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In Crowe & Taylor (2018) we described a theory for the evolution of density fronts in a
rotating reference frame subject to strong vertical mixing using an asymptotic expansion
in small Rossby number, Ro. We found that the front reaches a balanced state where
vertical diffusion is balanced by horizontal advection in the buoyancy equation. The
depth-averaged buoyancy obeys a nonlinear diffusion equation which admits a similarity
solution corresponding to horizontal spreading of the front. Here we use numerical
simulations of the full momentum and buoyancy equations to investigate this problem for
a wide range of Rossby and Ekman numbers. We examine the accuracy of our asymptotic
solution and find that many aspects of the solution are valid for Ro = O(1). However, the
asymptotic solution departs from the numerical simulations for small Ekman numbers
where the dominant balance in the momentum equation changes. We trace the source of
this discrepancy to a depth-independent geostrophic flow that develops on both sides of
the front and we develop a modification to the theory described in Crowe & Taylor (2018)
to account for this geostrophic flow. The refined theory closely matches the numerical
simulations, even for Ro = O(1). Finally, we develop a new scaling for the intense vertical
velocity that can develop in thin bands at the edges of the front.

1. Introduction

Ocean fronts are common and dynamically important features of the ocean surface
mixed layer. A front is a region of large horizontal density gradient where the cross-front
(in the direction of the density gradient) length-scale is much smaller than the along-
front scale. Large scale fronts in the ocean are often close to a state of thermal wind
balance, i.e. the balance between a pressure gradient in hydrostatic balance with changes
in density and the Coriolis force associated with an along-front jet (Holton & Hakim
2012; Rudnick & Luyten 1996). When a balanced front is disturbed (for example by
turbulent mixing, large-scale flow, or surface stress), the dynamic response results in a
secondary circulation with flow in the cross-front and vertical directions (Eliassen 1962;
Hoskins & Bretherton 1972; Orlanski & Ross 1977). This secondary circulation can act
to enhance the vertical transport of tracers such as heat and nutrients (Garrett & Loder
1981; Ferrari 2011).

Many previous theoretical studies have assumed that the flow is inviscid and adiabatic
(e.g. Hoskins & Bretherton (1972); Blumen (2000); Shakespeare & Taylor (2013)).
However, the effects of turbulent mixing have been considered in recent studies, although
the primary focus has been the sharpening of frontal gradients and the subsequent arrest
of frontogenesis. For example, the evolution of a front in response to frictional forcing was
considered by Thompson (2000) using a two-dimensonal semi-geostrophic model modified
to include a viscosity-like vertical mixing. A cross-front ageostrophic flow proportional to
the horizontal buoyancy gradient led to a slumping of the frontal region and the formation
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of a sharp surface buoyancy gradient. More recently, McWilliams (2017) constructed a
diagnostic framework to analyze the frontogenetic tendency and secondary circulation
for fronts and filaments. By diagnosing the time-tendency, McWilliams (2017) showed
that the ageostrophic secondary circulation associated with TTW balance could drive
frontogenesis.

Sullivan & McWilliams (2018) used large eddy simulations (LES) to consider the effects
of small scale turbulence on the time evolution of a cold filament forced by surface wind
stresses and surface cooling. They considered the initial evolution of the filament and
found that rapid frontogenesis occurs before being arrested by the turbulence generated
through small scale shear instabilities. The filament was subsequently seen to decay with
the initial frontogenetic phase lasting less than a day.

In Crowe & Taylor (2018) we described a simple analytic model of a density front in
a rotating reference frame subject to vertical mixing. We used an asymptotic expansion
in small Rossby number (Ro << 1) and introduced fast and slow timescales. The O(1)
velocity fields consist of a thermal wind component and a cross-front flow resulting from
the coupling of the along-front and cross-front velocities through vertical mixing. The
shear associated with the cross-velocity drives a slumping of the buoyancy field at O(Ro).
Ultimately, a balance is reached between cross-front advection and vertical diffusion.
Initial transients occur on the fast timescale as this balanced state is approached.

Using the O(1) velocity, u0 and the O(Ro) buoyancy, b1, we can express the depth
averaged O(Ro2) buoyancy equation purely in terms of the O(1) buoyancy, b0. The
resulting equation, known as the Erdogan-Chatwin equation (Erdogan & Chatwin 1967;
Smith 1982), describes non-linear diffusion over the slow timescale and can be solved using
a similarity solution. Physically this represents shear dispersion; the vertical diffusion
is projected into the horizontal direction by the vertically sheared horizontal velocity,
resulting in a horizontal spreading that occurs much faster than would be predicted by
horizontal diffusion alone. The similarity solution consists of an approximately constant
horizontal buoyancy gradient in the center of the front and regions of high curvature at
the edges of the front. These regions with high curvature in the cross-front buoyancy
profile coincide with bands of strong vertical velocity.

Here we consider an idealised model of an isolated front and focus mainly on the
long time evolution. We use two-dimensional simulations with a large turbulent Ekman
number as a simple parametrisation for boundary layer turbulence. Our aim is to examine
the validity of the asymptotic results in Crowe & Taylor (2018) for a range of Rossby
numbers by comparing them with full nonlinear numerical simulations of the Boussinesq
equations.

In all simulations the front spreads on long timescales and we begin by comparing
the spreading rate with the analytic predictions from Crowe & Taylor (2018). We also
compare the form of the buoyancy profiles and the streamfunctions for O(1) Rossby
numbers in order to determine if our results are valid outside the small Rossby number
limit of the theory. The largest deviations from our predictions are observed for small
Ekman number, E = ν/(fH2). We examine these cases in detail and introduce a
modification to the theory in Crowe & Taylor (2018) which improves the agreement
between the theory and simulations for Ro = O(1).

Once the front reaches the balanced self-similar phase, the evolution is purely fron-
tolytic. However, we seek to determine if the initial transients or evolution of b0 towards
the similarity solution are frontogenetic by considering the surface buoyancy gradient.
Near the edges of the front, the curvature of the cross-front buoyancy profile becomes
high and could not be determined analytically as the curvature of the similarity solution
diverges in this region. In the numerical simulations, this discontinuity is smoothed by
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horizontal diffusion. In §6, we derive a scaling for the vertical velocity which we compare
with the numerical simulations.

