9 

12 pcw 3 45 

13 pcw 3 44 
13 - 16 pcw 6 83 

16 pcw 3 39 

17 pcw 1 14 

17 - 24 pcw 5 57 
19 pcw 1 11 

21 pcw 2 16 

24 pcw 1 16 

25 pcw 1 1 

25 - 37 pcw 4 22 
26 pcw 1 3 

35 pcw 1 2 

37 pcw 1 16 

P
O

S
T

-N
A

T
A

L
 

4 months 3 33 

4 months - 1 year 5 59 10 months 1 10 

1 years 1 16 

2 years 1 12 

2 - 4 years 4 44 3 years 2 25 

4 years 1 7 

8 years 2 27 

8 - 15 years 5 62 
11 years 1 14 

13 years 1 16 

15 years 1 5 

18 years 1 13 

18 - 23 years 4 59 
19 years 1 16 

21 years 1 16 

23 years 1 14 

30 years 1 16 

30 - 40 years 4 63 
36 years 1 16 

37 years 1 16 

40 years 1 15 
 

apcw = post-conception weeks 
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Supplementary Table 7: Results of the bivariate GREML analyses performed with GCTA. Related to endophenotype 

ranking analysis (STAR Methods). 

a S.E = Standard error 
b C.I. = Confidence intervals 

ERV = Endophenotype Ranking Value 

RAVLT = Ray Auditory Verbal Learning Task  

 

 

 

 

 

 

 

Phenotype N GCTA 

possible

? 

Error ERV Heritability Genetic correlation 

Estimate S.E.a 95% C.I. rG S.E.a 95% C.I.b 

Digit Symbol 27 no Variance-

covariance matrix 

invertibility 

NA NA NA NA NA NA NA 

Digit Span Forward 72 yes NA 0.41 0.83 0.37 [0.10; 1.56] -1.00 1.43 [-3.80; 1.80] 

IQ 324 no Likelihood 

convergence 

NA NA NA NA NA NA NA 

Mismatch negativity 403 yes NA 0.28 0.38 0.15 [0.09; 0.68] 1.00 0.22 [0.58; 1.42] 

P300 Amplitude 510 yes NA 0.36 0.64 0.17 [0.31; 0.97] 1.00 4.55 [-7.93; 9.93] 

P300 Latency 515 no Variance-

covariance matrix 

invertibility 

NA NA NA NA NA NA NA 

Lateral ventricular 

volume 

775 yes NA 0.02 0.66 0.17 [0.35; 0.97] -0.05 0.27 [-0.58; 0.48] 

Whole brain volume 777 no Likelihood 

convergence 

NA NA NA NA NA NA NA 

RAVLT delayed 2384 yes NA 0.10 0.34 0.06 [0.22; 0.46] -0.39 0.10 [-0.59; -0.19] 

RAVLT immediate 2406 yes NA 0.13 0.35 0.06 [0.23; 0.48] -0.50 0.10 [-0.68; -0.31] 

Block Design 3089 yes NA 0.34 0.69 0.05 [0.59; 0.79] -0.93 5.14 [-11.01; 9.15] 
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Supplementary Table 8. Mean mismatch negativity latencyb at FZ (ms) in each of the datasets by group. Related to Table 2. 

Sample Patients Controls Relatives Whole dataset 

Maryland (n = 403) 190.9 ± 27.22a 180.33 ± 31.88 - 186.6 ± 29.63 

Harvard (n = 66) 174.38 ± 33.07 198.36 ± 25.97 - 179.83 ± 33.0 

PEIC (n = 100) 98.58 ± 19.69 100.54 ± 16.61 103.08 ± 14.67 100.75 ± 17.09 

 

aMean ± Standard deviation (in ms) 

bThese values are unadjusted for covariates 
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Supplementary Figure 1. MMN FZ grand average waveforms for patients (red) and controls (black) in the Harvard sample 

(n = 71). Related to Table 2. 
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Supplementary Figure 2. MMN FZ grand average waveforms for patients (red) and controls (black) in the Maryland sample 

(n = 403). Related to Table 2.  
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Supplementary Figure 3.  Neurodevelopmental signature enrichment results for whole cortex. Related to Figure 3. 
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Chapter 2 

Suppression of the inflammatory response in schizophrenia hiPSC-derived 

neural progenitors: A gene-environment interaction study 
 

 

Abstract 

Prenatal exposure to infection is an environmental risk factor for neurodevelopmental disorders such as 

schizophrenia. Inflammation in the maternal and foetal compartments, characterised by elevated cytokine levels, 

is thought to play an important role in this association. Such inflammatory effects compound with polygenic risk 

to ‘tip the balance’ towards developing schizophrenia. Exposure to the cytokines interferon-gamma (IFNγ) and 

interleukin-1 beta (IL-1β) triggers a foetal immune response – but how such environmental insults interact with a 

genetic background associated with schizophrenia and influence neurodevelopment is unknown. I hypothesised 

that developing neurons with a genetic predisposition for schizophrenia would respond differently to IFNγ or IL-

1β exposure compared to those from controls. I tested this by assessing differential gene expression responses in 

human forebrain-lineage neural progenitor cells (NPCs) derived from induced pluripotent stem cells generated 

from three people with schizophrenia and three controls. The NPCs were treated for 24 hours with either 25ng/μl 

IFNγ or 10ng/μl IL-1β, after which RNA was extracted and sequenced. The analyses showed 3380 differentially 

expressed genes (DEGs) in IFNγ-treated control lines (compared to untreated controls), but only 1980 DEGs in 

IFNγ-treated patient cells (compared to untreated patient cells). There were 359 genes that responded significantly 

differently to IFNγ treatment in schizophrenia lines compared to controls, and pathway analysis of this comparison 

showed suppression of gene pathways related to antigen processing and synaptic transmission: most significantly, 

those involved in regulating the neuronal post-synaptic density and the presynapse. There were no differentially 

expressed genes in the IL-1β-treatment conditions, which may be because IL-1β receptors were minimally 

expressed in all six cell lines. Taken together, these results exemplify responses to immune insults that are altered 

in cells with a genetic predisposition for schizophrenia; in particular indicating that IFNγ elicits a reduced 

transcriptional response, especially of genes regulating synaptic transmission, in schizophrenia NPCs. 
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Introduction 

Over the last three decades, there has been increasing evidence that exposure to infection, and the 

consequent activation of the immune response, is an environmental risk factor for neuropsychiatric 

disorders such as schizophrenia – especially so when immune activation occurs during prenatal 

development (Byrne et al., 2007; Estes & McAllister, 2016; Kepinska et al., 2020; Meyer, 2019; Warre-

Cornish et al., 2020). A likely molecular contributor to this link between ‘maternal immune activation’ 

and schizophrenia is exposure of the developing foetal brain to pro-inflammatory cytokines (Garay et al., 

2013; Gilmore et al., 2004; Warre-Cornish et al., 2020). Cytokines are small proteins that are released 

by cells – generally performing the function of cell signalling – and are particularly central to the immune 

system, where they primarily advance or suppress inflammation (Murphy et al., 2012). It is possible that 

cytokines can directly enter the foetal brain during early pregnancy, as the blood–brain barrier is not 

completely developed at this stage (Adinolfi, 1985). Here, chronically or acutely elevated levels of pro-

inflammatory cytokines may lead to autoimmune damage (Baines et al., 2020; Ben-Reuven & Reiner, 

2019; Jain et al., 2020; Lesh et al., 2018).  

Two pro-inflammatory cytokines that appear to play a particularly important part in 

neurodevelopment are interferon gamma (IFNγ) (Lesh et al., 2018; Warre-Cornish et al., 2020) and 

interleukin 1 beta (IL-1β) (Crampton et al., 2012; Gilmore et al., 2004), both of which are elevated in 

plasma from people with schizophrenia (Lesh et al., 2018). Recent work in humans has shown increased 

serum levels of IL‐1β in mothers of offspring who later develop psychosis (Allswede et al., 2020). This 

is congruent with animal studies showing offspring that are exposed to maternal immune activation and 

exhibit consequent behavioural deficits have elevated plasma levels of IL-1β (Mueller et al., 2021). A 

previous study from our group also demonstrated a significant influence of IFNγ stimulation of 

developing human neurons on expression of schizophrenia risk genes such as ZNF804A and GRIN2A 

(Warre-Cornish et al., 2020).  
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IFNγ plays a central role in the cellular response to viral infection, both in the short term – by 

triggering macrophages to destroy pathogens they may have engulfed (Kak et al., 2018; Murphy et al., 

2012) – and in the long term – by facilitating a transcriptional ‘memory’ for known viruses (Kamada et 

al., 2018). It is emerging that IFNγ also performs several other functions in the body, even in the absence 

of infection. For example, IFNγ is involved in neuronal connectivity and social behaviour: Filiano et al. 

(2016) show (in mice) that IFNγ expression is associated with social deficits and hyperconnectivity in 

the frontal cortex. IL-1β is an important mediator of the innate immune response and induces fever in the 

presence of infection (Gilmore et al., 2004; Schroder & Tschopp, 2010). Like IFNγ, our knowledge of 

its roles beyond immunity are expanding, many of which draw a direct link to mechanisms that are 

affected in schizophrenia. In the brain, IL-1β promotes long-term potentiation (Avital et al., 2003; 

Schneider et al., 1998) as well as activating the kynurenine pathway that mediates glutamate 

neurotransmission (Muller et al., 2013), and is an important mediator of sickness behaviours (e.g., 

reduced appetite, inactivity, social avoidance) (Anforth et al., 1998). On a cellular level, IL-1β exposure 

significantly reduces the dendritic arborisation of rat cortical neurons (Gilmore et al., 2004).  

However, the impact of such immune insults varies between individuals (Carlezon et al., 2019; 

Meyer, 2019; Mueller et al., 2021). The ‘two-hit’ hypothesis of schizophrenia suggests that an amalgam 

of genetic risk and environmental insult is necessary to alter neurodevelopment enough to ultimately 

precipitate the symptoms of the full-fledged illness (Feigenson et al., 2014; van Os et al., 2008). Any 

environmental influences (e.g., infection) will inevitably interact with the genetic makeup of the exposed 

foetus, so for a full picture of how they influence schizophrenia susceptibility, it is imperative to 

understand these gene-environment interactions. A precise aetiology of this sort is particularly necessary 

for polygenic, heterogeneous disorders like schizophrenia. The literature on gene-environment 

interactions in schizophrenia in the case of infection exposure is limited, and largely focuses on specific 
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molecular components – calling for global, unbiased, exploratory studies that use RNA sequencing 

(reviewed by (Ayhan et al., 2016)). 

Importantly, if there are individual differences in human responses to immune activation due to 

genetic variability, there will certainly be differences in such responses between human and animal 

systems, given that they are even more genetically divergent. It is therefore particularly beneficial for 

this kind of precision-seeking gene-environment interaction study to be able to experimentally leverage 

a human system. It has, of course, been impossible to experimentally test the direct impact of 

inflammatory cytokines on the brains of human foetuses. However, recent developments in stem cell 

biology have offered an ethically sound way around this challenge. Human induced pluripotent stem 

cells (hiPSCs) can now be reprogrammed from adult hair samples (Aasen & Izpisua Belmonte, 2010; 

Petit et al., 2012; Takahashi & Yamanaka, 2006) and subsequently differentiated into cortical neural 

progenitor cells (NPCs) and neurons (Chambers et al., 2009; Warre-Cornish et al., 2020). These hiPSC-

derived NPCs retain the genetic makeup of the donor (Adhya et al., 2020; Hoffman et al., 2017). 

However, having been differentiated from stem cells, they are thought to be of foetal maturity, and are 

seen to recapitulate the hallmarks of early neurodevelopment (Adhya et al., 2020; Brennand et al., 2015; 

Brennand & Gage, 2012; Kathuria et al., 2018; Shum et al., 2020; Warre-Cornish et al., 2020). This 

makes hiPSC-NPCs ideal in vitro models in which to study gene-environment interactions and test the 

neurodevelopmental hypothesis of schizophrenia (Hoffman et al., 2017). Warre-Cornish et al. (2020) 

showed that exposure of control NPCs to IFNγ induced a ‘priming’ effect such that, once the NPCs had 

matured into neurons, re-exposure to IFNγ elicited a 45% increase in transcription compared to un-

primed neurons. This indicates that immune insults at this early neural progenitor stage can have a 

significant and enduring impact on the structure and function of neurons they beget. Experiments in 

animal models have also shown that exposure to inflammatory cytokines alters proliferation and 

differentiation of neural progenitors (Baines et al., 2020; Crampton et al., 2012). I therefore considered 
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this an ideal model in which to examine how the brain reacts to cytokine exposure at the earliest 

neurodevelopmental stage. For this study, induced cortical neural progenitors with forebrain identity are 

used, as there is extensive evidence of prefrontal cortical abnormalities in patients with schizophrenia 

(Broadbelt et al., 2002; Gilmore et al., 2004; Ranlund et al., 2016). 

The aim of the current study is therefore to understand how specific cytokines implicated in the 

association between maternal immune activation and schizophrenia risk impact on early cortical neural 

progenitors. This is in order to identify potential molecular mechanisms that can explain this association 

in a human model system. I hypothesise that NPCs derived from patients with schizophrenia will respond 

differently to IFNγ and IL-1β compared to healthy cells. If so, this may shed light on the mechanisms by 

which maternal immune activation increases the risk of developing schizophrenia in those with genetic 

backgrounds that confer susceptibility. 
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Methods 

Collaboration statement 

For this study, I used human induced pluripotent stem cells (hiPSCs) that were reprogrammed from 

keratinocytes by other experimenters (primarily lab technicians Matthew Reid and Roland Nagy). These 

experimenters also collected the hair samples from participants. I cultured these cells, differentiated them 

into neural progenitors and extracted RNA, which was sent for sequencing by GeneWiz Ltd. I was also 

responsible for statistical analysis and write-up.  

 

Participants 

This study included hiPSC lines derived from six participants: three patients diagnosed with 

schizophrenia (schizophrenia lines: 138_SZM_09, 044_SCZ_04 and 115_SCZ_01) and three healthy 

donors with no history of psychiatric illness (control lines: M1_CTR_04, M2_CTR_42, M3_CTR_36S). 

Participants were recruited as part of the Patient iPSCs for Neurodevelopmental Disorders (PiNDs) study 

(REC No 13/LO/1218). Patients with schizophrenia who contributed hair samples were recruited at the 

Maudsley Hospital, London. The collection of data used for this research was approved by the NHS 

Research Ethics Committee at the South London and Maudsley (SLaM) NHS Research and Development 

Office. All participants gave written informed consent before contributing to the study.  

 

Measures 

         Clinical Assessments 

To confirm a DSM-V diagnosis of paranoid schizophrenia, participants were assessed by a psychiatrist 

or trained researcher using the following scales: the Positive and Negative Syndrome Scale (Kay et al., 

1987) and the Schedule for Affective Disorders and Schizophrenia – Lifetime Version (Endicott & 

Spitzer, 1978). Healthy controls were selected on the basis of having no history of psychiatric disorders.  
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Procedure 

Reprogramming of keratinocytes 

Hair root samples were collected by plucking occipital scalp hair (~10+ roots per participant) and 

submerging these in Mouse Embryonic Fibroblast medium containing 50ug/ml Gentamycin and 15mM 

HEPES buffer (Gibco). The roots were then transferred to Geltrex™-coated 4-well plates 

(ThermoFisher), and outgrowth promoted, by supplementing with hair medium (Dulbecco’s Modified 

Eagle’s Medium (DMEM) Advanced (Sigma Aldrich), GlutaMAX™ (ThermoFisher), 10% FBS 

(Clonetech), HEPES buffer and Gentamycin), to establish primary keratinocytes. The keratinocytes were 

subsequently reprogrammed into human induced pluripotent stem cell (hiPSC) lines. This transformation 

was induced by introducing Sendai viruses encoding Yamanaka Factors (human OCT4, SOX2, KLF4 

and C-MYC), using a CytoTune-iPS 2.0 Sendai expressing Reprogramming Kit (ThermoFisher, 

A16517). The treated keratinocytes were plated onto an irradiated MEF feeder layer (Millipore) and 

supplemented Epilife medium. After ten days, Epilife medium was exchanged for hES medium, which 

was comprised of KO-DMEM/F12 supplemented with 20% knock-out serum, non-essential amino acids, 

Glutamax, -mercaptoethanol (all from Life Technologies) and bFGF (10 ng/ml; Peprotech). After two 

more weeks, reprogrammed colonies were selected and plated on Nunc multi-plates (Thermo Scientific) 

coated with Geltrex (Life technologies) and supplemented with E8 media (Life Technologies). 

Successful reprogramming was validated as described in previous studies (Cocks et al., 2014; Kathuria 

et al., 2018; Shum et al., 2020). Pluripotency of all hiPSCs was confirmed by immunocytochemistry 

showing differentiation of embryoid bodies into the three characteristic germ layers (Boulting et al., 

2011; Chambers & Tomlinson, 2009; International Stem Cell Initiative et al., 2007; Sheridan et al., 2012), 

and PluriTest analysis of Illumina HT12v4 transcriptome array data (www.pluritest.org) (Muller et al., 

2011). Alkaline phosphatase activity was further used to assess the pluripotency of hiPSCs using an 

http://www.pluritest.org/
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alkaline phosphatase expression kit (Milipore). Genome integrity of hiPSC lines was assessed by an 

Illumina Human CytoSNP-12v2.1 beadchip array and analysed using KaryoStudio software (Illumina, 

San Diego, CA) and by G-banded karyotyping. 

 

Maintenance of hiPSCs  

The successfully reprogrammed hiPSCs were incubated in hypoxic conditions (5% CO2, 5% O2) at 37°C 

and maintained in StemFlex™ media (Gibco) on 6-well NUNC™ plates (ThermoFisher) coated with 

Geltrex™ (ThermoFisher). Cells were passaged (at a ratio between 1:6 and 1:18) upon reaching 60-70% 

confluency. During passage, cells were washed with room temperature Hank’s Balanced Salt Solution 

(HBSS) and incubated at 37°C with Versene (EDTA) solution (Lonza) for 3-5 minutes, then replated in 

new Geltrex™-coated NUNC™ plates.  

 

Directed differentiation of hiPSCs 

The six hiPSC lines used in this study were then differentiated into forebrain cortical neural progenitor 

cells (NPCs) by dual SMAD inhibition (Chambers et al., 2009). In preparation for neuralisation, hiPSCs 

were passaged onto 6-well NUNC™ plates coated with Geltrex™ at a 3:2 ratio and maintained under 

hypoxic conditions for ~24–48 hrs until they approached 100% confluence. Directed differentiation was 

then initiated by changing StemFlex™ medium to neuralisation medium containing N2:B27 (N2 medium 

and B27 medium at a 1:1 ratio) supplemented with 100 nM LDN193189 (Sigma Aldrich) and 10 µM 

SB431542 (Sigma Aldrich) for dual SMAD inhibition. N2 medium consisted of DMEM/F12 

(Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F12 Ham; Sigma Aldrich), supplemented with 

1X GlutaMAX™ and 1X N2 supplement (ThermoFisher). B27 medium consisted of Neurobasal® 

medium (ThermoFisher), 1X GlutaMAX™ (ThermoFisher) and 1X B27 supplement without vitamin A 

(ThermoFisher). 
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The neuralised cells were then incubated under normoxic conditions (37°C, 5% CO2, 20% O2). 

Neuralisation medium was replenished every 24 hours from day 0 to day 7. At the end of this 7-day 

neuralisation period, neuralisation medium was replaced with N2:B27 (without inhibitors), which was 

replenished every 24 hours from day 8 onwards. The neuralised cells were passaged four times: on day 

7, day 12, day 15/16 and day 20/21. The passage procedure was, briefly, as follows: cells were washed 

with room temperature HBSS (ThermoFisher) and treated with Accutase (ThermoFisher) and incubated 

for 3–4 minutes at 37°C. The cells were then collected with the Accutase and mixed with room 

temperature DMEM/F12 (at a 2:1 ratio) and centrifuged at 1250 RPM for two minutes to separate the 

cells and Accutase. Cells were plated on new 6-well NUNC™ plates coated with Geltrex™. Passaging 

ratios were 1:1 for neural passaging 1 and 2, and 2:3 for neural passaging 3. To enhance cell survival, 10 

µM protein kinase (ROCK) inhibitor (Sigma Aldrich), was added for 24 hours with the plating medium 

at each neural passage. After neural passage 3, cells were frozen in 10% DMSO (dimethyl sulfoxide). 

Cryovials were stored at -80°C for 24–48 hours in Mr. Frosty containers (to control freezing rate) before 

being transferred to liquid nitrogen.  

For the final stages of neural passaging, cryovials were thawed in a 37°C water bath for 1 minute. 

The cell suspension was transferred to a 15 ml tube containing DMEM/F12 and centrifuged at 1250RPM 

for 2 minutes. The cell pellet was resuspended in 3ml of N2:B27 supplemented with 10µM ROCK 

inhibitor and plated in Geltrex™-coated 6-well NUNC™ plates. From this point on, the following 

inhibitors were added to the NPC media (to make N2:B27-FGF): 10ng/ml bFGF (basic Fibroblast 

Growth Factor; Peprotech), 100 μM β-mercaptoethanol (Life Technologies), 5μg/ml insulin (Life 

Technologies), 1X non-essential amino acids (Life Technologies), 200 μM ascorbic acid (Sigma 

Aldrich). The cells were then expanded at a 1:3 ratio (in 2–5 neural passages) to prepare three wells of 

each line (one for each experimental conditions).  
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Treatment with pro-inflammatory cytokines 

NPCs were treated for ~24 hours in three treatment conditions: IFNγ, IL-1β and vehicle. Media was fully 

removed and replaced with 3 ml per well of treatment media (N2:B27-FGF, supplemented as follows). 

IFNγ wells were treated with 25ng/μl IFNγ (Abcam); the IL-1β wells with 10 ng/μl IL-1β (Abcam); and 

the control wells with vehicle (unsupplemented N2:B27-FGF media). After 24 hours, cells were lysed 

and collected in TRIzol® reagent (Thermo Fisher) and rapidly frozen on dry ice. The frozen samples 

were stored at -80°C until RNA extraction.  

RNA extraction and sequencing  

RNA was extracted from the eighteen samples in two batches (to ensure durations of exposure of each 

sample to extraction reagents were well controlled). Both batches of extractions were conducted on the 

same day, by the same experimenter. The batches were randomised for experimental group (batch 1: 

lines M1_CTR, M2_CTR, 138_SZM; batch 2: lines M3_CTR, 044_SCZ, 115_SCZ), using the RNeasy 

Plus Mini Kit (QIAGEN), according to the manufacturer’s instructions. Extracted RNA was sent for 

sequencing at GENEWIZ® Ltd. Strand-specific, paired-end RNA sequencing with Poly(A) selection 

was conducted on the Illumina® NovaSeq platform, at a depth of ~30 million reads per sample.  

 

Quality control of RNA sequence and gene expression data 

Initial quality control checks of raw RNA sequence data were conducted using the FastQC software from 

Babraham Bioinformatics (www.bioinformatics.babraham.ac.uk/projects/fastqc). Sequence reads were 

then aligned to the latest version of the human reference genome (Hg38) using the STAR (Spliced 

Transcripts Alignment to a Reference) alignment tool (Baruzzo et al., 2017). The number of reads 

mapped onto each gene in Ensembl’s gene annotations for hg38 (version 99) was counted using 

FeatureCounts (Liao et al., 2014). The distribution of log10-transformed counts-per-million (CPMs) were 

plotted. A threshold of log10CPM = 0.6 (CPM x 100.6) was set (by visual inspection) for filtering out 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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lowly expressed genes in order to minimise technical noise and reduce the multiple-testing burden 

(Supplementary Figure 7). After applying that threshold, 15060 of 60642 genes were left for downstream 

analysis. TMM (trimmed mean of M-values)-normalization (Robinson & Oshlack, 2010) was then 

applied on the gene counts and the gene-expression values were log2 transformed and observational-level 

theoretical variances to use for precision-weighting were calculated using ‘voom’  (Law et al., 2014). 

 

Statistical analysis   

Differential gene expression  

In order to evaluate potential sources of overall gene expression variation, Principal Component Analysis 

(PCA) was performed on the voom-transformed gene expression (Law et al., 2014), plotting the samples 

along the first three principal components (Supplementary Figure 2). The ‘variancePartition’ R package 

(Hoffman & Schadt, 2016) was used to estimate the contribution of variables to the variance in expression 

of each gene for the following: study subject, clinical group (schizophrenia/control), treatment condition 

(IFN-/IL-1/vehicle), donor age, and the fraction of all RNA sequencing ‘reads’ that were mapped to 

genes (i.e., ‘assigned percent’).  

To prepare the expression data for linear mixed effects modelling, the voomWithDreamWeights 

(‘variancePartition’ R package) was applied to the expression-level-filtered TMM-normalized counts. 

Linear mixed model regressions were then conducted using dream (‘variancePartition’), which allows 

modelling of interindividual variability by adding individual identifiers as a random effect in the 

regression model, as shown below (Hoffman & Roussos, 2020; Hoffman & Schadt, 2016). I also included 

the ‘assigned percent’ for each sample as a covariate, as this can influence the calculation of gene 

expression. Participant age was not included as a covariate on the assumption that reprogramming 

samples to stem cells negates age-related effects (Mertens et al., 2015; Schrode et al., 2019). Age did 

seem to contribute to variation in gene expression in the variancePartition analysis (Supplementary 
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Figure 3), but this is may be due to noise as a result of the small size of the sample. All the participants 

were male, so gender was not included as a covariate. The final model with an interaction term between 

clinical group and treatment was as follows: 

 

Yi = Group*Treatment + Assigned percent + Individual ID 

 

where “Group”, “Treatment” and “Assigned percent” were fixed effects and “Individual ID” was a 

random intercept effect. 

 

Using contrasts, the following differential gene expression signatures were generated:  

A. Vehicle-treated schizophrenia lines vs vehicle-treated control lines (i.e., between schizophrenia and 

controls in cells treated with vehicle). 

B. IFNγ-treated control lines vs vehicle-treated control lines (i.e., the effect of IFNγ stimulation on gene 

expression in the control cell lines). 

C. IFNγ-treated schizophrenia lines vs vehicle-treated schizophrenia lines (i.e., the effect of IFNγ 

stimulation on gene expression in the schizophrenia cell lines). 

D. Interaction effect of IFNγ treatment in schizophrenia vs in controls (i.e., how the expression of genes 

responds to IFNγ stimulation differently in patient lines compared to control cell lines). 

E. IL-1β -treated control lines vs vehicle-treated control lines (i.e., the effect of IL-1β stimulation on gene 

expression in the control cell lines). 

F. IL-1β-treated schizophrenia lines vs vehicle-treated schizophrenia lines (i.e., the effect of IL-1β 

stimulation on gene expression in the schizophrenia cell lines). 

G. Interaction effect of IL-1β treatment in schizophrenia vs in controls (i.e., how the expression of genes 

responds to IL-1β stimulation differently in schizophrenia patient lines compared to control cell lines). 
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Approximation of residual degrees of freedom and subsequent calculation of moderated eBayes t-

statistics was done using the Satterthwaite method in ‘dream’. 

 

Expression of cytokine receptors  

In order to put the effects of IFN-gamma and IL-1beta on the NPCs into context, I extracted and 

visualized the expression of the genes that encode for their receptors: IFNGR1 and IFNGR2 for IFN-

gamma and Il1R1, IL1RAP and IL1R2 for IL1-beta. To compare expression levels of these genes, 

FPKMs (fragments-per-kilobase-per-million) were calculated by normalizing the read counts by gene 

length (given as the sum of the lengths of all the exons in the gene model). This was done because the 

read count of each individual gene can be influenced by the length of the gene, which would not make a 

difference to group comparisons, but could do in gene-gene comparisons. 

 

Gene set enrichment analysis 

Our gene set enrichment analyses (GSEA) included 935 unique gene sets: 519 immune-related and 421 

nervous-system/neural function related (5 overlapping). Of these, 135 were obtained from previous 

literature (Hall, Medway, et al., 2020; Pardiñas et al., 2018; Pocklington et al., 2015) and the remaining 

from either the Molecular Signature Database (HALLMARK and Gene Ontology biological process gene 

sets) or the pathway databases KEGG, PANTHER, Pathway Commons and Reactome. GSEA assesses 

whether genes belonging to specific pathways or predefined sets of genes are over-represented in the 

significant or peri-significant results of a differential expression analysis. A linear mixed effects 

regression-based competitive gene set enrichment approach was used with the GSEA tool (Subramanian 

et al., 2005) (Subramanian et al, 2005). GSEA was run on the seven signatures generated by the DGE 

analysis. The fgsea function of the R package ‘fgsea’ (Korotkevich et al., 2019) was applied, using the 

standardized Z-score obtained in the differential expression analysis to rank the genes and running 
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100,000 permutations. All gene sets containing fewer than five genes were excluded. I then selected gene 

sets with an FDR < 0.05 (multiple-testing correction is conducted within fgsea).  

 The resulting gene sets showed substantial constituent similarity (Supplementary Figure 4), so 

they were then clustered based on the overlap of the genes that belong to each gene set. This was done 

by calculating the Jaccard Similarity Index (which quantifies the intersection of two lists) between all 

pairs of significantly enriched gene sets and then applying a hierarchical clustering of gene sets based on 

the resulting dissimilarity matrix (1-Jaccard similarity). A cut-off of h=0.5 was then applied to the 

dendrograms to obtain clusters of significantly enriched gene sets (Supplementary Figure 5).  
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Results 

Demographic and sample details 

The demographic and clinical characteristics of the six participants can be seen in Table 1. All subjects 

were male and of White British background, except for one patient with a Black British background. 

Ages ranged from 33 to 55 years old. The patients were all diagnosed with (idiopathic) paranoid 

schizophrenia and controls were selected on the basis of having no history of neuropsychiatric disorders. 

One of the White British patients had a low polygenic risk score (PRS) for schizophrenia and a history 

of regular cannabis use, while the other had a high PRS for schizophrenia, with minimal use of cannabis. 

The Black British patient had a family history of schizophrenia and a deletion in the NXRN1 region (PRS 

was not calculated for this patient due to unavailability of schizophrenia GWAS summary statistics for 

this ancestry group). 

 

Table 1. Demographic and sample details  

1Percentage of all sequencing reads assigned to exons 

 

 

 

Cell line Diagnosis Year diagnosed Medication Age Gender Ethnicity Risk profile Reprogrammed by  

044 Schizophrenia 2011 Risperidone 33 Male White British Low cannabis use, high PRS Sendai virus 

115 Schizophrenia 2010 Aripiprazol 43 Male White British High cannabis use, low PRS Sendai virus 

138 Schizophrenia 2008 Risperidone, 

Mirtazapine 

39 Male Black British NRXN1 deletion, family 

history of psychosis 

Sendai virus 

M1 Control - - 55 Male White British - Lentivirus 

M2 Control - - 35 Male White British - Lentivirus 

M3 Control - - 35 Male White British - Sendai virus 
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Validation of hiPSCs and NPCs 

All hiPSC lines passed quality control metrics, each showing differentiation into embryoid bodies with 

three characteristic germ layers and expression of pluripotency markers NANOG, OCT4, SSEA4 and 

TRA-1-81 (Supplementary Figure 1). For each participant, one clone was used for the NPC induction. 

All hiPSC lines successfully differentiated into NPCs as determined by immunostaining for known NPC 

markers βIII-tubulin and Nestin (Figure 1). For all individuals, genome-wide RNA-sequencing was 

generated from hiPSC-NPCs to compare transcriptional differences between patients with schizophrenia 

and control donors.  
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Figure 1. Validation of neural progenitor cells. Successful differentiation to neural progenitor state was confirmed by staining 

at Day 20 for NPC markers, Nestin and β-III-tubulin. DAPI was used for baseline nuclear staining. Scale bar = 50µm 
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Sources of variation in gene expression 

In the variancePartition and principal component analysis (PCA) (by sample) of the gene expression data, 

I expected to see that the patient lines in this cohort would cluster together compared to control lines and 

that treatment with IFNγ or IL-1β would reduce this diagnosis-dependent clustering. There was some 

diagnosis-dependent clustering for PC2 and PC3, with more variability evident between patient lines. 

However, it appeared that the greatest source of variability, visible in PC1 (Supplementary Figure 2) as 

well as the variancePartition (Supplementary Figure 3) comparison, was from individual differences 

between the patients. The samples treated with IFNγ deviated slightly further from their corresponding 

untreated samples than the samples treated with IL-1β (evident in the PC2/PC3 plots), which is also 

reflected in the differential gene expression (DGE) analysis results: transcriptional responses were more 

significantly altered by IFNγ treatment than by IL-1β treatment. However, it is not clear from this analysis 

whether either treatment causes control lines to resemble schizophrenia lines more closely (potentially 

because the sample is underpowered, though it is also important to note that maternal immune activation 

is a generic ‘priming’ effect – i.e., the treatment-induced response is just as likely to overlap with autism-

related gene sets).   

 

Differential expression of genes and gene set enrichment analysis (GSEA) 

Of the seven comparisons made, four yielded significant effects on gene expression: the effect of 

diagnosis (Signature A) and the three IFNγ treatment conditions (Signatures B-D). There were no 

differentially expressed genes (DEGs) as a result of IL1-β treatment. A full table of DEGs can be found 

in Supplementary Tables 3A-G and a full table of enrichment terms can be found in Supplementary 

Tables 4A-G. Immune related gene sets were among the top ten most significantly enriched for all seven 

signatures, and synaptic transmission related gene sets were among the top ten in four of the seven 

signatures. Details of DEGs and GSEA results for each signature are presented below. Figures 2-8 show 
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the top ten significantly enriched gene set clusters (the gene set with the lowest p-value in the most 

significant cluster is labelled). 