2. Problem Setup

We consider an idealized frontal geometry consisting of an incompressible fluid bounded
from above and below by rigid, horizontal surfaces in a reference frame rotating about
the vertical (z) axis. We consider a region of high density fluid next to a region of low
density fluid with a thin transition region, the front, between them. This geometry is
a canonical configuration for studies of frontal dynamics (e.g. Hoskins & Bretherton
(1972); Shakespeare & Taylor (2013)). The gravitational and rotation vectors will both
be aligned with the vertical (z) axis.

We assume that density changes can be represented by a single scalar equation,
invoking a linear equation of state, and that variations in density are small compared
to a reference value, invoking the Boussinesq approximation. Here b ≡ −gρ′/ρ0 denotes
buoyancy. With the assumption that variations aligned with the frontal axis (here y) are
much smaller than cross-front (x) variations, we will neglect along-front derivatives, i.e.
∂/∂y << ∂/∂x, although we will retain all three components of the velocity vector. We
then assume without loss of generality that the front separates low buoyancy fluid on the
left from high buoyancy fluid on the right (see Figure 1).

Here, we consider the response of an initially balanced front to an imposed viscosity
ν and diffusivity κ which we assume for simplicity are constant. Note that, while ν and
κ are assumed to be constant in time, our primary motivation is to study the influence
of small-scale turbulence on the evolution of the front. By using a time-independent ν
and κ, we are able to isolate the influence of viscosity and diffusion on the evolution of
the front without allowing the feedback associated with the front altering the properties
of small-scale turbulence. This assumption is very artificial but greatly simplifies the
analysis. The setup can also be viewed as a laboratory scale analogue with molecular ν
and κ. Note that the assumption of constant ν and κ has been used before to study the
response of ocean fronts to small-scale turbulence (e.g. Thompson (2000)).

We can non-dimensionalise the governing equations using a horizontal length scale
L, vertical length scale H, and buoyancy scale B, with the horizontal velocity scale
U = ∆bH/(fL), vertical velocity scale W = UH/L = ∆bH2/(fL2), pressure scale
P = fUL = ∆bH, and timescale L/U = fL2/(H∆b) for Coriolis parameter f . This
gives the following non-dimensional equations (Charney 1973):

Ro
Du

Dt
− v = −∂p

∂x
+ E∇2

εu, (2.1a)

Ro
Dv

Dt
+ u = E∇2

εv, (2.1b)

Ro ε2
Dw

Dt
= −∂p

∂z
+ b+ ε2E∇2

εw, (2.1c)

Ro
Db

Dt
=

E

Pr
∇2
εb, (2.1d)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.1e)
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Parameter Rossby No. Ekman No. Prandtl No. Aspect Ratio
Symbol Ro E Pr ε

Definition ε∆b/f2L ν/fH2 ν/κ H/L

Table 1: Definitions of the dimensionless parameters and their values for buoyancy
difference, ∆b, Coriolis parameter, f , horizontal lengthscale, L, vertical lengthscale, H,
and viscosity and diffusivity, ν and κ.

Figure 1: Two dimensional problem setup, we consider an unbounded x domain between
two horizontal boundaries at z = ±1/2 with no variations in the along front, y, direction.
We nondimensionalise the horizontal length by L, the depth by H, horizontal velocity
by U , vertical velocity by UH/L, pressure by fUL, buoyancy by fUL/H and time
by L/U . The velocity scale U is given by U = ∆bH/(fL). Numerically we consider
x ∈ [−Lx/2, Lx/2] and use periodic boundary conditions at the edges on the horizontal
domain.

for parameters defined in Table 1. The operators D/Dt and ∇ε are given by

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
, (2.2a)

∇2
ε =

∂2

∂z2
+ ε2

∂2

∂x2
, (2.2b)

for aspect ratio ε = H/L.
We will take Pr = 1, use boundary conditions of no vertical shear, vertical velocity

or buoyancy flux on the top and bottom boundaries and consider a fluid layer between
z = ±0.5 for unbounded x. This setup is a slightly simplified version of the setup used
in Crowe & Taylor (2018) which consisted of a 3D model with arbitrary Pr.

3. Numerical Simulations

We use numerical simulations to study the time evolution of an initially depth inde-
pendent front, b|t=0 = b(x). The numerical simulations are carried out using DIABLO.
Time stepping is performed with a combination of explicit third-order Runge-Kutta and
implicit Crank Nicolson schemes while finite differences are used for derivatives in the
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vertical direction and discrete Fourier transforms, using the pseudo-spectral method for
non-linear terms, are used for derivatives in the horizontal direction (Taylor 2008).

In order to use periodic boundary conditions in the horizontal direction we subtract a
linear profile from the buoyancy and define

b′ = b− 2x

Lx
, (3.1)

and

p′ = p− 2xz

Lx
, (3.2)

where Lx is the horizontal domain width so at x = ±Lx/2 we have b′ = 0. Equation 2.1
becomes

Ro
Du

Dt
− v = −∂p

′

∂x
− 2z

Lx
+ E∇2

εu, (3.3a)

Ro
Dv

Dt
+ u = E∇2

εv, (3.3b)

Ro ε2
Dw

Dt
= −∂p

′

∂z
+ b′ + ε2E∇2

εw, (3.3c)

Ro
Db′

Dt
+

2Rou

Lx
=

E

Pr
∇2
εb
′, (3.3d)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.3e)

which we then solve for (u, v, w, b′, p′) with horizontally periodic boundary conditions.

Due to the large Ekman numbers used, the maximum timestep is set by the condition
that the diffusive lengthscale per timestep is less than the horizontal grid scale. Therefore,
the timestep, ∆t is chosen to be

∆t = C
Ro

E
, (3.4)

where C is a constant determined by the grid scale, ∆x = Lx/Nx. From Crowe & Taylor
(2018) we expect the depth-averaged buoyancy field to evolve on the slow timescale

T = Ro t, (3.5)

so we run each simulation until tend = 103/Ro. The required number of timesteps is
therefore

Nt =
103E

C Ro2
. (3.6)

We use a grid resolution of Nx = 256 and a domain width of Lx = 10 which requires a
value of C = 10−3 for accuracy.

Finally we impose the initial condition

b(x) = tanhx, (3.7)

and set the initial velocity using the leading order ‘turbulent thermal wind’ (TTW)



6 M. N. Crowe & J. R. Taylor

solution (Gula et al. (2014); McWilliams (2017); Crowe & Taylor (2018)):

u =−
√
EK ′′0

(
z/
√
E ; ζ0

) ∂b
∂x
, (3.8a)

v =−
√
EK0

(
z/
√
E ; ζ0

) ∂b
∂x
, (3.8b)

w = EK ′0

(
z/
√
E ; ζ0

) ∂2b
∂x2

, (3.8c)

where

K0(ζ; ζ0) = −ζ + C+(ζ0) cs(ζ) + C−(ζ0) sc(ζ), (3.9)

for the functions

cc(ζ) = cosh
(
ζ/
√

2
)

cos
(
ζ/
√

2
)
,

cs(ζ) = cosh
(
ζ/
√

2
)

sin
(
ζ/
√

2
)
,

ss(ζ) = sinh
(
ζ/
√

2
)

sin
(
ζ/
√

2
)
,

sc(ζ) = sinh
(
ζ/
√

2
)

cos
(
ζ/
√

2
)
,

(3.10)

and constants

C±(ζ0) =
1√
2

cc(ζ0)± ss(ζ0)

cc2(ζ0) + ss2(ζ0)
, (3.11)

and ζ0 = 1/
√

4E. See Appendix A of Crowe & Taylor (2018) for details. Note that the
velocity reduces to the linear ‘thermal wind’ velocity profile, K0(ζ) ∼ −ζ, in the limit
of small Ekman number. We expect some initial adjustment as the front slumps and b
develops a small, order Ro, depth-dependence. However, we do not expect significant
inertial oscillations since the velocity field is in TTW balance at t = 0. We perform
simulations for 20 different Ekman numbers between E = 0.01 and E = 1 and 9 different
Rossby numbers between Ro = 0.1 and Ro = 1 for a total of 180 simulations.

4. Results

We now compare the results of our numerical simulations with our theoretical predic-
tions. We begin by examining the spreading rate of the front and the accuracy of the
theory for O(1) Rossby numbers. We will then examine frontogenesis during the transient
adjustment. Finally, we will derive and test a scaling for the maximum vertical velocity.

4.1. Spreading Rate

In Crowe & Taylor (2018) we found that over long times the leading order buoyancy
profile, b0, becomes self-similar with a form given by

b0 = F

(
x

γ(T + T0)1/4

)
, (4.1)

where

F (η) =


−1, η < −4/π

1
2

[
η
√

1− π2η2

16 + 4
π arcsin

(
πη
4

)]
, η ∈ [−4/π, 4/π]

1, η > 4/π

, (4.2)

γ is the spreading parameter and T0 describes the time taken for the solution to reach a
self-similar state. The spreading parameter can be linked to the frontal width by

lf (T ) =
8γ(T + T0)1/4

π
. (4.3)
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(a) (b)

(c) (d)

Figure 2: Plots of b(x, z, T ) at z = 0 for (a) Ro = 0.1, E = 0.02, (b) Ro = 0.5, E = 0.02,
(c) Ro = 0.5, E = 0.3, and (d) Ro = 1, E = 0.06. The solid contours show our simulation
results while the dashed contours show the theoretical predictions using the numerical
values of (γn, T0n, αn).

We now compare the numerically observed spreading with this theoretical prediction. In
some simulations fast spreading results in the front reaching the edges of the horizontal
domain so we choose a time interval of T ∈ [100, 350] for the analysis, during which time
the transients have decayed and, for most simulations, the front has not reached the
edges of the domain. For this time interval we assume that the front is self-similar with
a centerline (z = 0) buoyancy of the form

b = F

(
x

f(T )

)
. (4.4)

We now fit this prediction to the numerical centerline buoyancy field to determine f(T )
and finally fit f(T ) to the curve

f(T ) = γn(T + T0n)αn , (4.5)

to determine the values of (γn, T0n, αn) for each pair of parameters, (Ro,E). All fitting
is done using a least squares method. From Crowe & Taylor (2018) we expect that the
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predicted spreading rate is valid for

T � Tmax =
Ro4Pr3Q(E)

ε4E2
, (4.6)

where

Q(E) = E

∫ 1/2

−1/2
(K ′0)

2
dz, (4.7)

and

PrQ(E) =
4γ4

3π2
(4.8)

is proportional to the effective horizontal diffusivity resulting from shear dispersion.
This condition comes from the requirement that shear dispersion dominates horizontal
diffusion. Note that horizontal diffusion becomes important sooner when Ro is small or
E is large. When both E is large and Ro is small, the horizontal diffusion is fast and
the front quickly spreads to fill the domain, therefore we do not expect the predicted
spreading rate to be accurate in this region.

Figure 2 shows the centerline (z = 0) buoyancy fields as functions of x and T for
a variety of Rossby and Ekman numbers. The theoretical predictions are given by the
dashed contours. In each case the long term behaviour exhibits frontal spreading. This
spreading is well described by the predictions, even for the case of larger Rossby numbers
where the theoretical predictions are not asymptotically valid. Figures 2.(a) and 2.(b)
show the centerline buoyancy for E = 0.02 and two different Rossby numbers. The long
term spreading is similar in each case when plotted as a function of the slow timescale,
T = Rot. This is consistent with the theoretical similarity solution which depends on Ro
only through T . Note that the edges of the front appear more diffuse for smaller Rossby
numbers; this is expected since horizontal diffusion becomes important at earlier times
for smaller Rossby numbers.

Figure 3 shows the values of γn and αn calculated over the time interval [100, 350]
and the ratio of these numerical values with the theoretical predictions for γ and α. We
expect our theory to be valid for T < Tmax/10 and plot the curve Tmax = 3500 in white.
The region below this curve is where the theory should be valid. The values of γn and
αn match the theoretical predictions within 10 − 20%. In the region where we expect
horizontal diffusion to dominate, αn ≈ 1/2, which is consistent with diffusive spreading.
The front has filled the computational domain in the cases with large E and small Ro so
the results in the top left regions of each figure are not reflective of the true spreading
rate.