 

Effect of schizophrenia diagnosis (Signature A) 

I first assessed whether there were any differences in transcription between schizophrenia and control 

NPC lines (without treatment), at a False Discovery Rate (the p-value adjusted for multiple testing by 

the Benjamini-Hochberg correction method) of FDR < 0.05. In this comparison, there was only one 

significant DEG (Figure 2A): AL132709.7 (FDR = 0.0395; logFC = -3.111), a human-specific lncRNA 

gene which was overexpressed in patient lines. It is possible the sample was underpowered to detect 

some valid DEG signals here, as there were 26 enriched gene pathways in untreated schizophrenia lines 

compared to untreated controls at the multiple-testing correction threshold of FDR < 0.05 and a cut-off 

of h=0.5 on the dendrograms of hierarchically clustered gene pathways (Supplementary Figure 5). The 

top five of these were enriched among upregulated genes in this comparison (Figure 2B), and the gene 

set with the lowest p-value in the most significantly enriched cluster was ‘Lek2015 loss-of-function (90)’ 

(FDR =0.00098; NES = 1.36; gene sets in cluster = 1; genes in gene set = 3007), which encodes 3007 

genes that are intolerant to loss-of-function variants. Taken together with the fact that the Gene Ontology 

term ‘regulation of ligase activity’ – which regulates DNA ligase, responsible for DNA repair and 

replication – was also among the top five most overrepresented gene sets (Figure 2B), the results of this 

comparison point to a potential genomic fragility in schizophrenia NPCs compared to control NPCs.   
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Figure 2. Signature A. A. The y-axis here shows statistical significance (-log10 p-value) of differential expression of genes 

in untreated cells from patient donors compared to gene expression in cells from untreated control donors. The x-axis shows 

the log2 fold change of expression of those genes in schizophrenia cell lines vs control cell lines. B. The top 10 significantly 

enriched gene set clusters (the gene set with the lowest p-value in each cluster is labelled on the x-axis). Data-points are sized 

according to significance (-log10 p-value) and coloured according to normalised enrichment score (NES), with blue indicating 

downregulation and red indicating upregulation. 
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Effect of IFNγ treatment in control cell lines (Signature B) 

There was a significant effect of IFNγ treatment in control cell lines, with 3380 genes (out of the 15061 

tested) differentially expressed in IFNγ-treated control cells compared to untreated control lines (Figure 

3A and Supplementary Table 1); 1847 of which were upregulated and 1533 of which were 

downregulated. In this comparison, as well as for Signature C, I had hypothesised an upregulation of 

STAT1, STAT2 and JAK2, which are canonical IFNγ pathway genes, as well as IRF1, which is a key 

downstream signalling target of this cytokine (Majoros et al., 2017; Warre-Cornish et al., 2020). Indeed, 

STAT1 (FDR = 5.572 x 10-6; logFC = 5.680), STAT2 (FDR = 5.045 x 10-6; logFC = 2.247) and IRF1 

(FDR = 3.23 x 10-6; logFC = 7.022) were among the top ten most significant DEGs for this signature, 

and JAK2 was also significantly upregulated (FDR = 0.001; logFC = 2.111). The genes whose expression 

was most significantly altered by IFNγ treatment were IFI27 (FDR = 2.97 x 10-6; logFC = 6.067) and 

CD274 (FDR = 2.97 x 10-6; logFC = 6.386), both upregulated. Three genes encoding guanylate-binding 

proteins were among those that showed the highest fold change (logFC): GBP1 (FDR = 3.11 x 10-5; 

logFC = 14.622) GBP5 (FDR = 0.0037; logFC = 13.473) and GBP4 (FDR = 0.0002; logFC = 13.113) – 

also upregulated, as may be expected: guanylate-binding proteins (especially GBP1) are known to 

moderate the inflammatory activity of IFNγ (Honkala et al., 2019).  

There were 168 pathways enriched in the comparison between IFNγ-treated cells and untreated 

cells in control lines; the gene set with the lowest p-value within the most significantly enriched cluster 

(Figure 3B) was ‘immune system process’ from Gene Ontology (FDR =0.0002; NES [Normalized 

Enrichment Score] = 2.41; gene sets in cluster = 1; genes in gene set = 1235), which consists of all genes 

involved in the development or functioning of the immune system. All of the top ten gene pathways for 

this signature were overexpressed amongst genes upregulated in response to IFNγ treatment. While most 

of these were related to the immune response initiated by cytokine exposure, there were, notably, two 

related to synaptic transmission: ‘post-synaptic density, human core’ and ‘presynapse’.  



 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Signature B. A. The volcano plot shows, on the y-axis, the statistical significance (-log10 p-value) of differential 

expression of genes in IFNγ-treated control NPCs compared to untreated control NPCs. The x-axis is the magnitude of change 

(log
2
 fold change) in expression of those genes due to after IFNγ treatment. B. The top 10 significantly enriched gene set 

clusters (the gene set with the lowest p-value in each cluster is labelled on the y-axis). Please see Supplementary Spreadsheets 

4A-G for full lists of enriched gene sets for each of the signatures. Data-points are sized according to significance (-log10 p-

value) and coloured according to normalised enrichment score (NES), with blue indicating downregulation and red indicating 

upregulation. 
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Effect of IFNγ treatment in schizophrenia cell lines (Signature C) 

There was also a significant effect of IFNγ treatment in schizophrenia cell lines at FDR < 0.05, with 

1980 genes differentially expressed in IFNγ-treated schizophrenia cell lines compared to untreated 

schizophrenia lines (Figure 4A and Supplementary Table 2). Of these, 1061 were upregulated and 919 

of which were downregulated. The genes whose expression was most significantly altered by IFNγ 

treatment in the schizophrenia neural progenitors were STAT2 (FDR = 1.46 x 10-5; logFC = 2.6103), 

IFI27 (FDR = 1.74 x 10-5; logFC = 6.331) and STAT1 (FDR = 1.74 x 10-5; logFC = 5.453). Once again, 

IRF1 (FDR = 3.543 x 10-5; logFC = 7.278) and JAK2 (FDR = 0.0033; logFC = 1.846) were also 

significantly upregulated. Here too, the highest logFC was shown by GBP1 (FDR = 3.91 x 10-5; logFC 

= 12.308), followed by the pseudogene GBP1P1 (FDR = 0.0001; logFC = 11.116).  

There were 132 pathways enriched in the comparison of IFNγ-treated cells compared and 

untreated in schizophrenia lines; the gene set with the lowest p-value within the most significantly 

enriched cluster (Figure 4B) was, again, ‘immune system process’ (FDR =0.0002; NES = 2.366; gene 

sets in cluster = 1; genes in gene set = 1235). The results in this comparison show activation of similar 

pathways in response to IFNγ in schizophrenia lines as seen in control lines in the previous comparison 

(Figure 4B). However, the transcriptional response is attenuated, with fewer DEGs overall. 
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Figure 4. Signature C. A. The volcano plot shows, on the y-axis, the statistical significance (-log10 p-value) of differential 

expression of genes in IFNγ-treated schizophrenia (SCZ) NPCs compared to untreated SCZ NPCs. The x-axis is the magnitude 

of change (log
2
 fold change) in expression of those genes due to after IFNγ treatment. B. The top 10 significantly enriched gene 

set clusters (the gene set with the lowest p-value in each cluster is labelled on the y-axis). Please see Supplementary 

Spreadsheets 4A-G for full lists of enriched gene sets for each of the signatures. Data-points are sized according to significance 

(-log10 p-value) and coloured according to normalised enrichment score (NES), with blue indicating downregulation and red 

indicating upregulation. 
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Interaction effect of IFNγ treatment and schizophrenia diagnosis (Signature D) 

To get a general picture of whether the patient lines respond differently to IFNγ treatment compared to 

how control lines do, I first examined the overlap of DEGs between signatures B and C (presented as a 

Venn diagram in Supplementary Figure 5). It was evident that of the 4137 genes that respond to IFNγ in 

any of the two groups, only 1223 genes are in common to both, meaning that there are 2914 genes that 

appear to respond differentially to IFNγ treatment between patients and controls. The following signature 

(Signature D) effectively assesses the same overlap; but subjects this comparison to an additional test of 

statistical significance. For this interaction term, multiple-testing correction was performed on the p-

value obtained for the 4137 genes that are differentially expressed in response to IFNγ in any condition 

(controls and/or schizophrenia cells). At FDR < 0.05 there were 359 genes that respond significantly 

differently to IFNγ between control and schizophrenia cells (Figure 5A and Table 2); most significantly 

the mitochondrial complex genes NDUFA2 (FDR = 0.0003; logFC = -0.591) and NDUFS3 (FDR = 

0.0006; logFC= -0.330), which were both downregulated. The highest fold change was exhibited by 

AC092279.2 (FDR = 0.0006; logFC = 0.645).  

There were twenty gene sets that were significantly overexpressed in this comparison, all amongst 

genes that are less expressed in response to IFNγ exposure by schizophrenia lines than by control lines 

(Figure 5B). The most significantly different of these were ‘post-synaptic density (PSD), human core’ 

(FDR =0.001; NES = -1.72; gene sets in cluster = 1; genes in gene set = 654), which includes several 

notable genes including the Alzheimer’s risk gene APOE, autism and schizophrenia risk genes NRXN1, 

CYFIP1 and SHANK1-3, NMDA receptor gene GRIN1, and DLG4 which encodes the postsynaptic 

density protein PSD-95; as well as ‘presynapse’, which includes genes that regulate the pre-synaptic 

‘active zone’ and synaptic vesicle formation (Pain et al., 2019; Pardiñas et al., 2018; Pocklington et al., 

2015) – notable genes in this gene set include SV2A and MAOA. In other words, genes influencing 

synaptic transmission showed a particularly attenuated response to IFNγ treatment in schizophrenia lines. 
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Figure 5. Signature D. A. The scatterplot shows IFNγ response results for Signature D (i.e., the interaction effect between IFNγ-treatment 

and diagnostic group on gene expression) in the 4137 genes that responded differentially to IFNγ in Signatures B and C. DEGs for control 

cells are on the x-axis and DEGs for schizophrenia cells are on the y-axis. The data are coloured by signed -log10FDR obtained for the 

interaction term (with blue indicating downregulation and red indicating upregulation). The 359 significant genes that are significant in 

the interaction are labelled. B. The top ten significantly enriched gene set clusters (the gene set with the lowest p-value in each cluster is 

labelled on the y-axis). Data-points are sized according to significance (-log10 p-value) and coloured according to normalised enrichment 

score (NES), with darker blue indicating greater downregulation. 
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Table 2. Top 20 genes significantly differentially expressed in IFNγ-treated compared to untreated cell 

lines in schizophrenia versus controls (Signature D) – all of these are downregulated. The right side of 

the table shows the effect of IFNγ treatment on the same genes in controls only, for comparison. Please 

see Supplementary Spreadsheet 3D for differential expression results for all genes in this comparison. A 

negative logFC indicates downregulation. 

 

1 False Discovery Rate  
2 Expression of the gene in (TMM-normalized) log2 CPMs (counts-per-million) averaged across all samples 
3 Uncorrected p-values 

 

 

 

 

  IFN-γ effect in schizophrenia versus in controls IFN-γ effect in controls 

Gene Symbol 

Log Fold 

Change 

Average2 

Expression 

p-value FDR1 

Log Fold 

Change 

Average 

Expression 

p-value3 FDR1 

NDUFA2 -0.591 4.976 1.00E-06 3.27E-04 0.405 4.976 0.000 0.000 

NDUFS3 -0.330 6.229 5.00E-06 5.84E-04 0.145 6.229 0.000 0.005 

SS18L2 -0.587 4.809 6.00E-06 5.84E-04 0.153 6.628 0.001 0.009 

TMEM14C -0.411 6.628 7.00E-06 5.84E-04 0.342 4.809 0.000 0.002 

AC092279.2 0.645 3.906 9.00E-06 6.19E-04 -0.517 3.906 0.000 0.001 

BEX2 -0.291 5.997 2.30E-05 1.38E-03 0.307 5.997 0.000 0.000 

RBX1 -0.414 6.291 3.20E-05 1.64E-03 0.445 6.291 0.000 0.000 

MPLKIP -0.506 5.272 4.30E-05 1.93E-03 0.322 5.272 0.000 0.004 

COX6A1 -0.605 5.983 4.90E-05 1.95E-03 0.418 5.983 0.000 0.003 

UQCRQ -0.669 5.772 5.50E-05 1.96E-03 0.392 5.772 0.000 0.006 

AL033519.3 -1.604 0.605 6.90E-05 2.26E-03 0.651 0.605 0.004 0.026 

ALG14 -0.597 3.048 1.29E-04 2.26E-03 0.176 3.048 0.024 0.082 

ATP5F1E -0.714 7.683 2.50E-04 2.26E-03 0.430 7.683 0.001 0.012 

BPNT1 -0.661 4.865 8.50E-05 2.26E-03 0.307 4.865 0.001 0.012 

BTF3 -0.371 8.866 1.91E-04 2.26E-03 0.168 8.866 0.003 0.025 

CA3 -0.936 1.623 2.51E-04 2.26E-03 0.089 1.623 0.432 0.574 

CHCHD2 -0.430 6.979 1.60E-04 2.26E-03 0.378 6.979 0.000 0.003 

COA3 -0.507 5.485 2.22E-04 2.26E-03 0.490 5.485 0.000 0.002 

COPS9 -0.804 5.617 9.30E-05 2.26E-03 0.512 5.617 0.000 0.007 

COX7C -0.552 7.975 1.50E-04 2.26E-03 0.409 7.975 0.000 0.005 
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Table 3. Top 20 gene sets significantly overrepresented among DEGs in IFNγ-treated compared to 

untreated cell lines in schizophrenia versus controls (Signature D). The right side of the table shows the 

effect of IFNγ treatment on the same genes in controls only, for comparison. Please see Supplementary 

Spreadsheet 4D for differential expression results for all genes in this comparison.  

1Enrichment Score 
2Normalised Enrichment Score 

 

 

  IFN-γ effect in schizophrenia versus in controls IFN-γ effect in controls 

Gene Set Database p-value ES1 NES2 

Number 

of genes 

in set 

p-value ES1 NES2 

PSD human core OP 1.07E-05 -0.32686 -1.719 654 1.19E-05 0.297 1.764 

Presynapse OP 1.11E-05 -0.37736 -1.944 465 1.25E-05 0.369 2.136 

Synaptic vesicle OP 1.15E-05 -0.35428 -1.787 353 1.30E-05 0.360 2.028 

Neutrophil degranulation Reactome 1.16E-05 -0.33523 -1.681 330 1.31E-05 0.444 2.483 

Presynaptic active zone OP 1.27E-05 -0.44027 -2.068 177 1.43E-05 0.402 2.085 

Regulation of ligase activity GO 1.34E-05 -0.44658 -1.994 121 1.53E-05 0.505 2.402 

Positive regulation of ligase activity GO 1.37E-05 -0.47269 -2.056 102 1.53E-05 0.505 2.402 

Cdc20:Phospho-APC/C mediated degradation of 

Cyclin A  Reactome 1.43E-05 -0.54536 -2.224 70 1.58E-05 0.599 2.661 

APC/C:Cdh1 mediated degradation of Cdc20 

and other APC/C:Cdh1 targeted proteins in late 

mitosis/early G1  Reactome 1.43E-05 -0.54725 -2.232 70 1.58E-05 0.601 2.668 

APC/C:Cdc20 mediated degradation of Securin Reactome 1.44E-05 -0.57565 -2.316 65 1.60E-05 0.642 2.806 

Activation of NF-kappa-B in B cells Reactome 1.44E-05 -0.53276 -2.137 64 1.60E-05 0.648 2.826 

Autodegradation of Cdh1 by Cdh1:APC/C Reactome 1.45E-05 -0.57029 -2.281 63 1.60E-05 0.650 2.825 

E3 ubiquitin ligases ubiquitinate target proteins Reactome 1.48E-05 -0.57381 -2.195 50 1.64E-05 0.549 2.273 

Hedgehog ligand biogenesis Reactome 2.93E-05 -0.55385 -2.166 56 1.62E-05 0.684 2.900 
 

Cross-presentation of soluble exogenous antigens 

(endosomes)  

Reactome 

3.01E-05 -0.58254 -2.170 44 1.65E-05 0.748 3.007 
Antigen processing: Ubiquitination & 

Proteasome degradation  Reactome 3.56E-05 -0.34313 -1.697 283 1.34E-05 0.448 2.466 

Antigen processing and presentation of 

exogenous peptide antigen via MHC1 GO 4.42E-05 -0.53871 -2.093 54 1.43E-05 0.549 2.833 

Downstream TCR signalling Reactome 7.04E-05 -0.4687 -1.958 80 1.57E-05 0.634 2.889 

Ligand gated channel activity GO 7.05E-05 0.40826 1.952 85 2.80E-05 -0.482 -2.412 

Reactive oxygen species pathway Hallmark 7.51E-05 -0.5478 -2.050 45 1.65E-05 0.579 2.338 
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Effect of IL-1β treatment on gene expression (Signature E, F & G) 

I had expected to see an upregulation of the IL-1β pathway genes, MYD88 and IRAK4, as well as the 

downstream signalling target NFKB (Weber et al., 2010) but here was no significant effect of IL-1β 

treatment in either control (Figure 6A) or schizophrenia (Figure 7A) lines. Nevertheless, there were 123 

and 112 pathways enriched for signatures E and F, respectively. For signature E, ‘regulation of immune 

system process’ was most significant (FDR =0.0005; NES = 1.55; gene sets in cluster = 3; genes in gene 

set = 888); and ‘Lek2015 loss-of-function (90)’ (Pain et al., 2019; Pardiñas et al., 2018; Pocklington et 

al., 2015) was most significant for signature F (FDR =0.0008; NES = -1.97; gene sets in cluster = 1; 

genes in gene set = 3007). The interaction effect between IL-1β and schizophrenia diagnosis (Signature 

G) also did not yield any significantly differentially expressed genes (Figure 8A) but did yield 15 gene 

sets  that were significantly enriched – the top nine amongst genes less expressed in schizophrenia NPCs 

response to IL-1β (Figure 8B), with ‘regulation of ligase activity’ having the lowest p-value of the most 

significant cluster for signature G (FDR =0.0015; NES = -2.15; gene sets in cluster = 2; genes in gene set 

= 121). The fact that there are significant gene set enrichment terms for this comparison despite there 

being no DEGs suggests that there are indeed some effects of IL-1β on transcription, but the sample is 

underpowered to detect them individually. Pathway enrichment compresses the number of tests (here, 

there are 15061 genes but only 895 gene sets), making it more likely to identify these effects. The 

enrichment results here also show a suppression of transcriptional response to IL-1β exposure in 

schizophrenia NPCs, with pathways regulating the post-synaptic density and presynapse once again 

amongst the top ten (Figure 8B).  
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Figure 6. Signature E. A. The volcano plot shows, on the y-axis, the statistical significance (-log10 p-value) of differential 

expression of genes in IL-1β-treated compared to untreated control cells. The x-axis is the magnitude of change (log
2
 fold 

change) in expression of those genes after IL-1β treatment. B. The top 10 significantly enriched gene set clusters (the gene 

set with the lowest p-value in each cluster is labelled on the y-axis). Data-points are sized here according to significance (-

log10 p-value), and coloured according to the normalised enrichment score (NES), with darker red indicating greater 

upregulation. 
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Figure 7. Signature F. A. The volcano plot shows, on the y-axis, the statistical significance (-log10 p-value) of differential 

expression of genes in IL-1β-treated compared to untreated cells from patient (SCZ) donors. The x-axis is the magnitude of 

change (log
2
 fold change) in expression of those genes after IL-1β treatment. B. The top 10 significantly enriched gene set 

clusters (the gene set with the lowest p-value in each cluster is labelled on the y-axis). Data-points are sized according to 

significance (-log10 p-value) and coloured according to normalised enrichment score (NES), with darker blue indicating 

greater downregulation. 
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Figure 8. Signature G. A. The volcano plot shows, on the y-axis, the statistical significance (-log10 p-value) of differential 

expression of genes in IL-1β-treated compared to untreated cells from patient donors versus those from control donors (i.e., 

the interaction effect between IL-1β -treatment and diagnostic group on gene expression). The x-axis is the magnitude of 

change (log
2
 fold change) in expression of those genes after IL-1β treatment. B. The top ten significantly enriched gene set 

clusters (the gene set with the lowest p-value in each cluster is labelled on the x-axis). Data-points are sized according to 

significance (-log10 p-value) and coloured according to normalised enrichment score (NES), with blue indicating 

downregulation and red indicating upregulation. 
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Differential expression of receptor genes 