From Figure 3.(a) we can see that the spreading rate, γn, is approximately independent
of Ro below the curve Tmax = 3500. This matches our theoretical prediction where γ
depends only on E and Pr though interestingly the prediction is still valid for Ro = O(1).
Similarly the prediction of α = 1/4 is accurate for the case of Ro = O(1) which suggests
that spreading via shear dispersion is still the dominant mechanism and the theory is
valid for order 1 Rossby numbers despite being derived in the small Ro limit. We now
consider the Ro = O(1) simulations in more detail to see how accurately the theory
predicts the form of the velocity and buoyancy fields.

4.2. Accuracy of Theory for O(1) Rossby Numbers

Since the theoretical predictions in Crowe & Taylor (2018) were made in the limit
of small Ro, these predictions do not necessarily hold in the case of Ro = O(1) where
the nonlinear advection terms in the momentum and buoyancy equations are no longer
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(a) (b)

(c) (d)

Figure 3: Plots of (a) γn, (b) γn/γ, (c) αn, (d) αn/α as functions of E and Ro. We use
a time interval of [100, 350] and also plot the curve Tmax = 3500 in white.

small. Despite this, we have seen above that the spreading rate of the front when Ro = 1
is still accurately captured by the theoretical predictions. We now examine the velocity
and buoyancy fields for the Ro = 1 case in more detail to determine how accurately they
are described by the linear TTW solution in Crowe & Taylor (2018).

The 2D streamfunction, ψ(x, z, t), describing the circulation around the front is defined
by u = ∂ψ/∂z and w = −∂ψ/∂x. We define

ψn =

∫ z

−0.5
u(x, z′, t) dz′, (4.9)

and calculate ψn by numerically integrating the velocity fields from the simulations. We
compare ψn to the leading order analytic prediction

ψ0 = −EK ′0
(
z/
√
E
) ∂b
∂x
, (4.10)

and define the difference between the analytic and numerical values of the streamfunction
by

∆ψ = ψn − ψ0. (4.11)

Figure 4 shows ψn, ψ0 and ∆ψ for Ro = 1 and E = 0.1 at T = 300. We can see
that the leading order analytic prediction is fairly accurate, with a maximum magnitude
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(a) (b)

Figure 4: Plots of (a) ψn (solid) and ψ0 (dashed) (b) ∆ψ. Results are given for Ro = 1,
E = 0.1 and T = 300.

within 20% of the numerical value. The main difference is the shape of the contours with
the contours of ψn being more circular than those of ψ0.

Figure 5(a) shows the normalized maximum difference between ψ0 and ψn,
max[∆ψ]/max[ψn]. Interestingly, we can see that the deviation of ψ is more strongly
dependent on Ekman number than on Rossby number and the predictions for Ro = 1
are not significantly less accurate than for smaller Rossby numbers while the predictions
for large E are much more accurate than for small E. It is notable that the theoretical
prediction performs nearly as well for Ro = 1 compared to smaller Rossby numbers,
despite the fact that the theory was derived using an asymptotic expansion valid for
Ro << 1. The relatively poor performance of the theory for small E will be examined
later.

The maximum cross-front velocity, U(t), is given by

U(t) = |max
x,z

[u]|, (4.12)

and using the leading order analytic solution, our prediction for the maximum cross front
velocity is

U0 = u0(0, 1/2, t) =
√
EK ′′0

(
1/2
√
E
) ∂b

∂x

∣∣∣∣
x,z=0

. (4.13)

From the numerical simulations we define Un(t) to be the maximum value of u at
each time and ∆U = |Un − U0| to be the difference between the numerical data and
the theoretical prediction. Figures 5.(b)–5.(d) shows the error in the prediction of the
maximum cross-front velocity, given by ∆U/Un, for E = 0.02, E = 0.1 and E = 0.4. We
can see that the error is largest for small E and is not strongly affected by increasing the
Rossby number from Ro = 0.1 to Ro = 1. We might anticipate that over long times the
error will decrease as the neglected higher order terms of u should decay faster than the
leading order term u0 since they depend on higher powers and derivatives of ∂b0/∂x and
hence they depend on higher powers of 1/(T + T0)α. This interpretation is supported by
the numerical data as shown in Figures 5.(b)–5.(d) where the error appears to gradually
decrease over long times after an initial increase. Note that the duration of the initial
increase may exceed the time window for some parameter ranges. This is most apparent
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(a) (b)

(c) (d)

Figure 5: (a) max[∆ψ]/max[ψn] as a function of E for T = 300. Results are shown where
Tmax < 3000 for a range of Ro. (b)–(d) ∆U/Un as a function of T for (b) E = 0.02, (c)
E = 0.1, and (d) E = 0.4 and a range of Ro. Results are shown up to T = Tmax/10.

for the cases of lowest Ro and highest E suggesting that this timescale scales as Roa/Eb

for positive a and b. We examine the case of small E in detail in §5.

From Crowe & Taylor (2018) the theoretical prediction of the centerline, (z = 0),
buoyancy is

b|z=0 = b0 +O(Ro2), (4.14)

where b0 is given by equation 4.1. Note that the order Ro contribution has odd vertical
symmetry and hence is zero along the centerline. We now compare this prediction with
the numerical results by examining the shape of the cross front buoyancy profiles from
the numerical simulations.

Figure 6 shows the centerline buoyancy profiles as a function of the normalized cross-
front distance at T = 250 for a range of Rossby and Ekman numbers. We can see that
the profiles are approximately linear in the center of the horizontal domain and more
closely match the similarity solution for larger Ekman numbers. The size of the Rossby
number has very little effect on the profile, even when Ro = O(1), though when diffusive
effects are large, corresponding to large E and small Ro, the effects of this diffusion can
be seen near the edges of the front which are less sharp and wider.
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(a) (b)

(c) (d)

Figure 6: Comparison of the centerline buoyancy at T = 250 as a function of η =
x/γ(T+T0)1/4 with the similarity solution, F (η) for (a) Ro = 0.5, E = 0.04, (b) Ro = 0.5,
E = 0.1, (c) Ro = 1, E = 0.04, and (d) Ro = 1, E = 0.1.

4.3. Initial Frontogenesis

In Crowe & Taylor (2018) we did not observe strong frontogenesis resulting from the
evolution of an initially depth-independent front towards a balanced state. We found
time-dependent solutions for this evolution, and saw that it was possible for surface
gradients to sharpen during the initial adjustment even though the front was spreading
in a depth-averaged sense, however this sharpening is an order Ro effect. We now consider
the numerical simulations where Ro = O(1) to determine if these cases exhibit significant
frontogenesis.

In Crowe & Taylor (2018) we found that the order Ro buoyancy component, b1, is
given by

b1 = −
√
E

[
K0 +

∞∑
n=0

DnZn(z)e−Eλnt/Ro

]
|∇Hb0|2 , (4.15)

using the initial condition b1 = 0. The Dn are given by

Dn = − 1

z2n

∫ 1/2

−1/2
K0Zn dz, (4.16)

where the Zn are vertical structure functions, the λn are their corresponding eigenvalues,
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(a) (b)

Figure 7: Plots of the maximum surface horizontal buoyancy gradient,
maxx[M2(x, 1/2, t)] as a function of time, t, for a range of Rossby numbers and
(a) E = 0.01 and (b) E = 0.1.

and the zn are normalisation constants, see Appendix A of Crowe & Taylor (2018) for
details. The cross-front buoyancy gradient can now be calculated as

M2 =
∂b0
∂x

+Ro
∂b1
∂x

+O(Ro2), (4.17)

and since we have seen that b0 only spreads throughout the evolution, any sharpening
must appear though the O(Ro) term assuming that the O(Ro2) term is small. This
analysis is not asymptotically valid for Ro = O(1) so we now seek to determine if
significant surface frontogenesis occurs for larger Rossby numbers and how closely the
behaviour is described by the analytic predictions.

Figure 7 shows the maximum horizontal buoyancy gradient on the top surface for a
range of Rossby numbers. We can see that there is some surface sharpening of the front
for small Ekman numbers however this effect is relatively small and short-lived as once
a self-similar state is reached the front will only spread.

Figures 8 and 9 show the initial evolution of the surface buoyancy, b(x, 1/2, t), and the
surface buoyancy gradient, M2(x, 1/2, t) for Ro = 1 and E = 0.02, 0.2. We also show the
difference between the surface and centerline values of b0 and M2 since to leading order
these corresponds to Ro b1 and Ro∂b1/∂x respectively. The analytic predictions to order
O(Ro) are shown by the dashed contours. We can see that the analytic predictions are
fairly accurate for E = 0.02 with a maximum error of around 25% and very accurate
for E = 0.2 with a maximum error of around 2%. In both cases the theory accurately
predicts the time taken for the depth-dependence to develop as well as both the position
and the value of the maximum buoyancy gradient despite the Rossby number not being
small and only using a prediction correct to first order in Ro. If there are additional
frontogentic mechanisms, such as an imposed strain flow, the increase in the surface
buoyancy gradient can be large and the theory based on the assumption of small Rossby
model will likely no longer be valid. In this case a more general model will be required
(Shakespeare & Taylor 2013; McWilliams 2017; Sullivan & McWilliams 2018).
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(a) (b)

(c) (d)

Figure 8: (a) b0(x, 1/2, t), (b) b0(x, 1/2, t) − b0(x, 0, t), (c) M2(x, 1/2, t), and (d)
M2(x, 1/2, t) − M2(x, 0, t) for Ro = 1 and E = 0.02. The solid contours show the
numerical results and the dashed contours show the analytic predictions to order O(Ro).

5. Theory for O(1) Rossby number and small Ekman number

As noted above, the largest differences between the theoretical predictions and numeri-
cal simulations occur for large Ro and small E. In this section we analyze the momentum
budget to identify the source of these discrepancies. We then propose a modification to
TTW balance that includes the influence of a depth-independent geostrophic flow. We
use this to extend the theory in Crowe & Taylor (2018) to O(1) Rossby numbers and
small Ekman numbers and find that it leads to excellent agreement with the numerical
simulations.

Figure 10 shows the balances in the horizontal momentum equations for E = 0.01 and
Ro = (1, 0.1) at t = 100 and x = 0. We can see that the cross-front (x) momentum
equations in both cases are very close to TTW balance, even for Ro = 1. However, there
are significant deviations in the y momentum equation due to a large advection term. We
find that Dv/Dt is dominated by u ∂v/∂x with the along-front velocity, v, developing a
large depth-independent component corresponding to two jets of opposite direction as
shown in Figure 11.

In order to understand the formation of these jets, we can examine the depth-averaged
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(a) (b)

(c) (d)

Figure 9: (a) b0(x, 1/2, t), (b) b0(x, 1/2, t) − b0(x, 0, t), (c) M2(x, 1/2, t), and (d)
M2(x, 1/2, t)−M2(x, 0, t) for Ro = 1 and E = 0.2. The solid contours show the numerical
results and the dashed contours show the analytic predictions to order O(Ro).

along-front momentum equation. First, define the depth-average as

(∗) =

∫ 1/2

−1/2
(∗) dz, (5.1)

and write (∗)′ = (∗) − (∗) to denote the deviation from this average. Depth-averaging
the y momentum equation then gives

Ro

(
∂v

∂t
+

∂

∂x
u′v′

)
= ε2E∇2

Hv, (5.2)

where we have assumed that u = 0 by symmetry (and hence u′ = u). For ε2E � Ro we
can write

∂v

∂t
= − ∂

∂x
u′v′, (5.3)

hence a depth-independent jet forms due to the correlation between the along-front and
cross-front velocity fields. The cross-front velocity displaces the along-front thermal wind
jets in the cross-front direction. This results in a cross-front flux of along-front momentum
which accelerates the along-front flow in regions between the center (x = 0) and frontal
edges. This component of the along-front flow is mixed vertically on the fast timescale, τ ,
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(a) (b)

(c) (d)

Figure 10: Plots of the terms in the horizontal momentum balances for E = 0.01 and
Ro = 0.1 ((a), (b)) and Ro = 1 ((c), (d)). Calculations use the data from our numerical
simulations at t = 100 and x = 0.

leading to the formation of a depth-independent flow. For the initial condition considered
here, the depth average of the along-front velocity is exactly zero. However, as the front
evolves, this depth-independent flow can become large and acts to disrupt the TTW
balance.