To assess whether the transcriptional responses to IL-1β and IFNγ were influenced by the expression of 

their respective receptors in the NPC cultures, I compared the expression of IL1R1, IL1R2, IL1RAP, 

IFNGR1 and IFNGR2 between patient and control lines. IL-1β receptor genes exhibit visibly lower 

expression than the IFNγ receptors (Figure 10) in all the cell lines, which may explain the low 

responsiveness of the neural progenitors to IL-1β stimulation. In the schizophrenia cell lines, there was 

a lower expression of IFNGR2 compared to controls (Figure 11), which may explain there being fewer 

DEGs in response to IFNγ stimulation in schizophrenia NPCs.  
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Figure 10. Distribution of cytokine receptor expression across all samples. The violin plot shows the distribution of the 

expression (in FPKMs) of each of the five receptor genes [Interleukin 1 Receptor 2 (IL1R2); Interleukin 1 Receptor 1 (IL1R1); 

Interleukin 1 Receptor Accessory Protein (IL1RAP); Interferon Gamma Receptor 1 (IFNGR1); and Interferon Gamma 

receptor 2 (IFNGR2)], across all samples, normalised by gene length and library size.  
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Figure 11. Expression of cytokine receptors in schizophrenia cell lines compared to controls. Shows the differential gene 

expression in schizophrenia (SCZ) compared to controls (CON) the four cytokine receptor genes that passed low-expression 

filtering. Values that lie above minimum expression threshold (log
2
 CPM = 0.6) are shown in red. 
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Discussion 

In this study, I sought to assess how the cytokines interferon-gamma (IFNγ) and interleukin-1 beta (IL-1β) 

interact with genetic profiles associated with schizophrenia in order to better understand the increased 

susceptibility to schizophrenia seen in offspring of mothers exposed to infection during pregnancy. I 

hypothesised that cortical neural progenitor cells (NPCs) derived from patients with schizophrenia would 

respond differently to IFNγ or IL-1β exposure compared to those of healthy controls. To my knowledge, this 

is the first study to assess the influence of these cytokines on gene expression in NPCs from patients with 

schizophrenia; and the second, after (Warre-Cornish et al., 2020), to administer transient immune stimulation 

to human neural progenitors. 

There was only one gene that was significantly differentially expressed in schizophrenia lines 

compared to controls in the absence of treatment. At face value, this is surprising, as previous research 

(Evgrafov et al., 2020) has shown at least eighty DEGs for schizophrenia. However, it may be that the 

effects of many of these genes individually are weak, and the relatively small sample is underpowered to 

detect them. (Indeed, Evgrafov et al. (2020) had a much larger sample size than the one in the current 

study and used a more lenient multiple testing correction threshold, FDR < 10%). If this is the case, one 

would expect some of these effects to be captured in gene set enrichment analyses. I did indeed see 

enrichment of 26 sets of genes, particularly those sensitive to loss-of-function mutations, pointing to a 

potential genomic instability of schizophrenia lines. There was also enrichment of genes related to 

antigen presentation in schizophrenia lines compared to controls; particularly those related to major 

histocompatibility complex class I (MHC-I), which presents antigens on cell surfaces for detection by T-

cells and has a well-established relationship with schizophrenia (Psychosis Endophenotypes International 

Consortium et al., 2014; Schizophrenia Working Group of the Psychiatric Genomics, 2014; Shi et al., 

2009).  

I then assessed whether IFNγ treatment alters transcriptional responses in control neural 

progenitors and found that there were 3380 genes significantly differentially expressed in response to 
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IFNγ treatment. This is interesting itself, as the cell cultures used in this study do not contain glial cells 

– supporting the notion presented by Warre-Cornish et al. (2020) that NPCs can launch an immune 

response independent of microglia.  Immune responses in the brain are thought to be predominantly 

mediated by glia (Greenhalgh et al., 2020), but the fact that neural progenitor cells are themselves 

responsive to a proliferation of IFNγ (which initiates an immune response to viral infection) indicates 

that immunity in the brain extends beyond glial cells. Moreover, in both control and schizophrenia neural 

progenitor cell lines, IFNγ treatment activated the canonical JAK-STAT signalling pathway, as would 

typically be seen in response to viral infection. The findings for this comparison were also consistent 

with recent work which found MHC-I related genes among the most differentially expressed in IFNγ-

treated control neural progenitors and neurons (Warre-Cornish et al., 2020). In my results 

(Supplementary Spreadsheet 3A), key MHC-I related genes such as HLA-A, HLA-B and HLA-C are all 

consistently upregulated in response to IFNγ treatment. However, in the current study, the genes most 

significantly upregulated on IFNγ exposure were IFI27 and CD274. IFI27 encodes Interferon Alpha 

Inducible Protein 27, which is involved in interferon-induced apoptosis and is considered to be a 

biomarker that differentiates between viral and bacterial infection (Tang et al., 2017). CD274 encodes a 

receptor ligand that binds to PD-1 receptors on T-cell surfaces, inhibiting T-cell activation and antibody 

production – an essential process for preventing autoimmunity (Francisco et al., 2010).  

In schizophrenia cell lines, there were far fewer differentially expressed genes in response to IFNγ 

treatment: only 1980. This may be, in part, due to the lower expression of the IFNγ receptor gene IFNGR2 

in schizophrenia cell lines compared to control lines. It could also be that these cells are not able to 

activate in response to IFNγ to the same extent as controls. The top ten most significant IFNγ-responding 

genes in schizophrenia lines were almost exactly the same as those in control lines; although, 

interestingly, I saw completely opposite DGE responses to IFNγ treatment in control cell lines compared 

to schizophrenia cell lines (Table 2). Physiologically, this may mean that cells from healthy donors 
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exhibit a compensatory transcriptional response to infection which does not occur in cells from donors 

with schizophrenia, resulting in a greater insult to neurodevelopment in the latter. The top two of these 

DEGs (NDUFA2 and NDUFS3) being mitochondrial complex I genes suggests that schizophrenia donor 

cells may be driven to conserve energy in response to an infection, while healthy donor cells are able to 

expend more energy to restore health (Mueller et al., 2021) (Park 2020; Mueller, 2021).  

The same gene, GBP1, also showed the highest fold change in response to IFNγ in both groups, 

which is to be expected as GBP1 encodes an interferon-induced guanylate-binding protein that is also 

part of the canonical IFNγ signalling pathway. The lower number of IFNγ-induced differentially 

expressed genes in schizophrenia lines also points to a gene-environment interaction: the genetic profiles 

of patients with schizophrenia may characteristically influence the way in which their brains respond to 

these cytokines. Indeed, 359 (of 4137 that respond differentially to IFNγ in any of the lines) genes 

responded significantly differently to IFNγ exposure when the differential expression of schizophrenia 

and control cell lines were compared. Of these, the two most significant, NDUFA2 and NDUFS3 encode 

subunits of the NADH:Ubiquinone Oxidoreductase complex, which is involved in the energy-regulating 

mitochondrial electron transport chain, supporting previous observations of mitochondrial dysfunction 

in schizophrenia and other psychiatric disorders (Rajasekaran et al., 2015). This is also congruous with 

a recent study which found a downregulation of NDUFA2 in mice susceptible to the behavioural 

consequences of immune activation by poly(I:C) (Mueller et al., 2021). Interestingly, these genes are 

also part of the endocannabinoid signalling pathway (KEGG), as CB1 cannabinoid receptors are 

expressed both at presynaptic terminals and in mitochondrial membranes. Synaptic CB1 receptors can, 

when activated, inhibit the release of neurotransmitters GABA (γ-amino butyric acid) and glutamate and 

are themselves strongly implicated in schizophrenia (D'Souza et al., 2005; Guennewig et al., 2018; Shum 

et al., 2020).  
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The gene sets significantly enriched for IFNγ treatment in both schizophrenia and control lines 

largely converged in function, as expected, upon immune regulation. The gene sets that responded most 

differently to IFNγ in schizophrenia lines were those regulating the postsynaptic density, presynapse, and 

presynaptic active zone. This result sits well with models of schizophrenia from other fields of 

neuroscience, including the concept of schizophrenia as a disorder of synaptic ‘dysconnection’ in 

computational neuroscience – a promising bridge between two very different but equally rich views of 

the same disorder. The dysconnection hypothesis suggests a dysregulation of neuromodulation 

(particularly across glutamatergic synapses) lies at the core of the various factors contributing to 

susceptibility (R. A. Adams et al., 2013; Friston et al., 2016). An important inference here is that any 

structural deficits of connectivity seen in schizophrenia are caused by aberrant synaptic transmission, 

presumably as synapses that miscommunicate are more likely to be pruned away (Friston et al., 2016; 

Stephan et al., 2006; Stephan et al., 2009). This is consistent with cortical neuropathology in 

schizophrenia on a cellular level, where numbers of dendrites (Gilmore et al., 2004), spines and synaptic 

proteins (Friston et al., 2016; Glantz & Lewis, 1997), but not of neurons, are significantly reduced. The 

results of the current study appear to support this theory.  

It is very likely the absence of DEGs in response to IL-1β treatment in any of the lines is related 

to the low expression of IL1 receptor 1 (IL1R1) across all the cell lines: blocking the IL1R1 significantly 

reduces the influence of IL-1β on neural progenitors (Crampton et al., 2012). However, this low IL-1 

receptor expression was surprising in light of previous work showing high IL1R1 (but not IL1R2) 

expression in rat ventral mesencephalon neural progenitors (Crampton et al., 2012). It is possible that 

there is lower IL1R1 expression in the cortex than in other parts of the foetal brain; or perhaps IL1R1 

expression is upregulated at a later stage of prenatal neurodevelopment in humans than in rats, which 

would demonstrate the significance of leveraging human systems in the study of human 
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neurodevelopment. It is also possible that that, by the 24-hour time point, any effect induced by IL-1β may 

have been lost – i.e., the effects of IL-1β may be very rapid and transient. 

Nevertheless, pathway analyses did reveal significant enrichment of gene sets in response to IL-

1β treatment, likely due to the reduced number of tests (895 rather than 15061) allowing more subtle 

effects to come to the fore. This analysis showed very different response profiles in patient neural 

progenitors compared to control neural progenitors. Among the top ten most significantly enriched gene 

sets in control lines treated with IL-1β were (as with IFNγ) genes regulating the immune response, the 

presynapse and the post-synaptic density – all upregulated. However, none of these top ten gene sets 

were among those most significantly enriched in IL-1β-treated schizophrenia lines; instead, almost all of 

these were sets of genes involved in central nervous system development and neuronal morphogenesis – 

all downregulated. Among the gene sets that responded significantly differently to IL-1β in schizophrenia 

lines compared to controls were those involved in cell division, antigen presentation and, once again, 

synaptic transmission.  

There are, of course, limitations to the current study; most of all, the relatively small sample size, 

which would warrant future replication studies. The sample was also fairly heterogeneous in terms of 

genetic background, which meant individual differences considerably influenced genetic variance in the 

sample. In particular, there were differences in polygenic risk score (PRS) for schizophrenia that could 

confound or further limit power to identify case-control differences. Specifically, one of the cases 

included had a high PRS with a sparse history of cannabis use, while another had a low PRS with a 

frequent history of cannabis use (PRS was not available for the other lines). In theory, one would expect 

that reprogramming the keratinocyte samples into iPSCs would negate epigenetic effects such as those 

related to cannabis use. For the same reason, it was also surprising to find that donor age had some 

influence over the genetic variance in the sample, as one would also expect a negation of age-related 

epigenetic effects. It is likely that this is due to noise (again as a result of the small sample size), which 
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emphasises the importance of replicating these findings. Finally, I administered a single, acute dose of 

cytokine treatment to my NPC cultures: in future studies, it would be interesting to examine the effect of 

chronic treatment.  

In summary, I have found that immune activation induced by IL-1β and IFNγ elicits 

transcriptional changes that may alter the course of subsequent neurodevelopment. These findings 

exemplify differences in how the brains of people with schizophrenia may have responded to infection 

or inflammation during prenatal development. This in turn suggests that immune insults early in life may 

alter neurotransmission. Finally, I identify new gene targets for future research on the influence of 

maternal immune activation on schizophrenia susceptibility and resilience. 
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Supplementary Information 

Supplementary Table 1. Top 20 genes most significantly differentially expressed in IFNγ-treated 

control cells compared to untreated control cells.  

Gene 

Symbol 

Log fold change 

Average 

expression2 

P value 

Adjusted 

P value 

Z score FDR1 

IFI27 6.067 4.280 2.16E-10 2.97E-06 6.350 2.97E-06 

CD274 6.386 1.547 3.95E-10 2.97E-06 6.256 2.97E-06 

IRF1 7.022 4.265 6.44E-10 3.24E-06 6.179 3.23E-06 

PSMB10 5.522 1.528 1.15E-09 4.32E-06 6.087 4.33E-06 

SP140L 5.815 0.465 1.81E-09 5.05E-06 6.014 5.05E-06 

STAT2 2.247 6.869 2.01E-09 5.05E-06 5.997 5.05E-06 

STAT1 5.680 7.882 2.74E-09 5.58E-06 5.946 5.57E-06 

TAP1 7.167 4.928 3.18E-09 5.58E-06 5.922 5.57E-06 

GSTK1 1.608 5.890 3.47E-09 5.58E-06 5.908 5.57E-06 

PSMB9 9.482 2.362 3.70E-09 5.58E-06 5.897 5.57E-06 

ISG15 4.980 4.931 7.22E-09 9.89E-06 5.786 9.88E-06 

TNFRSF14 4.751 1.658 8.30E-09 1.04E-05 5.762 1.04E-05 

SECTM1 5.813 0.609 9.07E-09 1.05E-05 5.747 1.05E-05 

WDFY1 1.922 7.012 1.94E-08 2.09E-05 5.617 2.09E-05 

LAP3 4.433 6.512 2.85E-08 2.86E-05 5.551 2.86E-05 

IL18BP 3.892 4.188 3.13E-08 2.95E-05 5.534 2.95E-05 

GBP1 14.622 2.693 3.51E-08 3.11E-05 5.514 3.11E-05 

AL157871.2 6.200 -0.603 3.88E-08 3.25E-05 5.496 3.25E-05 

XAF1 10.252 -1.583 5.23E-08 4.15E-05 5.443 4.15E-05 

1 False Discovery Rate  
2 Average expression of the gene in TMM-normalised log2 CPMs (counts-per-million). 
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Supplementary Table 2. Top 20 genes most significantly differentially expressed in IFNγ-treated 

schizophrenia cell lines compared to untreated schizophrenia cell lines. 

Gene Symbol 

Log fold 

change 

Average 

expression2 

P value 

Adjusted 

P value 

Z score FDR1 

STAT2 2.610 6.869 9.67E-10 1.46E-05 6.115 1.46E-05 

IFI27 6.333 4.280 4.00E-09 1.74E-05 5.884 1.74E-05 

STAT1 5.454 7.882 4.90E-09 1.74E-05 5.851 1.74E-05 

PSMB10 5.740 1.528 5.49E-09 1.74E-05 5.832 1.74E-05 

GSTK1 1.552 5.890 5.77E-09 1.74E-05 5.823 1.74E-05 

SP140L 6.125 0.465 8.51E-09 2.14E-05 5.758 2.14E-05 

IRF1 7.278 4.265 1.65E-08 3.54E-05 5.646 3.54E-05 

GBP1 12.308 2.693 2.08E-08 3.91E-05 5.606 3.91E-05 

ISG15 5.142 4.931 2.92E-08 4.88E-05 5.546 4.88E-05 

MT2A 3.091 4.452 3.97E-08 5.57E-05 5.492 5.57E-05 

TNFRSF14 5.052 1.658 4.07E-08 5.57E-05 5.488 5.57E-05 

IFI6 4.015 6.238 4.57E-08 5.73E-05 5.467 5.73E-05 

ADAR 1.182 8.246 5.86E-08 6.02E-05 5.423 6.02E-05 

SECTM1 7.449 0.609 6.01E-08 6.02E-05 5.419 6.02E-05 

ERAP2 5.936 2.491 6.23E-08 6.02E-05 5.412 6.02E-05 

ITK 8.431 -1.891 6.66E-08 6.02E-05 5.400 6.02E-05 

MMP25-AS1 3.487 2.799 6.80E-08 6.02E-05 5.396 6.02E-05 

XAF1 10.277 -1.583 8.11E-08 6.79E-05 5.365 6.79E-05 

LAP3 4.017 6.512 9.33E-08 7.40E-05 5.339 7.40E-05 

1 False Discovery Rate  
2 Average expression of the gene in TMM-normalised log2 CPMs (counts-per-million). 

 

(Please see Supplementary Spreadsheets 3A-G for all genes included in the differential expression 

comparisons. 
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Supplementary Figure 1. Validation of schizophrenia hiPSC lines. A. Shows immunostaining of iPSCs for the pluripotency 

markers OCT4, SSEA4, NANOG and TRA-1-81. B. hiPSCs were further tested for their ability to generate cells from the 3 

germ layers, as in Cocks et al (2014). All three of these hiPSC lines showed spontaneous generation of mesoderm, endoderm 

and (neuro-ectoderm cells. Validation of control lines used in this study has been shown in (Adhya et al., 2020; Shum et al., 

2020). 
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Supplementary Figure 2. Principal component analysis (PCA). The left panels show the relationship between PC1 and 

PC2; the right shows PC2 against PC3 (PC1 accounts for 86.55% of the variation in the data). A. By individual identifier. B. 