Splitting the along-front velocity into depth-average and deviation quantities, we can
write the horizontal momentum equations as

Ro
Du

Dt
− v′ − v = −∂p

∂x
+ E∇2

εu, (5.4)

and

Ro

(
Dv′

Dt
+
∂v

∂t
+ u

∂v

∂x

)
+ u = E∇2

εv. (5.5)

If we depth-average equation 5.4 we find that the Coriolis term −v is balanced by the
depth-independent component of the pressure gradient, −∂p/∂x, i.e. geostrophic balance.
Hence

Ro
Du

Dt
− v′ = −∂p

′

∂x
+ E∇2

εu. (5.6)

Assuming that u and v′ remain order 1 fields, we have that ∂v/∂t = O(1) by equation
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(a) (b)

Figure 11: (a) plot of v(x, z) at t = 100. (b) plot of v showing the structure of the
depth-independent jet, b0 is included for comparison.

5.3. However, we note that over the long timescale, T = Ro t, we can have v = O(1/Ro).
Therefore the term Rou∂v/∂x in equation 5.5 may appear in the leading order balance.

If we now assume that Ro is small, we obtain the leading order velocity balance

−v′0 = −∂p
′
0

∂x
+ E

∂2u0
∂z2

, (5.7)

and (
Ro

∂v

∂x
+ 1

)
u0 = E

∂2v′0
∂z2

, (5.8)

hence v is a background geostrophic flow which modifies the absolute vorticity of the
system. We note that v will form spontaneously and evolve throughout time in contrast
to the imposed geostrophic flow often used in frontal problems (e.g. Thomas & Lee
(2005)). Equations 5.7 and 5.8 are only asymptotically valid in the limit of small Rossby
number, however, examining the momentum balances we find that this approximation is
accurate outside the region of initial frontogenesis for all parameter values tested.

Equations 5.7 and 5.8 can be solved to obtain a modified TTW solution for the leading
order velocity

u0 =−
√

Eg

Ro ∂v∂x + 1
K ′′0

(
z√
Eg

;
1√
4Eg

)
∂b0
∂x

, (5.9a)

v′0 = −
√
Eg K0

(
z√
Eg

;
1√
4Eg

)
∂b0
∂x

, (5.9b)

where Eg is the Ekman number modified by the geostrophic flow

Eg =
E√

Ro ∂v∂x + 1
. (5.10)

The O(Ro) buoyancy correction can now be calculated as

b1 = −
√
Eg Pr

Ro ∂v∂x + 1
K0

(
z√
Eg

;
1√
4Eg

)[
∂b0
∂x

]2
, (5.11)
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by the same steps described in Crowe & Taylor (2018). Combining our results, the
background buoyancy field satisfies

∂b0
∂T

=
∂

∂x

 Eg Pr

(g0 + 1)
3/2

K ′20

(
z√
Eg

;
1√
4Eg

)(
∂b0
∂x

)3
 , (5.12)

and from equation 5.3,

∂g0
∂T

=
∂2

∂x2

 Eg

(g0 + 1)
1/2

K ′20

(
z√
Eg

;
1√
4Eg

)(
∂b0
∂x

)2
 , (5.13)

where

g0 = Ro
∂v

∂x
, (5.14)

is the vertical vorticity associated with the depth-independent geostrophic flow and Eg =
E/
√

1 + g0. In the absence of a depth-independent flow (v = 0), Eq. 5.9 reduces to
TTW balance. The expressions in Eqns. 5.13 and 5.12 can therefore be viewed as a
generalization of the theory described in Crowe & Taylor (2018).

To test these predictions we compare the horizontal velocity fields from a range of
simulations with both our original TTW predictions and our modified TTW solution
from equation 5.9. The TTW and modified TTW solutions are calculated using b0 and
g0 from the simulations. Figure 12 shows a comparison between the numerical cross-
front velocity and our two analytic predictions; TTW balance and the modification to
this balance given in Eq. 5.9. We can see that the modified TTW balance very closely
matches the numerical profiles with a difference of less than 1% in all cases. Since the
balance described in equations 5.7 and 5.8 is found to be accurate, we conclude that the
accuracy of our spreading rate predictions depends on how large the geostrophic flow
becomes for each pair of parameters, (Ro,E).

Figure 13(a) shows the magnitude of g0 = Ro∂v/∂x from our numerical simulations
at x = 0 and T = 100 as a function of E and Ro. Figure 13(b) shows the maximum
relative error between the TTW and modified TTW cross-front velocity (u) solutions
as a function of E and g0. From Figure 13.(a) we can see that g0 can become large for
small values of E. Hence, from Figure 13.(b), the magnitude of the cross-front velocity
can change significantly; by around 30% for E < 0.05. We note that even a large g0
has very little effect on the cross-front velocity in the case of large E. For large E,
the horizontal momentum balance is controlled by the dominant pressure gradient and
vertical diffusion terms. Therefore the effect of changing the relative rotation is less
significant than in the case of small E where the horizontal momentum balance reduces
to thermal wind balance between the pressure gradient and rotation term. Interestingly
we do not see much variation with Ro since both g0 and b0 evolve on the slow timescale T
and there remains no explicit Ro dependence in equations 5.12 and 5.13. This is consistent
with Figure 13.(a) where any weak Ro dependence likely arises through Ro dependent
processes such as the time taken for the system to equilibrate and begin spreading via
shear dispersion and the effects of horizontal diffusion.