By treatment condition: IFNγ, IL-1β and vehicle (untreated). C. By diagnostic group (schizophrenia versus controls). 
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Supplementary Figure 3.  Variance partition analysis. This shows the percentage of variance in the expression of each 

gene explained by each variable. Due to small sample size, this estimation may be very noisy. This figure mainly serves to 

illustrate that the primary source of variance in the data is the individual differences between each of the cell lines.  
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Supplementary Figure 4. Jaccard similarity matrices for signatures A-G, respectively.   
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Supplementary Figure 5. Cluster dendrograms for signatures A-G, respectively.   
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Supplementary Figure 6. Venn diagram that shows the overlap between the genes that are differentially expressed in 

response to IFNγ in control cells and in schizophrenia cells. Of the 4137 genes that respond to IFNγ in any of the two groups, 

only 1223 genes are in common, meaning that there are 2914 genes that appear differentially expressed in response to IFNγ 

in controls vs not in schizophrenia and vice versa. 
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Supplementary Figure 7. Filtration to remove lowly expressed genes in order to minimise technical noise. Plots A and B 

show the distribution of log10-transformed counts-per-million (CPMs) pre-filtration and post-filtration, respectively. Filtration 

threshold was set at log10CPM = 0.6 (CPM x 100.6) by visual inspection, such that the filtered data showed an approximate 

Gaussian distribution.  
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Chapter 311 

Why are psychiatric disorders and immune responses intertwined?  

 

Abstract 

There is a steadily growing literature on the role of the immune system in psychiatric disorders. So far, 

these advances have largely taken the form of correlations between specific aspects of inflammation (e.g., 

blood plasma levels of inflammatory markers, genetic mutations in immune pathways, viral or bacterial 

infection) with the development of neuropsychiatric conditions such as autism, bipolar disorder, 

schizophrenia and depression. A fundamental question remains open: why are psychiatric disorders and 

immune responses intertwined? To address this would require a step back from a historical mind-body 

dualism that has created such a dichotomy. I propose three contributions of active inference when 

addressing this question: translation, unification, and simulation. To illustrate these contributions, I 

consider the following questions. Is there an immunological analogue of sensory attenuation? Is there a 

common generative model that the brain and immune system jointly optimise? Can the immune response 

and psychiatric illness both be explained in terms of self-organising systems responding to threatening 

stimuli in their external environment, whether those stimuli happen to be pathogens, predators, or people? 

Does false inference at an immunological level alter the message passing at a psychological level (or vice 

versa) through a principled exchange between the two systems? 

 

 

 

This chapter is adapted from Bhat, Parr, Ramstead & Friston, Biology & Philosophy (2021). 
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Introduction 

In recent years, evidence for the interconnection between psychiatric disorders and immune responses 

has been accumulating rapidly (Nutma et al., 2019). So far, these advances have largely taken the form 

of correlations between specific aspects of ‘peripheral’ immunity (e.g., blood plasma levels of 

inflammatory markers) with the development of for neuropsychiatric conditions such as autism, bipolar 

disorder, schizophrenia and depression (Nudel et al., 2019). While these correlations speak to the 

interdependence of these two systems, there is less clarity in the literature as to why such a dependency 

should exist at all (Bennett & Molofsky, 2019). This relationship is further confounded by the fact that 

the brain, which is the primary physiological target of psychiatric research (David & Nicholson, 2015; 

Oertel & Kircher, 2010), has some specialised immune characteristics (such as microglia, a cell species 

responsible for mediating immunity in the brain), and is physically sequestered behind the blood-brain 

barrier – licensing the common belief that the brain is ‘immune privileged’ (Bennett & Molofsky, 2019). 

In essence, the question that remains unanswered is, why are psychiatric disorders and immune responses 

intertwined? 

To address this would require a step back from a dualism (Descartes, 1641/1979), still subtly 

prevalent in modern medicine and contemporary philosophy (Gendle, 2016; Glannon, 2020; Mehta, 

2011; Morris, 2010; Putnam, 1960, 1967) between the mind (and often, in concordance, the brain) and 

the body. The complexity of the human brain, and its intimate relation to our conscious experience, makes 

it easy to forget that it is, nevertheless, an organ in service of maintaining the integrity of the body it 

inhabits. To reject this dualism is to view the mind as embodied, and the brain as a part of the living body 

(Varela et al., 1991). 

The ripples of effect that pass between the brain and the immune system (Blalock, 1984) are less 

surprising, however, under the hermeneutic perspective (Friston & Frith, 2015; Gadamer, 1976) supplied 

by the free energy principle (FEP) (Friston, 2005, 2009), in which autopoiesis – or self-evidencing (Clark, 
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2013; Hohwy, 2013) –  is a constant process at every organismal level (cells, tissues, organs, organisms, 

societies), as well as a fundamental motivational drive. In this light, the brain and the immune system 

share a common imperative: to distinguish consistently and accurately between ‘self’ and ‘non-self’ or 

‘threatening’ and ‘non-threatening’ to the individual as a whole. The multiscale perspective afforded by 

the free energy principle means this disambiguation between self and other is constrained by the 

hierarchical level (i.e., spatiotemporal scale) above (Hesp et al., 2019; Kirchhoff, 2018; Kirchhoff et al., 

2018; Palacios et al., 2020; Ramstead et al., 2018; Ramstead et al., 2019) – a necessary facet of ‘belonging 

to something greater’. On a general note, this thesis rejects dualism in the same spirit of recent proposals 

– from molecular biology (Kuchling et al., 2019; Manicka & Levin, 2019) to evolution (Ao, 2005; 

Campbell, 2016; Frank, 2012; Ramirez & Marshall, 2017) – that put inference, beliefs12 and purpose into 

biological processes. 

In this chapter, I propose that an appeal to the FEP, and its corollary, active inference, is useful 

for explaining the relationship between the immune system and the brain in three important ways: 

translation, unification, and simulation. I will unpack this in five parts. In the first two sections, I briefly 

overview active inference and the human immune response. In the third, I explore insights that may be 

gained by translating the immune response into the language of active inference. In the fourth, I explain 

how understanding the brain and immune system as components of a larger Markov blanket explains 

their relationship in terms of a shared imperative and propose a ‘diaschisis of threat’ model that may 

elucidate the overlap between autoimmune and psychiatric disorders. In the fifth, I demonstrate the 

benefits of formulating these ideas in the form of generative models.  

 

12 In this chapter, ‘beliefs’ should be read as Bayesian beliefs – in the sense of Bayesian belief updating and belief propagation. 

In other words, beliefs are simply posterior or conditional probability distributions, usually encoded by the physical state of a 

person or particle. They are not propositional beliefs of a pre-theoretical sort. See below for more detail on Bayesian beliefs. 
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Active inference and the Free Energy Principle 

The Free Energy Principle (FEP) is a formalisation and extension of Schrödinger’s (1956) seminal 

observation that living organisms are defined by the avoidance of entropy – in other words, they ‘self-

organise’, or maintain homeostasis. Supplied by the mathematics of nonequilibria, it emerges that all 

self-organising (and therefore biological) systems are fundamentally driven to minimise a quantity called 

‘free energy’ – which can be heuristically understood as a measure of unlikeliness13.  

Active inference is an application of the FEP to sentient behaviour. It specifies that self-

organising systems, in addition to adapting to their environment, can also act upon it so that it conforms 

to their internal generative model of the world  (Friston et al., 2010; Parr & Friston, 2018a, 2019). An 

internal model is a probabilistic account of how sensory data are generated – normally comprising a prior 

(how probable is a hypothesis before making any observations) and a likelihood (how likely are observed 

data under that hypothesis). For more sophisticated systems, this model may represent sequences through 

time, making it possible to select ‘policies’ (sequences of actions) that minimise ‘expected free energy’ 

– which (heuristically) is the free energy expected on pursuing a policy. Some of these terms may seem 

somewhat anthropomorphic. This is because the origins of active inference were in application to the 

human brain, building upon Helmholtz’s (1866/1962) ideas about ‘unconscious inference’ and 

‘predictive coding’ (Knill & Pouget, 2004; Rao & Ballard, 1999), which equates free energy 

minimisation with ‘prediction error minimisation’, or ‘belief updating’14. 

These frameworks rest upon a characterisation of the brain as ‘Bayesian’, in reference to Bayes’ 

Theorem. Reverend Thomas Bayes’ equation (Equation 1), first published in 1763, is a simple but 

 

13 Strictly speaking, variational free energy is more generally an upper bound on surprisal, a.k.a. self-information; namely, 

the log probability that any given person or particle will be found in a particular state. In Bayesian statistics, negative self-

information is also known as log evidence. Therefore, minimising free energy maximises evidence; hence, self-evidencing. 
14 The updating of the generative model depends on a weighing up of the relative ‘precision’ of prior beliefs and sensory 

evidence, similarly to how a scientist would weigh up new evidence against a body of literature. Here, ‘precision’ is a measure 

of certainty, thought to be synonymous with gain (excitability) of post-synaptic pyramidal neurons reporting prediction errors 

((Parr & Friston, 2019)) 
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profound formula for determining conditional probabilities (Bayes, 1991). In essence, Bayes’ Theorem 

considers the probability of an outcome (or ‘posterior belief’) to be dependent not just on cross-sectional 

evidence but also prior knowledge (‘prior beliefs’). For example, if I lose my sense of smell (‘anosmia’) 

and want to know whether this is caused by a SARS-CoV-2 infection (‘Covid19’) (the hypothesis, h) as 

opposed to a vitamin B12 deficiency (the alternative hypothesis), I could use Bayes’ Theorem. This 

would give me a ‘posterior belief’, P(h|o), which here is the probability of having Covid19 given the loss 

of smell. There are three components that I would have to combine to arrive at my posterior belief:  

1. My prior beliefs about the probability of having Covid19, P(h). 

2. The likelihood of observing the symptom given the infection, P(o|h).  

3. The model evidence: all the possible reasons for having lost my sense of smell, P(o). 

 

 

𝑃(ℎ│𝑜) =
𝑃(𝑜│ℎ)   𝑃(ℎ)

𝑃(𝑜)
 

 

 

 

 

 

 

 

So, at a given time point (t), prior beliefs are combined with observed outcomes to become 

posterior beliefs. This process is known as ‘belief updating’. For the sort of recurrent belief updating that 

underlies self-organisation, the posterior beliefs of one moment (t) become the prior beliefs of the next 

(t+1). The internal/generative model that underlies this sort of recurrent belief updating over a series of 

discrete time-points (t, t+1, t+2...t+n) is often represented as a Markov Decision Process model (e.g., 

 Posterior 

Likelihood 

 Prior 

 Model evidence 

h = hypothesis 

o = outcomes 

 

Equation 1a. Bayes theorem. In this formula, each term in the equation has a specific name as labelled above. 

Prior beliefs are beliefs about the hypothesis (about the cause of the observation) – e.g., how probable is it for a 

person to have Covid19? If 20% of the population are estimated to be infected, we could say P(h) here is 0.2. The 

likelihood represents how likely I am to observe this in the context of my hypothesis. E.g., How likely is it for a 

person to lose their sense of smell if they have Covid19? If 86% of people with Covid19 experience a loss of smell, 

we could say P(o|h) here is 0.86. The model evidence is 0.175 as explained under Equation 1b, so this gives a 

posterior belief of (0.86 x 0.2)/0.175 = 0.98 (i.e., based on these population estimates, my anosmia is much more 

likely due to Covid19 than a B12 deficiency!) 
 



 131 

Figure 4) (Mirza et al., 2018; Mirza et al., 2016). Internal/generative models that update beliefs in a 

continuous fashion are often presented as predictive coding-style models (e.g., Figures 2 and 3) (Kanai 

et al., 2015; Parr & Friston, 2018b). The former is applicable, for example, to decision-making, wherein 

the individual must decide between several discrete courses of action; the latter is applicable, for 

example, to movement wherein the individual must extend or flex muscles (Parr & Friston, 2018b). In 

both cases, belief updating can be described using Bayes’ simple theorem.   

In other words, the brain is seen here as an inference machine that makes sense of the world – 

and adapts to a constantly changing environment – by drawing associations between observations. This 

generally involves determining the probability of an uncertain cause given some observed evidence. 

These observations come in the form of sensory ‘data’ received by our sensory receptors (e.g., pressure 

sensed by Pacinian corpuscles or vibration of the eardrum on interaction with sound waves). For example, 

if we hear the sound of an instrument from another room, the pitch, timbre and tone of the sound (the 

sensory data) allow us to infer what sort of instrument it is (the uncertain cause) (Figure 1). Much of this 

inference occurs subconsciously – hence Helmholtz’s term ‘unconscious inference’ (Helmholtz, 

1866/1962) – and involves an implicit Bayesian hypothesis test. Bayesian hypothesis testing differs from 

classical/frequentist hypothesis testing in that Bayesian methods do not necessitate a universal ‘cut-off’ 

point such as p = 0.05, below which the null hypothesis is rejected. Instead, the Bayesian method of 

hypothesis testing is Bayesian model comparison, which involves defining several models that may 

explain the observed [sensory] data and comparing them – the ‘winning’ model being the one that best 

predicts observations.  
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Figure 1. Three potential (independent) hidden causes of sensory observations. The arrows (or ‘edges’) here represent a 

conditional dependence between the observed sensory data and the potential hidden cause. The causes are ‘hidden’ because 

we do not have direct access to the world, but rather interpret it through our senses. Therefore, each of these hidden causes 

correspond to alternative ‘hypotheses’ about the causes of the sensations. The conditional dependences in turn correspond to 

the ‘likelihood’ (from Bayes Theorem as shown in Equation 1a).   

 

 

Model evidence is key to hypothesis testing under Bayes’ Theorem. It refers to the likelihood of the 

outcome given all possible hypotheses – i.e., the hypothesis space. Mathematically, model evidence is 

the sum (or integral, in the case of continuous outcomes) of the likelihood times the prior, over all 

possible hypotheses (Equation 1b). In other words, this is the term which accounts for alternative 

hypotheses.  

 

 

 

 

 

 

 

High pitched 

non-percussive 

musical tone 

with internal 

resonance 

Flute? Oboe? 

Trumpet? 

(Hidden) causes 

Observations 

𝑃(𝑜) = ∑ 𝑃(𝑜|ℎ)𝑃(ℎ)

ℎ∈𝐻

 

Equation 1b. Model evidence. The evidence term in the denominator of Equation 1a. equates to the numerator 

(likelihood x prior) summed over all hypotheses. In this case, there are two possible hypotheses about the causes of 

the loss of smell: Covid19 or vitamin deficiency. If 5% of people with B12 deficiency tend to exhibit anosmia, and 6% 

of the population have B12 deficiency, the model evidence would be: P(anosmia|Covid19) P(Covid19) + P(anosmia| 

B12 deficiency) P(B12 deficiency) = 0.86 x 0.06 + 0.05 x 0.06 = 0.175 

 

h = hypothesis 

H = the set of all hypotheses 

o = outcomes 
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Note that the model evidence is very difficult to compute when the hypothesis space is large (as 

it would be if we were to consider all the possible reasons for having anosmia), or if the hypotheses were 

overlapping (i.e., a person loses their sense of smell because they have both Covid19 and a B12 

deficiency). This is usually the case with sensory information processed by the brain, so model evidence 

in this context is generally considered an approximation (Fourment et al., 2020). Indeed, maximising 

model evidence is synonymous with minimising free energy (Demekas et al., 2020; Friston, 2009). 

Under active inference, the internal dynamics of a biological system can therefore be understood 

as solving an inference problem using sensory data. Combing prior beliefs with the likelihood associated 

with sensory data, gives a posterior belief; namely, the probability of some explanation of observed 

sensory data. Behaviour is guided by these inferences (Rick A. Adams et al., 2013; K. Friston & C. Frith, 

2015; Friston et al., 2010). Identifying the inference problem that the system is solving supplies an 

explanation, in the form of a generative model, that underwrites optimal behaviour. In a sense, this 

approach represents a formal rejection of Cartesian dualism in favour of a Markovian Monism (Friston 

et al., 2020). The first step in trying to understand the inference problem a system is implicitly solving is 

to define what is meant by ‘a system’. The statistical construct of a ‘Markov blanket’ (Pearl, 1988) is 

typically applied to delimit a self-organising system, by rendering the internal components of the system 

conditionally independent from its environment, while accommodating a vicarious communication 

between the inside and the outside15. This bidirectional communication is wrought by dividing the 

blanket into unidirectional influences that are either sensory (e.g., from pathogen to immune system) or 

active (e.g., from immune system to pathogen). 

Further, under the Complete Class theorem (Daunizeau et al., 2010; Wald, 1947), any behaviour 

can be rendered Bayes optimal given the appropriate prior beliefs. This means that defining the ‘inference 

 

15 Technically, the reciprocal exchange between the inside (internal) and outside (external) across the Markov blanket means 

that the system is ‘open’, which calls on a very general formulation from physics in terms of nonequilibrium steady states 

(Friston, 2019). 
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problem’ can also help to explain (by lesioning the optimal generative model) maladaptive behaviours, 

such as might be seen in autoimmune or psychiatric disorders. This approach has been applied fruitfully 

to explain – for example – visual neglect (Parr & Friston, 2018a), hallucinations (R. A. Adams et al., 

2013; Benrimoh et al., 2019) and failures of interpersonal communication (Moutoussis et al., 2014).  

The implication for philosophy here is support from the physics of biology for a hermeneutic 

perspective (Friston & Frith, 2015; Gadamer, 1976) of constant (and imperfect) energetic dialogue 

between an organism and its environment; and a relativism wherein normality is context dependent, 

perception is deeply subjective and absolute objective reality is unattainable. 

 

A primer on immunology  

The human immune system is a sophisticated, multi-organ system that fights infection, prevents cancer, 

eliminates harmful substances, regulates inflammation and supports wound healing (Marshall et al., 

2018; Murphy et al., 2012; Portou et al., 2015). It performs these functions by recognising tissue damage, 

differentiating ‘self’ from ‘nonself’, and destroying any foreign or toxic material. At the centre of this 

system are white blood cells, that move around the body through a network of delicate tubes and nodes, 

together called the lymphatic system (Murphy et al., 2012). On encountering disease-causing organisms, 

or pathogens – such as viruses, bacteria and parasites  (Chaplin, 2010; Murphy et al., 2012) – they enact 

an immune response. Two key types of white blood cells are macrophages (that engulf and dissolve 

pathogens and infected cells – a process known as phagocytosis); and lymphocytes, which further 

subdivide into B-cells and T-cells. T-helper cells (which are positive [+] for the cell surface glycoprotein 

‘cluster of differentiation’ 4, or CD4), release cytokines (molecular ‘alarm’ bells that can initiate or 

attenuate an immune response); cytotoxic T-cells (with the surface marker CD8) can directly neutralise 

pathogens (Murphy et al., 2012). In health, these exist in a ratio of CD4+ to CD8+ T-cells of 

approximately 2:1 (McBride & Striker, 2017). B-cells subdivide into plasma cells, which produce 
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antibodies, and memory cells, which remember previously encountered antigens in case of future 

infections (Chaplin, 2010; Marshall et al., 2018; Murphy et al., 2012). 

Innate immunity 

The innate component of the immune system mounts a relatively non-specific inflammatory response, 

which is tuned by the adaptive system. It comprises immune molecules and cells that detect, attack, and 

engulf pathogens. A useful starting point in understanding this system is the complement pathway: a 

series of ‘molecular dominoes’ that trigger a cascade of events designed to neutralise any pathogens. The 

molecules that comprise complement system are plasma proteins known as complement components, 

denoted as ‘C1, ‘C2’, ‘C3’, and so on (Murphy et al., 2012). Each of these has a unique role, as outlined 

below. 

There are three ways in which this cascade may be triggered (Chaplin, 2010). The first is known 

as the classical pathway, and rests upon binding of complement component C1q to IgG or IgM 

antibodies16. The implication here is that, in the presence of a pathogen identified by the adaptive arm of 

the immune system, there will be a high density of antibodies to which C1q may bind17. This leads to a 

localised increase in activity of the classical pathway. The second complement pathway is the alternative 

pathway, which is tonically active – possibly embodying a belief about the prior probability of infection. 

The third is the lecithin pathway. Like the classical pathway, the lecithin pathway is triggered by the 

binding of endogenous molecules (mannose binding lecithin) to antigens (mannose) on the surface of 

pathogens. Crucially, this does not require the production of antibodies by the adaptive immune system. 

One interpretation of this pathway is in signalling the likelihood of infection. The presence of mannose 

indicates a high likelihood, while its absence indicates a low likelihood. 

 

16 Antibodies are divided into several classes depending upon their structure. These are (in order of prevalence) IgG, IgA, 

IgM, IgD, and IgE (where Ig means ‘immunoglobulin’). An individual antibody is made up of two structural components 

referred to as Fab (fragment antibody binding) and Fc (fragment crystallisable) regions. 
17 C1q is broken down by C1-inhibitor. Absence of the latter underwrites the excessive activation of the complement pathway 

that characterises hereditary angioedema (Busse & Christiansen, 2020) 



 136 

These three pathways converge upon the C3 convertase enzyme, which breaks C3 down into C3a 

and C3b. C3a sets in motion events that facilitate immune cells entering the tissues from the blood. It 

does so through triggering degranulation of mast cells in the tissues18. These release histamine that acts 

to increase vascular permeability (Ashina et al., 2015). C3b inhibits further action of C3 convertase, 

while additionally triggering the breakdown of C5 into C5a and C5b. C5a acts as a chemoattractant for 

circulating neutrophils, which pass through the permeable vasculature into the tissues. C5b joins forces 

with C6, C7, C8, and C9 to form the membrane attack complex, which is used to punch holes in the 

surface of the pathogen. The neutrophils (and tissue macrophages) engulf the pathogen through a process 

known as phagocytosis and produce reactive oxygen species to kill these pathogens19. Tissue 

macrophages may respond to pathogens independently of the complement pathway as they (like C1q) 

can sense the presence of Fc regions on IgG and IgM antibodies (Chaplin, 2010; Murphy et al., 2012). 

Foreshadowing some of Section 3, this could be interpreted as an example of an action-perception cycle, 

where increased C3 convertase activity corresponds to a primitive kind of percept, whose (active) 

consequences are the neutralisation of pathogen. 

 

Adaptive immunity 

There are several points at which the adaptive arm of the immune system tunes this response. It does so 

by producing antibodies (also known as ‘immunoglobulins’), which are Y-shaped proteins produced by 

plasma cells. Each tip of the ‘Y’ has a binding site with a unique structure, allowing each antibody to 

bind with high specificity to ‘antigens’, which are unique molecules on the surface of (or released by) 

cells and microorganisms. The specificity of this binding acts as a ‘lock-and-key’ mechanism that can 

 

18 Mast cells may also be triggered directly by the presence of a pathogen, via the IgE antibodies on their surfaces. 
19 The killing of pathogens inside neutrophils (and macrophages) depends upon the NADPH oxidase enzyme. Congenital 

absence of this leads to an immunodeficiency called Chronic Granulomatous Disease ((Arnold & Heimall, 2017) Granulomas 

are groups of phagocytic cells, normally macrophages, that have engulfed a pathogen but are unable to kill it. These also occur 

in conditions like tuberculosis (where the mycobacterium is resistant to oxidative killing) or sarcoidosis. 
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identify antigens, and mark known pathogenic or unknown antigens for destruction by macrophages. 

Once pathogens are coated with antibody, all the events outlined in the previous subsection are initiated. 

The presence of specific antibodies favour increased classical complement pathway activation (perhaps 

acting as an ‘empirical’ prior for this system20), increased degranulation of mast cells, and increased 

phagocytosis by tissue macrophages in response to specific antigens (Murphy et al., 2012).  

A good place to start in reviewing this system is the Major Histocompatibility Complex (MHC), 

also known in humans as the Human Leukocyte Antigen (HLA)21. MHC mostly comes in two flavours 

(I and II). MHC-I is found on the surface of almost all somatic cells (Murphy et al., 2012). Once a cell 

has become infected by an intracellular pathogen, it uses the MHC-I to display antigens from that 

pathogen on its surface. MHC-II is used similarly but is only present on the surface of specialised immune 

cells that engulf and phagocytose pathogens (Chaplin, 2010). These include macrophages, B-cells, and 

dendritic cells – collectively known as antigen presenting cells (APCs). 

The MHC-I pathway allows an arm of the adaptive immune system to interact directly with 

pathogens, without needing to go through the innate immune system. These mechanisms occur in 

peripheral tissues and circulation. T-cells with surface CD8 receptors bind to the MHC-I and, if the 

antigen presented by this molecule matches the specificity of that cell’s T-cell receptor (TCR), the CD8+ 

T-cell releases perforin, granulysin and granzyme, which trigger the death of the infected cell. The MHC-

II system sits a level above the innate and MHC-I systems (Zhang et al., 2014). Once the innate immune 

system has enabled various APCs to engulf pathogens and display their antigens via MHC-II, these cells 

travel to lymph nodes where they are met by CD4+ T-cells. Like CD8+ cells, these have antigen-specific 

 

20 Empirical priors are Bayesian beliefs derived from higher levels of a hierarchical model. For example, a group mean may 

provide an empirical prior over an individual’s response to some treatment in classical (mixed effects) analyses of 

experimental data. 
21 Given their central role in functioning of the adaptive immune system, it is unsurprising that certain HLA subtypes are 

associated with clusters of diseases with autoimmune features. Perhaps the most famous association is that of HLA-B27 with 

a group of disorders that includes psoriasis, ankylosing spondylitis, inflammatory bowel diseases, and reactive arthritis 

(Bowness, 2015).  
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TCRs that bind to MHC-antigen complexes but are selective for MHC-II. On binding, CD4+ T-cells 

differentiate into Th1 or Th2 cells, depending upon whether they are dealing with an intracellular or 

extracellular pathogen, respectively.  

Th1 cells release interferon-γ (IFNγ) that triggers macrophages to destroy any pathogens they 

have engulfed. In addition, they induce antibody production by B-cells. Th2-cells recruit Eosinophils22 

through interleukin (IL) 5 secretion, and promote isotope switching in B-cells through IL-4 signalling. 

Heuristically, the Th1 effect over B-cells is to increase specific antibody production. The Th2 effect is 

to broaden the distribution of antibody specificities (Murphy et al., 2012). 

The process of B-cell activation by a Th1-cell occurs in lymphoid tissue. B-cells in the periphery 

bind to a pathogen via their B-cell receptor (a membrane bound antibody) and endocytose it. As outlined 

above, they present antigens to Th1-cells via MHC-II. On binding of the TCR to MHC-II, the T-cell 

presents a CD40L molecule that binds to the B-cell CD40 surface molecule (Elgueta et al., 2009). This 

stimulates the B-cell to differentiate into either a plasma cell (secreting antibodies) or a memory cell (a 

simple form of immunological plasticity). Although T-cell independent B-cell activation is a well-

recognised phenomenon, this is outside the scope of this chapter. The presence of antibodies towards a 

specific antigen effectively orients the complement system (via the classical pathway) to respond with 

greater amplitude to that antigen (Chaplin, 2010). An analogy in cognitive sciences might be attentional 

orientation towards a visual stimulus, directed by descending messages from higher to lower cortical 

regions (Büchel et al., 1998; Buschman & Miller, 2007). For more detailed overviews of the immune 

response, please see Marshall et al. (2018) and Murphy et al. (2012) 

 

 

22 Immune cells specialising in defence against multicellular parasites and implicated in various hypersensitivities  
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Translation 

Although the primary focus of the active inference literature so far has been the human nervous system, 

the immune system is a similarly complex dynamic system that may be explained using the same 

mechanics (Parr et al., 2020). In this section, I first present an example of translation of the immune 

response, as described above, into the language of active inference. I then present an example of what 

this may lend to the study of immunology.  

  

The Markov Blanket 

As mentioned above, the first step in identifying the inference problem a system is solving is defining 

the limits of the system (i.e., the Markov blanket) and its active and sensory components. In the 

(simplified) immune response described here, the innate immune system ‘senses’ extracellular pathogens 

through Fc-regions of antibody (IgG or IgM) bound to specific antigens, binding of IgE antibodies on 

the surface of mast cells to pathogenic antigens, or through detection of cell-surface molecules such as 

mannose by mannose-Binding lecithin. Intracellular pathogens are sensed via binding of T-cell receptors 

to cell surface Major Histocompatibility Complex (MHC). For most cells, this is MHC I. For antigen 

presenting cells (including macrophages, dendritic cells, and B-cells), MHC II may also be used. This 

suggests at least three sorts of sensory influences: 

1. mannose-binding lecithin 

2. Specific antigens 

3. MHC-I 

These sensory data are generated by external states comprising the specific pathogen, the presence of 

mannose on the surface of the pathogen, and whether a pathogen is intracellular or extracellular. There 

are many other molecules and sensors that play a role in detection of pathogens, but I focus upon the 

above three. 
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Active influences on these external states include release of molecules by CD8+ T-cells that lead 

to death of cells with intracellular pathogens. This leads to a decrease in antigen-presenting MHC-I 

sensory influences. In addition, the membrane attack complex from the complement pathway acts to kill 

pathogens in a relatively non-specific way, depleting both specific antigens and local concentrations of 

mannose-binding lecithin. Finally, extracellular pathogens are depleted by the action of macrophages 

and neutrophils that engulf these cells.  

The three active influences I will focus upon are: 

1. CD8+ T-cell molecules (perforin, etc.) 

2. Membrane attack complex 

3. Macrophages and neutrophils (phagocytosis) 

The interactions between the three sensory and active influences I have identified may be thought of as 

analogous to spinal and brainstem reflexes of the sort found in the proprioceptive branches of the nervous 

system. Changes in the sensory aspect induce changes in the active part that restores sensations to some 

set-point. In the nervous system, the set-point depends upon descending signals from the brain that may 

be thought of as predictions (Rick A. Adams et al., 2013) of the proprioceptive consequences of the 

desired (i.e., anticipated) movement. In the field of motor control, this is known as the equilibrium point 

hypothesis (Feldman & Levin, 2009).  

 

The generative model 

Once the active and sensory states of the system have been defined, the challenge is to find the generative 

model that accounts for the dynamics of internal and active states23. The model should specify which 

 

23 Technically, the internal and active states constitute autonomous states, in the sense that they do not depend upon external 

states. Crucially, one can always express their dynamics as a gradient flow on variational free energy. Heuristically, these 

gradients often have the form of prediction errors; namely, the difference between a sensory state and the prediction of that 

sensory state based upon the internal states. In other words, both internal and active states trying to minimise prediction errors; 
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explanatory variables (external states) conspire to generate the sensory states. As shown in Figure 2, the 

entirety of the second section of this manuscript can effectively be condensed into a single model and its 

inversion. Note that Markov blanket is an informational separation from the environment – it does not 

necessarily correspond to physically materialised boundaries (Kirchhoff et al., 2018; Palacios et al., 

2020). The Markov blanket shown below is not comprised of a cell or tissue membrane but elements of 

the immune system (e.g., perforin molecules, macrophagic cells) that mediate the interactions with the 

pathogen. From this perspective, everything shown above the Markov blanket in Figure 2 is the set of 

external states that generate the sensory states shown within the blanket. The dynamics of internal states 

(depicted below the blanket) can then be interpreted as drawing inferences about the external states, 

which then influence the active states in the Markov blanket. 

 

 

either by changing the internal milieu to adapt to sensory fluctuations or by acting upon the external milieu to realise predicted 

sensory states. 
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Figure 2. Immunoceptive inference. This schematic shows a simplified account of an immune response to foreign pathogens. 

It is arranged in the style of graphics used in computational neuroscience – and machine learning – to show a data-generating 

process comprising external states (here, the identity of the pathogen, and the intracellular and extracellular pathogen 

concentrations), the sensory data they generate (mannose, specific antigens, and MHC-I antigen presentation), and the 

message passing in the internal system – whose role is to draw inferences about external states and select actions that correct 

deviations from a desired state. The dashed blue lines emphasise the influence the internal states exert on external states (via 

active states). Note the resemblance between these and the simple reflex loops associated with movement generation in the 

spinal cord. The implication of this graphic is that one think of the internal states that influence these responses as like the 

neurons of the central nervous system, forming inferences about the outside world through message passing among different 

populations. One perspective on this is that the concentration of CD8+ T-cells represents an implicit belief about the number 

of infected cells, the concentration of macrophages (and activated C3-convertase) a belief about the number of extracellular 

pathogens, and the CD4+ T-cell to B-cell to plasma cell loop an example of message passing to identify the pathogen identity 

to direct ‘attention’ towards the appropriate antigens. 
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Sensory attenuation in the immune system 

If indeed active inference is a universal framework across self-organising systems, it stands to reason 

that key aspects of brain-based sentience explained by active inference may possess analogues in the 

immune system. This was hinted at in Section 2 but unpack this in greater depth here. For example, the 

phenomenon of sensory attenuation (Brown et al., 2013) has drawn upon the notion, under active 

inference, that a system cannot act without temporarily attenuating the precision (gain) of the 

consequences of its own actions. This is because attenuating sensory precision effectively allows the 

system to ‘ignore’ the prevalent sensory evidence that “I am not acting”, thereby permitting a posterior 

commitment to the prior prediction, “I am acting”. These predictions are fulfilled by motor, autonomic 

or possibly immunological reflexes to realise the predicted sensory state of affairs. It is therefore action 

that, ultimately, updates the internal model, through an exchange with the external world (K. Friston & 

C. Frith, 2015).  

If sensory attenuation possesses an immunological analogue, there may be a great deal to be 

learned by translating what has already been well-studied in the domain of neuroscience to the domain 

of immunology. If this is not the case, there is another, equally interesting avenue to be explored, in the 

form of the question, “What is different about the nervous system that makes its actions dependent upon 

sensory attenuation, when the actions of other physiological systems are not?” In addition, this kind of 

translation may serve as a sanity check of sorts for claims made under the active inference framework.  

To exemplify this, let me propose a plausible immune analogue. There will generally be an 

immune response triggered by the proliferation of allogenic cells and tissue damage in the body. 

However, there are some notable instances, such as pregnancy, when the body must tolerate the 

proliferation of allogenic cells and some degree of tissue damage, up to a certain threshold – at which 

labour is initiated. In order to allow a foetus to grow, it could be said that there must be an attenuation of 

the ‘sensory’ consequences (e.g., MHC-I presentation, which initiates an immune response) of self-
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generated proliferation. Indeed, foetal tissue is one of the few somatic tissues whose cells exhibit 

significantly reduced MHC-I presentation (Gaunt & Ramin, 2001). Given the model above, it would be 

possible to start to explore this possibility by, for example, reducing MHC-I presentation as a sensory 

state. I intend to expand on this angle in future work.  