From equation 5.12 we can define a refined effective diffusivity function, Qg, by

Qg(x; E) =
Eg

(g0 + 1)
3/2

K ′20

(
z√
Eg

;
1√
4Eg

)
, (5.15)
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(a) (b)

(c) (d)

Figure 12: Comparison of the cross front velocity field between numerical simulations,
TTW balance and the modified TTW balance (Eq. 5.9) for (a) Ro = 0.1, E = 0.01,
(b) Ro = 1, E = 0.01, (c) Ro = 0.1, E = 0.1 and (d) Ro = 1, E = 0.1. The fields are
evaluated at x = 0 and T = 100.

(a) (b)

Figure 13: (a) g0 determined from our simulation results at T = 100 and x = 0 as a
function of E and Ro. (b) The maximum relative error between the TTW and modified
TTW cross-front velocity fields (u) as a function of E and g0.
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(a) (b)

Figure 14: (a) g0 determined from our simulation results as a function of x and T for
E = 0.01 and Ro = 1. (b) Qg(x,E) as a function of x and T for E = 0.01 and Ro = 1.
Qg is determined using equation 5.15 and g0 from our simulations.

so equation 5.12 can be written as

∂b0
∂T

=
∂

∂x

[
PrQg(x; E)

(
∂b0
∂x

)3
]
. (5.16)

We note that Qg has a complex dependence on x and T so equation 5.16 cannot be solved
using a similarity solution. Figure 14 shows g0 and Qg calculated from our numerical
simulation for E = 0.01 and Ro = 1. We can see that g0 is negative throughout the
middle of the frontal region corresponding to a higher effective diffusivity. At the frontal
edges g0 is strongly positive resulting in a decrease to the effective diffusivity.

Earlier, in the case of g0 = 0 we found that the frontal width scales as x ∼ γT 1/4 where
γ ∼ Q1/4 due to the nonlinear nature of the spreading. If we assume that the modified

spreading parameter is γg ∼ Q1/4
g we find that the spreading rate is less sensitive to the

effects of a geostrophic flow than the velocity fields due to the 1/4 power dependence.
Additionally, the spreading rate increases in the center of the domain and decreases at the
edges, therefore averaging γg across the domain gives a value very similar to the original
predicted value of γ. Therefore we do not expect significant change in the spreading rate
which is consistent with the accuracy of our original predictions in Figure 3.

6. Scaling for vertical velocity

A distinguishing feature of the circulation around the front is the appearance of large
vertical velocities at the edges of the front. This is visible in the streamfunction associated
with the simulations and the theory for the case plotted in Figure 4 through a bunching
of the streamlines near x = ±3. However, the theory described in Crowe & Taylor (2018)
did not provide a prediction for the magnitude of the vertical velocity. In this section we
will extend the theory to estimate the magnitude of the vertical velocity and the width
of the regions of enhanced up/downwelling and test this prediction using the numerical
simulations.
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(a) (b)

Figure 15: Plot of the centerline buoyancy (solid line) and centerline vertical velocity
(dashed line) for E = 0.1 and (a) Ro = 0.25, (b) Ro = 1 at T = 200.

The theoretical prediction for the leading order vertical velocity is

w0 = EK ′0

(
z/
√
E
) ∂2b0
∂x2

. (6.1)

However, since our similarity solution for b0 (Eq. 4.2) is piecewise with infinite curvature
(∂2b0/∂x

2) at the frontal edges, the theory is unable to predict the strength of the
up/down-welling that occurs at the edges of the front. Figure 15 shows the centerline
values of the buoyancy and the vertical velocity for two different values of Rossby number.
We can see than the maximum vertical velocity occurs at the edge of the front where the
curvature is high and when the frontal edges are sharper (i.e. a greater curvature confined
to a narrower region), the vertical velocity appears in thin bands of strong up/down-
welling which correspond to the high curvature regions. We note that for Ro = 1 these
bands become very narrow and may be susceptible to numerical errors.

Though we cannot predict the functional form of ∂2b0/∂x
2 and hence w0 near the edges

of the front from our analytic solution, we can use the similarity solution to estimate a
scaling for the maximum vertical velocity. From Crowe & Taylor (2018) the buoyancy
field, b0, is determined by the equation

∂b0
∂T

=
∂

∂x

[
PrQ

(
∂b0
∂x

)3

+
ε2E

Ro2Pr

∂b0
∂x

]
, (6.2)

where Q(E) is defined in equation 4.8. The similarity solution arises as the solution of
this equation when the second term in brackets is small, corresponding to an approximate
balance between time evolution and shear dispersion. Near the edges of the front, where
the curvature is high, the term describing horizontal diffusion becomes important and
smooths out the singularity in F ′′.

We now assume that there are thin regions at the edges of the front where this
smoothing occurs. In these regions we assume that the horizontal diffusion term is
similar in magnitude to the other two terms and the curvature of the front, ∂2b0/∂x

2, is
approximately constant. Using the similarity solution we have that

PrQ
∂

∂x

(
∂b0
∂x

)3

∼ − η

4T

√
1− π2η2

16
, (6.3)
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and
ε2E

Ro2Pr

∂2b0
∂x2

∼ − ε2E

Ro2Pr

π2η

16γ2T 1/2

1√
1− π2η2

16

. (6.4)

Balancing these two terms gives that

1− π2η2

16
∼ ε2E

Ro2Pr

π2T 1/2

4γ2
, (6.5)

and allows us to estimate the width of the smoothing regions by writing

η = ±
(

4

π
− χ

)
, (6.6)

for small region width χ to get

χ ∼ ε2E

Ro2Pr

πT 1/2

2γ2
. (6.7)

When the edges spread to fill the whole domain we have χ ∼ 1 and recover the result from
equation 4.6. We can now use equation 6.5 to estimate the magnitude of the curvature
near the frontal edge (η ≈ ±4/π) as

∂2b0
∂x2

∼ ∓ Ro
√
Pr

2εγ
√
E T 3/4

, (6.8)

and since

w0 = EK ′0
∂2b0
∂x2

, (6.9)

the maximum vertical velocity (occurring at z = 0) scales as

w0 ∼ ±ws, (6.10)

where

ws =
Ro
√
Pr C(E)

ε T 3/4
, (6.11)

and

C(E) =

√
E|K ′0(0)|

(12π2Q)1/4
. (6.12)

We can also predict that the width of the bands of enhanced vertical velocity scales as

γ T 1/4χ ∼ ∆xw =
ε2E

Ro2Pr

πT 3/4

2γ
. (6.13)

Note that T = Ro t so these results can also be written in terms of the time t with a
different Rossby number scaling. Using the asymptotic behaviour of K ′0 and Q shown in
Crowe & Taylor (2018) we find that

C(E) ∼

{
E1/4, E � 1,

E−3/4, E � 1,
(6.14)

so we expect the vertical velocity to be small for both very small and very large values
of E, assuming that the regions of high vertical velocity are still thin (χ� 1).