The usefulness of drawing such an analogy is in effectively ‘stealing’ dynamic characteristics of 

Markovian systems from previous work. We are still in very early stages of understanding the profound 

immunological consequences of pregnancy. Sensory attenuation has been relatively well studied in the 

nervous system, and there may be significant insights to borrow from this literature. For example, 

previous simulations and experimental work (Limanowski et al., 2018; Parees et al., 2014) have shown 

that a failure of sensory attenuation can lead to pathological alterations in self-generated actions – for 

example, the deficits in motor control seen in Parkinson’s disease. In the immune analogue of pregnancy, 

a failure of ‘sensory’ attenuation could result in miscarriage or pre-eclampsia (Laresgoiti-Servitje et al., 

2010). This could again be explored using a generative model (and its inversion) similar to that in Figure 

1 by, for example, adjusting parameters of the prior or likelihood such that the concentration of Th1 cells 

(which produce pro-inflammatory molecules)24 declines (or fails to do so). One manipulation that might 

achieve this is to attenuate the precision of the (likelihood) mapping from pathogens to MHC-I antigen 

presentation. Under the belief that the latter is not necessarily a consequence of the former (a valid belief 

in the context of pregnancy), one would expect a smaller update in beliefs about pathogens on observing 

MHC-I antigen presentation. If Th1 cell concentration embodies some aspect of this belief, this implies 

a smaller increase in this population of cells in response to MHCI.  

 

24 The ratio between the two types of T-helper cells (Th1 and Th2) is altered during pregnancy. A skew towards Th2 cells 

(which produce anti-inflammatory molecules) has been implicated in maintenance of healthy pregnancies, while a skew 

towards Th1 has been associated with recurrent miscarriages (Makhseed et al., 2001). 
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Unification 

Neuroendocrine regulation of immunity 

The above outlines insights that may be gained by applying theoretical neurobiological methods to the 

functioning of the innate and adaptive immune systems. However, my primary interest is in the interface 

between these systems and the brain. Elements of this interface are direct, but much of the interaction is 

via the hypothalamic-pituitary-adrenal (HPA) axis. Briefly, the hypothalamus synthesises corticotrophin-

releasing hormone (CRH) that stimulates the pituitary gland to release adrenocorticotrophic hormone 

(ACTH). This acts upon the adrenal gland to stimulate cortisol release. In addition to suppressing further 

ACTH and CRH release, cortisol suppresses activity of Th1-cells and macrophages. In fact, 

corticosteroids are frequently used in clinical practice to suppress inflammation (Cole & Schumacher, 

2005; Gegel et al., 2019). In turn IL-1, IL-6, and tumour necrosis factor (TNF) released by these cells 

normally increase hypothalamic release of CRH. Interestingly, CRH receptors are also found in the 

hippocampus, amygdala, and locus coeruleus (Herman et al., 2016).  

In addition to the HPA axis, the hypothalamus directs immune responses through the autonomic 

nervous system. The sympathetic branch of this innervates lymph nodes directly (Kenney & Ganta, 

2014). The hypothalamus also directly orchestrates the fever response to infection. As such, the 

hypothalamus may be seen as an interface between the immune system and the central nervous system. 

The importance of this role has been demonstrated in empirical studies (Alaniz et al., 1999; Barrios-

Payán et al., 2016) and has been central to developments in theoretical immunology (Rosas-Ballina & 

Tracey, 2009; Tracey, 2009). This is important because, if there are physiological interfaces between the 

immune system and the brain, then these systems can be understood as jointly optimising a shared 

generative model (i.e., a Markov blanket can be drawn around both of them).  Figure 3 depicts the HPA 

axis as a (simplified) example of the message passing that might emerge from inversion of a shared 

generative model between the immune system and the brain. 
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Neuroimmunological diaschisis 

Typically, the interaction between the brain and the immune system is studied by treating the two as 

separate systems and asking how the immune system might attack the nervous system. The advantage of 

framing the nervous and immune systems as a single system – that solves a single generative model – is 

that it offers the opportunity to think about a neuroimmunological ‘diaschisis’. A diaschisis (literally, 

‘shocked throughout’) is a functional change in distant parts of a system following a localised lesion 

(Carrera & Tononi, 2014; Finger et al., 2004; Fornito et al., 2015; Price et al., 2001). The classical 

example of this is hypometabolism of the contralateral cerebellum following a motor-cortical lesion (von 

Monakow, 1914).  

As an example of such a shared generative model, Figure 3 presents an interpretation of the 

neuroendocrine interface with the immune system in terms of a predictive coding-style message passing 

architecture. This is the sort of message passing that arises from writing down a specific kind of 

generative model. The implicit model in question here is inspired by models used to account for precision 

estimation (Kanai et al., 2015). Intuitively, one can think of this as prediction of some observable (from 

the perspective of the immune system) characteristic of a pathogenic population (e.g., its concentration), 

represented by the variable y. This prediction has two parts: (i) the expected concentration of that 

population (given by μx) and (ii) the variance expected around that expectation (given by exp(μv)). The 

implication is that the HPA axis and its relationship with the immune system can be accounted for by 

assuming a generative model in which Th1-lymphocytes predict the concentration of some pathogen, 

and cortisol represents a prediction about the uncertainty of that prediction. The negative feedback loops, 

characteristic of these systems, then emerge from the message passing used to update these Bayesian 

beliefs.  

The idea here is that abnormal neural computation could arise from an immune lesion, because 

the (otherwise healthy) signalling from immune cells to neural tissue is altered. Similarly, psychiatric or 
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neurological insults might lead to abnormal neural regulation of immunity. We can see how this could 

work in Figure 3, noting the presence of CRH receptors in multiple brain regions. A polymorphism in a 

gene encoding a receptor in the immune system (e.g., the Th1 IL-12 receptor) might lead to changes in 

the release of cytokines by macrophages, changing the values of the variables represented in the 

hypothalamus. This changes the information available to other parts of the brain that respond to CRH. 

Note that this does not involve the immune system attacking the nervous system – the latter may respond 

optimally based upon the information available to it.  
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Figure 3. Neuroendocrine regulation of immunity via the Hypothalamic-Pituitary-Adrenal axis. This graphic shows the 

predicted pathogen concentration signalled by IFNγ derived from Th1-lymphocytes. This is subtracted from the complement 

pathway activation (playing the role of sensory data) detected by macrophages to give a prediction error (εy) represented by 

the IL-12 levels released by macrophages. Intuitively, the presence of unanticipated pathogens prompts an increase in 

macrophage activation. This prediction error may be resolved in two ways. The first is to decrease the amount of pathogen 

through phagocytosis and oxidative killing. The second is to increase the Th1 response (μx) to update predictions (IFNγ) so 

that they are consistent with the presence of pathogen. The degree to which the Th1 response is increased depends upon two 

things. The first is prior beliefs about the amount of pathogen expected. Deviation from this prior is indicated by the prediction 

error (εx), which may be intrinsic to T-cell populations. The second is the precision or inverse variance associated with the 

predicted pathogen concentration. If the variance is assumed to be very high, the effect of the prediction error (εy) on the 

expectation (μx) is attenuated. Here, I have assumed the expected variance is a function of some variable v whose expectation 

(μv) is signalled by cortisol from the adrenal cortex. This means that, when cortisol is high, the Th1 response to macrophage-

derived cytokines is more limited. To update beliefs about variance, deviations from a prior value can be penalised as before 

(εv), but the prediction error from y has to be handled more carefully. As variance is a second order statistic (the expectation 

of a squared quantity), the prediction error needs to be squared (as shown in the hypothalamus) and compared to the current 

estimate of the variance. These (respectively) account for the cytokines released by macrophages and detected by the 

hypothalamus, and for the negative feedback from the adrenal cortex to the anterior pituitary – shown as the point at which 

the square prediction error and variance are compared (with ξv representing their ratio).  
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A diaschisis of vigilance? 

Learning to appropriately infer threat is an essential and highly conserved facet of biological systems 

(Bach et al., 2018; Ojala & Bach, 2020). It is of great importance that these inferences be accurate25. Too 

much avoidance (or hypersensitivity) excessively and unnecessarily limits the interactions between the 

system and its environment, effectively starving it of (epistemic) resources; too little avoidance 

(hyposensitivity, or naïveté) can unnecessarily expose the system to risk. The brain and the immune 

system can certainly be seen as engaged in avoiding threats to their own integrity and that of the organism 

as a whole. ‘Hypersensitivity’ is a usefully intuitive term here, as it generalises well. Disproportionate 

and misdirected activity of the immune system is often a result of disorders collectively called 

hypersensitivities. These include allergies and autoimmune disorders, when the system mistakenly 

perceives its own tissues as threatening. Such conditions may result from, for example, variation of genes 

related to immunity, or environmental sensitisation. A number of central symptoms of psychiatric 

disorders can also be understood as hypersensitivities – such as social threat hypersensitivity in 

borderline personality disorder and depression (Badcock et al., 2017; Bertsch et al., 2013; Slavich & 

Irwin, 2014) or sensory hypersensitivities in autism (Takarae et al., 2016). There are several well-

established links between hypersensitivities and psychiatric disorders; for example, systemic lupus 

erythematosus (SLE) and depression (Moustafa et al., 2020); thyroiditis and anxiety (Siegmann et al., 

2018); SLE, psoriasis, rheumatoid arthritis and schizophrenia (Chen et al., 2019; Tiosano et al., 2017; 

Ungprasert et al., 2019). Indeed, some accounts even suggest that schizophrenia is an autoimmune 

disorder (Adams et al., 2012; Knight et al., 1992). 

 

25 Under the free energy principle, a fundamental drive for me, as a self-organising system, is to maximise the accuracy of my 

predictions about the causes of my sensations, with models of the world that are as minimally complex as possible – in order 

to maximise evidence for my own existence. The human brain and immune system are two of the most complex systems in 

biology, which speaks to the evolutionary imperative for them to be impeccably accurate in their predictions.   
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Through the lens of neuroimmunological diaschisis, an interesting question may be raised here. 

Under the hierarchical perspective of active inference, the brain and the immune system are internal 

states of the same Markov blanket and necessarily influence each other (Kirchhoff et al., 2018; Palacios 

et al., 2020). If one process (e.g., the immune response) within a larger Markov blanket is faced with a 

threat to its integrity, are other processes (e.g., psychological aversion) within that blanket primed 

towards threat avoidance as a result? If this is the case, an important story could be told about how and 

why immune insults – especially early in life or in utero – are linked to the manifestation of psychiatric 

disorders even decades later (Guma et al., 2019), and why people with certain psychiatric disorders are 

more likely to have allergies, autoimmune conditions, and to suffer from other hypersensitivities (Benros 

et al., 2014; Benros et al., 2011; Benros et al., 2013). Computationally, for this to be true, there must be 

a possibility of generalisation of prior beliefs about threat (and their precisions), both between concepts 

and across physiological systems within a Markov blanket. There is evidence from theoretical and 

behavioural work demonstrating the generalisation of prior beliefs and precisions across conditions 

(Fernandes et al., 2014; Kawashima & Kusnecov, 2002). I plan to expand on this notion in future work 

by considering whether there is an optimum degree of generalisation of threat avoidance between 

physiological systems. 

A well-established model of threat learning in mammals is Pavlovian fear conditioning (Bach et 

al., 2018; Ojala & Bach, 2020), in which a neutral (‘conditioned’) stimulus is paired with a threatening 

(‘unconditioned’) stimulus such that an association is developed between the two. The result is that the 

neutral stimulus eventually engenders an aversive response even without the presence of the 

unconditioned stimulus. Experiments that lesion threat memory are challenging to conduct in human 

populations. In the next section, to illustrate the benefits of taking a theoretical approach, I outline an 

example of an in silico experiment that offers the opportunity to explore the effects of lesioning threat 

memory. 
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Simulation 

Wet lab-based work that usually advances immunology is often expensive and time-consuming and 

clinical studies of immune and neurological disorders are usually faced with ethical restrictions. A major 

advantage of this kind of theoretical approach is in providing a proof principle that validates the various 

costs of pursuing a new hypothesis empirically. Translated into a generative model, an experiment can 

be simulated in silico with the requisite flexibility to define specific experimental and environmental 

parameters, which generate data. Or, trained on existing empirical data, it is possible to generate 

sophisticated predictions about outcomes given new data. For example, in recent work, we have used a 

similar modelling approach to investigate susceptibility to symptoms of, and likelihood of testing positive 

for, Covid-19 (Parr et al., 2020). 

While this (conceptual) chapter is not the place for introducing new mathematical models or 

simulations, it is useful to think about how one would construct a generative model from which 

simulations could be developed. A challenge often faced by computational biology is the combinatorial 

complexity that cannot but be simplified for the purposes of simulation: biology is as messy as physics 

is neat. The advantage of the active inference approach is that if one can define the problem the system 

is solving, the Bayes optimal solution to this problem automatically tells us what the relevant (internal 

state) dynamics are. This lets us take a more focused, teleological and ‘top-down’ approach to 

understanding the neuroimmunological system, as opposed to trying to build up a model by writing down 

the dynamics of each component of the system and hoping for an emergent pattern. 

In neurobiology, we typically start by selecting an experimental paradigm that involves 

presenting participants with some problem (sensory discrimination, decision-making, etc) that we know 

the brain can solve. To be able to solve such problems implies the brain’s model of the world accurately 

accounts for how we (as experimenters) have generated the stimuli that were presented to the participants. 

Formalising this and computing the optimal solution tells us about the structure of that solution. This 
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typically involves a network of beliefs, with messages passed along the links of that network like action 

potentials along axons in a brain. This means there is no need to attempt to model the entire brain, and 

instead can focus upon the minimal networks required to explain the phenomena of interest. 

Here, I consider the same construct, applied to networks that include message passing among 

elements of the immune system. The key challenge here is to identify the right sort of experimental 

paradigm, and to think about how that might be represented as a generative model. I illustrate the 

principles of this in relation to an existing experiment that demonstrates a neuroimmunological 

diaschisis. This is based upon a taste-aversion classical (Pavlovian) conditioning paradigm (Ader & 

Cohen, 1975; Ader & Cohen, 1991), in which rats were first injected with an immunosuppressant called 

cyclophosphamide (the unconditioned stimulus), or a placebo, and simultaneously fed either a saccharin-

flavoured drinking solution (the conditioned stimulus) or plain water. This meant there were three groups. 

Group 1 were given saccharin and cyclophosphamide, group 2 were given plain water and 

cyclophosphamide, and group 3 were given plain water and a placebo. They were then injected with 

sheep red blood cells (i.e., foreign material that would typically induce an immune response). Three days 

later, some of the mice were re-exposed to saccharin. Ader and Cohen (1991) found that conditioned 

(cyclophosphamide-treated) rats showed a heightened aversion to saccharin (intuitively, this is similar to 

the human experience of an acquired aversion to foods consumed just before a period of illness); as well 

as, interestingly, a reduced immune response to sheep blood cells compared to placebo-treated rats and 

treated rats not re-exposed to saccharin.  

Figure 3 illustrates the way in which this experimental design could be represented as a generative 

model. In addition, it shows the message passing scheme which could invert a model of this sort. The 

key features are the division into two streams (left and right) that deal with inferences about whether or 

not ‘I am infected’, and about the (gustatory) context. The former relies upon the (immunoceptive) 

detection of antigens, while the latter relies upon the presence or absence of saccharin (involving the 



 153 

central nervous system). Despite this division between the two streams, this scheme models neuronal 

modulation of gain (precision) of the immune response. Classical conditioning can thus be understood 

as the process of learning about the temporal and/or causal relationships between external and internal 

stimuli. The value of formulating a model in this way is threefold. First, as alluded to above, it lets us 

select the minimal set of nodes in a message passing scheme that is needed in order to explain some facet 

of behaviour in an otherwise very complex system. Second, it gives us some intuition as to what the 

neuroimmunological system is ‘trying to do’, in the sense that the dynamics are now seen as solving an 

inference problem. Finally, it is consistent with the kinds of formulation used in computational 

neuroscience, enabling development of simulations for synthetic experimentation. 
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Figure 3. Classical conditioning of the immune system. This figure is a graphical representation of the classic taste aversion 

experiment by Ader and Cohen (1991). Here, the unfilled circles at the top represent the hidden states of the generative 

model (the saccharine-context for the nervous system and the presence of infection for the immune system). The filled blue 

circles represent sensory states or ‘observations’ (e.g., MHC-I presentation of sheep red blood cell antigens). The ε and μ 

symbols represent prediction errors and expectations (of a categorical sort) of the nervous (right) and immune (left) systems, 

which encode probabilistic beliefs (Q) about the hidden states. Cyclophosphamide treatment (unconditioned stimulus) 

suppresses the immune response, which precludes an ‘infected’ inference in the presence of antigen. This could be interpreted 

as attenuating the precision with which antigens are predicted (allowing for some probability of detection in the non-infected 

condition, and for some probability of non-detection in the infected condition). If this happens in the presence of saccharin 

only, this attenuated precision may be learned in a context specific way. Eventually, the presence of saccharin (conditioned 

stimulus), leading to an inference of ‘context 1’ implies low precision in the immune modality, and an attenuated immune 

response even in the presence of antigen.  
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Conclusions 

In this chapter, I have introduced ‘immunoceptive inference’: active inference from the perspective of 

the immune system. This is in a similar vein to the notion of ‘interoceptive inference’, which frames 

emotions as emerging from—or perhaps furnishing—predictions about the causes of visceral sensations. 

In brief, interoceptive inference claims the brain is continuously updating predictions about, and acting 

upon, the body it inhabits (Seth, 2013). In my formulation, the body itself (in this case, the immune 

system) is seen as furnishing predictions of—and acting upon—sensory input, informing ‘beliefs’ about 

whether an antigen belongs to the category of ‘self’ or ‘nonself’.  

In so doing, I have highlighted three practical contributions (translation, unification and 

simulation) of the active inference framework to answering and – crucially – redefining the question, 

“Why are psychiatric disorders and immune responses intertwined?” I suggested that it is inevitable that 

two systems within the same Markov blanket influence each other: the brain and the body together make 

predictions about exteroceptive, interoceptive, and immunoceptive input. To this end, I have proposed 

an example of a common generative model that the brain and immune system jointly optimise, treating 

molecular components of the immune system as sensory or active states and the resulting cellular 

response as message passing at lower levels of a ‘sensory’ hierarchy that interfaces with the brain. This 

scheme expresses the classical conditioning of the immune system in terms of inference at an 

immunological level, that may alter the message passing at a psychological level (or vice versa) through 

an optimal interface between the two systems.  

This surrender of mind-body and brain-body dualisms may be of particular importance to 

psychiatric practice, where it encourages a holistic treatment of patients. For example, with an embodied 

perspective on the mind, a patient presenting with psychosis may be treated with reference to the 

mechanisms leading to this syndromic endpoint, whether that be schizophrenia (treated with 

antipsychotics), or an alternative (e.g., endocrine) diagnosis such as Cushing’s syndrome, which can be 
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effectively treated by normalising cortisol levels (Tang et al., 2013; Wu et al., 2016) – or indeed 

autoimmune encephalitis (Symmonds et al., 2018). I also advance the possibility of drawing 

immunological analogues of concepts defined under active inference for neurological phenomena, such 

as sensory attenuation. Finally, I introduce the novel concept of neuroimmunological diaschisis and the 

possibility of a diaschisis of threat-avoidance that may contribute to the overlap between psychiatric 

disorders and immunological hypersensitivities. This kind of overlap leads to clear empirical predictions; 

for example, an association between psychopathology and (measurable) immunological responses, much 

in the same way that clinical tools such as the dexamethasone suppression test leverages the link between 

neuroendocrine function and stress or depression (Naughton et al., 2014). 
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Discussion 

In this thesis, I have examined the dysconnection hypothesis of schizophrenia and attempted to find a 

place for the immune system in the implicit synaptopathy. In doing so, I have discovered genes (FAM89A 

and ENGASE) and pathways (‘Abnormal Neurotransmitter Level’), whose expression influences the 

mismatch negativity (MMN). These discoveries offer a first step towards understanding what is 

happening in the brain at a molecular level when a prediction error is being minimised. I have also found 

that human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells (NPCs) from people 

with schizophrenia show an attenuated transcriptional response to the pro-inflammatory cytokines IFNγ 

and IL-1β. This finding may speak to a deficit in activating compensatory mechanisms in the face of an 

immune challenge. Both the empirical findings implicate the modulation of synaptic gain control. This 

is a key determinant of the augmentation and attenuation of message passing in neuronal circuits: 

especially when formulated in terms of predictive coding and the implicit role of precision weighted 

prediction errors in (Bayesian) belief updating. In the final chapter, I proposed that the brain and the 

immune system together predict sensory information (such as infection), exemplifying a common 

generative model that the brain and immune system jointly optimise. An interesting fallout of this 

formulation is the possibility that there is ‘sensory’ attenuation in the immune system, perhaps 

exemplified by the suppression of the immune response required to maintain a healthy pregnancy.  

The overarching aim of this work was to find connections between different aetiological accounts 

of psychosis; and indeed, a number of interesting connections have emerged. One aspect that stood out 

was the repeated emergence of genes and gene sets involved in regulating synaptic efficacy – both in 

association with the MMN and in the responses to cytokine exposure. As might be expected, the MMN 

(and, implicitly, the encoding of prediction errors) is particularly dependent on genes that influence 

neurotransmitter levels in synaptic clefts; as well as ENGASE, which may influence synaptic 

communication via post-transcriptional modifications of potassium channels. This serves to support the 
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notion that (the precision of) prediction errors are encoded in the brain at a molecular level by the 

modulation of synaptic gain control. The fact that MMN amplitude is so consistently attenuated in 

psychosis (including in my own sample) – now with some formal grounds for its classification as an 

endophenotype – further suggests that there is a dysregulation of an underlying neuromodulation in 

people with psychosis, as proposed by the dysconnection hypothesis.  

In Chapter 2, in amongst the immune response-related pathways that were most differentially 

expressed in response to cytokine exposure, were three gene pathways related to synaptic activity: ‘post-

synaptic density’ (which includes genes encoding NMDA-Rs, such as GRIN1, and PSD-95, which is 

involved in trafficking NMDA-Rs), as well as ‘presynapse’ and ‘presynaptic activity’, both of which 

include genes involved in vesicle formation. This indicates that the effects of cytokine exposure are 

mediated both by neurons generating messages as well as neurons that are receiving them. Most 

interestingly, these were among the top five (of 895) gene pathways that showed an attenuated response 

to treatment in schizophrenia lines compared to control lines. NPCs do not have synapses, so there are 

two plausible interpretations of this result. Either these genes have functions beyond synaptic regulation; 

or, as suggested by (Warre-Cornish et al., 2020), these early inflammatory insults persistently dysregulate 

these genes such that the trajectories of synapse formation and elimination are altered – and even more 

so in cells from donors genetically predisposed to schizophrenia. In other words, the latter would suggest 

that the addition of an inflammatory insult exacerbates the development of synaptic dysfunction. In part, 

this gene-environment interaction may be explained by the difference seen in expression of the IFNγ 

receptor gene (IFNGR2) in schizophrenia compared to control lines, which may single out this gene as a 

target for further study of allostatic load in schizophrenia. Additionally, the top two genes differentially 

expressed in schizophrenia lines compared to control lines in response to IFNγ (NDUFA2 and NDUFS3) 

were mitochondrial complex I genes. This suggests that schizophrenia donor cells may be driven to 
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conserve energy in response to an infection, while healthy donor cells are able to expend more energy to 

restore health (Mueller et al., 2021). 

The trend seen in the neurodevelopmental enrichment analyses of MMN-associated genes may 

indicate that the neuronal structures that are necessary for short-term plasticity (and thought to underwrite 

belief updating) are largely established during prenatal development. Alternatively, it may suggest that 

processes governing such plasticity become increasingly deprioritised into adulthood. It is also 

interesting to note that FAM89A, most significantly positively associated with MMN amplitude, is 

particularly expressed in the placenta and foetal brain (as well as being implicated in the immune 

response). What is clear from Chapter 2 is that, at this very early stage of development, there is already 

a difference in the way NPCs from people with schizophrenia respond to immune challenges. This is 

interesting, because it suggests that even at the earliest stages of embryonic neurodevelopment, the 

coping strategies used by these NPCs are suboptimal. If such early insults are influencing cell fate or 

synapse formation, there may be repercussions for the emergence of cortical hierarchies. Indeed, recent 

work has shown that hierarchical control systems collapse from the top down (i.e., ‘higher’ levels are 

sacrificed, and temporal depth is lost) under stress and that this collapse favours short-term coping 

strategies26 (Goekoop & de Kleijn, 2021).  

It would be interesting to further examine whether this is reflected in the development of 

hierarchical cortical architecture in the presence of acutely challenging environmental (e.g., immune) 

influences at the earliest stages of neurodevelopment. For example, Warre-Cornish et al. (2020) showed 

a priming effect of cytokine exposure at the NPC stage that altered the transcriptional response further 

down the line when they had formed neurons (with synapses). It has also been shown that the gene 

expression patterns of individual NPCs determine their differentiation and migration to specific cortical 

 

26 In this Bayesian control systems account, stress is synonymous with prediction error. 
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laminae – and ultimately, therefore, the formation of cortical hierarchies (Nowakowski et al., 2017). If 

there is an impact of immune priming on the differentiation of NPCs, this would certainly be of 

significance in explaining why there may be failures of handling of prediction errors in psychosis. It may 

be interesting in future work to grow immunologically ‘primed’ NPCs further into organoids and (using 

single-cell RNA sequencing) assess whether cortical hierarchies may be emerging differently after 

priming.  

In Chapter 3, I pursued the theme of message passing and belief updating in the extended immune 

system through demonstrating a computational approach to neuroimmunology, which has a variety of 

potential implications. First, the benefit of an inferential approach to the immune system – to my 

knowledge, new to the immunology literature – offers a new avenue for posing questions about how the 

immune system differentiates ‘self’ from ‘other’ (Kitamura, 2008). Secondly, how, in a healthy 

pregnancy, the mother’s immune system does not reject the foetus is a major open question. When the 

delicate balance of this maternal-foetal tolerance is tipped, the repercussions can include pre-eclampsia 

and miscarriage. To see pregnancy as ‘sensory’ attenuation in the immune system is quite a radically 

different perspective of both sensory attenuation and pregnancy. The philosophical implications here are 

significant, adding to the argument against mind-body and brain-body “crypto-Cartesian” dualisms  

(Nachev, 2011) from a field (immunology) often alien to contemporary philosophical literature. This sort 

of rejection of dualism for an ‘embodied’ mind perspective of the brain has implications for a holistic 

treatment of patients with psychiatric disorders. For example, with an embodied perspective on the mind, 

a patient presenting with psychosis is more likely to be treated with reference to the mechanisms leading 

to this syndromic endpoint, whether that be schizophrenia (treated with antipsychotics, which come with 

major side-effects), or an alternative diagnosis such as Cushing’s syndrome, which can be effectively 

treated by normalising cortisol levels.  
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The possibility of simulating the immune response allows us to non-invasively manipulate 

variables such as MHC-I presentation and observe their impact on this balance. Furnishing these 

simulations with empirical data (i.e., training the models) could also give us a powerful predictive model 

of the viability of a pregnancy (for example, the likelihood of a preterm delivery or a rhesus pregnancy 

given maternal antibody titres and obstetric history). Indeed, I plan to use this formulation to build a 

clinical tool for this purpose in future work, as a precision medicine approach to identifying a need to 

take preventive measures (e.g., planned Caesarean section or alteration of specific lifestyle factors). We 

similarly present a shared generative model between the brain and the immune system, which offers a 

formal approach to understanding the functional dysconnections that may underwrite systems-level 

changes (or ‘neuroimmunological diaschisis’) that results from disturbing one part of an interconnected 

network of ‘belief’ updating.  

There are some limitations of the work presented and future directions that reasonably follow. In 

Chapter 1, due to the nature of our phenotype, which is rarely obtained in combination with genetics, our 

sample size was rather limited. This created a ripple effect of compromise that had to be made in several 

aspects of the analyses. For example, sample size and power were important considerations in selecting 

our tissues of interest: I had to balance the power of the PrediXcan tissue models against the power of 

our own sample. I felt the best decision would be to choose only the tissues that best account for the 

functional anatomy of the phenotype, as our findings would have been excessively noisy if we were to 

include other tissues that were of less relevance. The two tissues included (frontal cortex and whole 

cortex) were therefore chosen for their relevance to the phenotype: the functional anatomy of MMN is 

well studied and it is established in the literature that MMN engages the inferior frontal gyrus and 

superior temporal gyrus (Doeller et al., 2003; Opitz et al., 2002) The frontal cortex encompasses the 

inferior frontal gyrus, and we included the whole cortex to account for the superior temporal gyrus. 
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However, it would have been ideal to assess a wider range of tissues – especially ‘Whole Blood’, which 

accounts for more genes than either of the tissues we studied. 

Another issue due the small sample size in this study was that the standard errors of the heritability 

and genetic correlation estimates used for calculating the Endophenotype Ranking Value (ERV) were 

large. Additionally, as ERV is a recent development in the field, there is limited precedent upon which 

to specify a minimum sample size for meaningful results. The original paper which proposed ERV as a 

formal approach to the identification of endophenotypes (Glahn et al., 2012) used 1222 individuals to 

calculate family-based heritability of endophenotypes and their genetic correlation with disease liability. 

Family-based heritability estimates tend to be higher than purely SNP-based heritability estimates – 

otherwise known as the ‘missing heritability’ problem (Maher, 2008; Yang et al., 2017). As a result, our 

sample size of 728 was likely short of what would have been necessary to make conclusive claims. In 

the absence of a wide body of previous literature using ERV, there were three factors I considered to be 

of importance: 1) the heritability of the endophenotype; 2) the heritability of the disease; and 3) the 

novelty of the findings. The latter is important because it has not been possible before to formally assess 

the utility of MMN as an endophenotype for psychosis, although it is one of the most likely candidates 

thereof. The first two are important as the ERV is directly derived from these measures. Stanton-Geddes 

et al. (2013) suggest that, with samples drawn from relatively well-controlled environments, sample sizes 

of a few hundred can yield meaningful SNP-based heritability estimates). The ERV presented here for 

MMN therefore represents, at most, a principled starting point for gauging the value of MMN as a 

psychosis endophenotype.  

Furthermore, in order to assemble a large enough dataset for a genetic association study, we also had 

to compromise on the homogeneity of the samples: I combined samples that used slightly different MMN 

paradigms. I attempted to account for these differences in methodology by combining the samples by 
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meta-analysis, as well as by including testing centre as a covariate in the regression analyses. However, 

future studies would ideally use a larger and homogenously tested sample.  

Another limitation here was that relatives of patients with psychosis were grouped with healthy 

controls. This was based on a regression analysis which showed no significant difference in MMN 

amplitude between relatives and controls. However, it could be argued that as the relatives of patients 

with schizophrenia are likely to be more genetically similar to people with schizophrenia than non-related 

healthy controls would be, they should be analysed as a separate group. Indeed, other studies, such as 

Bramon et al. (2004), have taken this approach. This was yet another compromise we made due to sample 

size, as the number of relatives in our sample (n = 84) was too underpowered to consider them as a 

separate group. 

It was also somewhat challenging to interpret the main finding from Chapter 1 (the association 

of FAM89A and ENGASE with the MMN) mechanistically, as there is very little known about these two 

genes as yet. Future work, perhaps using knock-out mouse models, would be invaluable in investigating 

the functions of FAM89A and ENGASE and for hypothesis-based testing of their influence on the MMN.  

 In Chapter 2, the sample size was perhaps an even greater concern: case-control comparisons of 

gene expression within a sample size of six cannot be considered reliable without replication. In large 

part, this is because culturing iPSC-derived neural progenitors remains expensive, rare and time-

consuming. Indeed, this is a limitation faced by most studies that use this technique to date, with even 

the largest studies using hiPSC-derived schizophrenia NPCs or neurons having no more than fourteen 

lines in each group (Brennand et al., 2015; Hoffman et al., 2017). Of our findings, those most likely to 

be reliable are the treatment versus vehicle comparisons, as these were experimentally manipulated, acute 

– such that the induced response involved thousands of genes – and consistent with previous literature 

(the top pathways that were observed were canonical IFNγ and IL-1β signalling pathways). Nevertheless, 

statistically, it is difficult to say whether or not these findings can be accepted: this remains inconclusive 
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in the absence of further validation. I think the main value of these experiments are, once again, their 

novelty: they take a first step towards understanding the effects of these cytokines on neuronal networks 

and their roles in the aetiology of schizophrenia, providing a frame of reference for future studies.  

A major limitation in Chapter 2 is that polygenic risk scores (PRSs) were not available for all of the 

NPC lines in the DGE experiments. We defined the groups in our study (cases and controls) by the 

diagnosis of the adult donors. However, in theory, one could say that PRS is a better determinant of the 

case-control status of NPCs in the absence of epigenetic modifications, which are almost entirely 

eliminated by reprogramming of primary keratinocytes into iPSCs. This particularly comes to the fore as 

a limitation because of the two participants with schizophrenia for whom PRSs were available: one of 

these had a high PRS (with low cannabis use), while the other had a low PRS (with high cannabis use). 

Again, with the removal of epigenetic modifications by reprogramming, the schizophrenia-related 

genetic profile of the hiPSC-NPCs is perhaps the best determinant of whether a cell line should be 

labelled as ‘case’ or ‘control’. Some mitigation is provided by the fact that our principal component 

analysis does show stratification by diagnostic group; and at present, PRS for schizophrenia is still to be 

developed to a sufficient degree of predictive validity (Curtis, 2018; Janssens, 2019). These findings 

would be more reliable, nevertheless, with support from a replication study which calculates polygenic 

risk scores for all lines and compares results when stratification is done by donor diagnosis as versus 

PRS. 

With regard to Chapter 3, it would be important to note that the active inference framework has not 

been universally adopted by researchers in the field of computational psychiatry. The foundations of 

active inference lie in seasoned concepts such as variational Bayesian mechanics and Helmholtzian 

inference, but the intricacies and applications are continuously expanding. The literature in this field is 

therefore rather as dynamic as that which it describes. As a result, there are some ongoing debates about 

mathematical details and philosophical interpretations (Andrews, 2020; Biehl et al., 2020; Bruineberg et 
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al., 2020; Friston et al., 2021). There are, for example, philosophical disputes around the fringes as to 

whether the generative model of an organism is a representation, like a map (i.e., something the organism 

‘has’), or a description of phenotypic dynamics that underwrite the organism’s existence (i.e., something 

the organism ‘is’) (Constant et al., 2020).  

The same could be said about the dysconnection hypothesis of schizophrenia. The literature on the 

aetiology of schizophrenia is also highly dynamic and consists of several disparate strands from different 

disciplines, as laid out in the general introduction. Indeed, fostering greater coherence between these 

bodies of literature was one of the main objectives of the work in this thesis. As a result, different areas 

of neuroscience seem to lean towards different hypotheses of schizophrenia – likely due to the history of 

the field more than as a conscious stance. In other words, not every researcher studying schizophrenia is 

likely to be familiar with the dysconnection hypothesis. Indeed, until now, there has been little crossover 

between the dysconnection hypothesis and immunology. 

In summary, this thesis has laid important groundwork for developing a clearer picture of the 

neurobiological mechanisms that result in the phenomenon of the mismatch negativity and its attenuation 

in psychosis. These findings implicate FAM89A and ENGASE as key components of the physiology of 

prediction error minimisation. Further, I have found that there are differences in how the brains of people 

with schizophrenia may have responded to infection or inflammation during prenatal development. I 

suggest that immune insults early in life can alter neurotransmission, identifying new gene targets for 

future research on the influence of maternal immune activation on schizophrenia susceptibility and 

resilience. Taken together, this work provides support for the dysconnection hypothesis of schizophrenia 

and suggests mechanisms by which prenatal immune activation confers an allostatic load that elicits or 

exacerbates the synaptopathies that underlie psychosis.  
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