We now use the numerical results to test these predictions. There are, however, some
limitations to the numerical solution due to the resolution. For large Ro or small E the
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(a) (b)

Figure 16: (a) log[C(E)] as a function of E, note that for small E, C ∼ E1/4 and for
large E, C ∼ E−3/4 from equation 6.14. (b) log [∆xw/∆x] as a function of E and Ro for
T = 200. The black curve is the contour ∆xw/∆x = 1.

(a) (b)

Figure 17: (a) log[maxw] diagnosed from the numerical solutions as a function of E and
Ro at T = 200. (b) αw as a function of E and Ro over the time interval T ∈ [100, 350].
The curves in white are (a) Tmax = 2000 and (b) Tmax = 3500 and the curves in black
are contours of ∆xw/∆x = 1 at (a) T = 200 and (b) T = 100. We expect the theoretical
predictions to be valid between the two curves.

regions of enhanced vertical velocity can become very narrow and if they are of a scale
similar or smaller than the grid size, ∆x, the vertical velocity will likely not be accurate.
We therefore consider the quantity ∆xw/∆x when examining each simulation to see if
the regions of strong vertical velocity are likely to be well resolved.

Figure 16(a) shows C(E) as a function of the Ekman number, E. The coefficient C(E)
and hence the vertical velocity are maximum for E ' 1. Figure 16(b) shows the ratio of
the predicted width of the region with enhanced vertical velocity to the horizonal grid
spacing used in the simulations, i.e. log[∆xw/∆x]. Here ∆xw is calculated at T = 200.
The black contour indicates ∆xw/∆x = 1. For all cases below this line, the grid spacing
will be insufficient to capture the maximum vertical velocity.

Figure 17(a) shows the maximum vertical velocity at T = 200 as diagnosed from
the numerical simulations as a function of E and Ro. The curves in white shows the
region in which shear dispersion is dominant (the region below the curve) and the
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curves in black show the region where the regions of high curvature are smaller than
the grid scale (the region below the curve). The theoretical prediction can be tested in
the region between the white and black curves. The maximum vertical velocity increases
with increasing E for small E and decreases with increasing E for large E. This is
consistent with the predictions made in equation 6.11 since C also has this behaviour.
However, the maximum vertical velocity in the simulations is seen at E ' 0.1 while the
theory predicts a maximum vertical velocity (and C) at E ' 1. The maximum vertical
velocity diagnosed from the simulations increases approximately linearly with increasing
Ro, which is consistent with the theoretical prediction.

For larger Rossby numbers the effects of the O(Ro) vertical velocity component may
also become important and based on shape of the streamfunction from figure 4 we expect
that the O(Ro) vertical velocity will oppose the leading order component and hence
reduce the maximum up/down-welling. Since the leading order streamfunction is still
accurate for large E (see figure 5(a)), we can conclude that the effects of the O(Ro)
velocity component will be small for E & 0.1.

In order to determine the time dependence of the vertical velocity we fit max[w] to the
curve

max[w] =
γw

(T + T0)αw
, (6.15)

to determine the value of the exponent, αw. Figure 17.(b) shows the numerical values of
the exponent calculated over a time interval of T ∈ [100, 350], we can see that αw ≈ 3/4
in the region between the two curves where we expect the theory to be valid; this is in
agreement with the predictions made in equation 6.11.

7. Conclusions and Discussion

We have used fully nonlinear numerical simulations to consider the evolution of a
front in the presence of strong vertical mixing, represented here through a large constant
viscosity and diffusivity. As predicted in Crowe & Taylor (2018), vertical mixing induces
spreading of the front via shear dispersion and the spreading rate diagnosed from the
simulations agrees with the theory. The simulated velocity and buoyancy fields generally
compare well with the theoretical predictions with a better agreement between the theory
and simulations for larger Ekman numbers.

The accuracy of the theory seems to depend only weakly on the Rossby number and
the theory is accurate even for O(1) Rossby numbers despite the fact that the theory was
based on an asymptotic analysis which was valid in the limit of small Rossby numbers.
This can be explained by the Rossby number entering primarily through the formation
of depth-independent geostrophic jets, the evolution of which do not explicity depend
on Rossby number. Interestingly, for Ro = 1, E = 0.1, the theoretical prediction for the
streamfunction is accurate to within 20%, while the spreading rate is accurate to within
about 5%. It is not immediately apparent why the spreading rate is less sensitive to the
formation of geostrophic jets than the velocity field though this may be a consequence
of the functional dependence.

Despite the theory being derived for the TTW limit where the Ekman number is
assumed to be order 1 and much larger than the Rossby number, we find that it is valid for
a much larger range of E with significant discrepancies only for E = O(0.01). For example
we observe close (within 20%) agreement between the theory and numerics when Ro is
one order of magnitude larger than E. We have presented a refined theory which, while
only asymptotically valid for small Ro and large E, accurately describes the evolution
of the system and the formation of a depth-independent geostrophic jet for small E and
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large Ro. For larger Rossby numbers or smaller Ekman numbers the solution is driven
away from TTW balance by nonlinear effects such as surface fronotgenesis (McWilliams
2017) and nonlinear Ekman transport (Stern 1965; Niiler 1969; Thomas & Lee 2005).
We note that the formation of a geotrophic jet requires frontal edges so only occurs in
finite width fronts. Therefore our TTW solution is valid for the Garrett & Loder (1981)
case of small E and Ro examined in Crowe & Taylor (2018).

For O(1) Rossby numbers and small Ekman numbers the adjustment from an initially
depth-independent front can cause surface frontogenesis, although for the parameters
considered here the increase in the horizontal buoyancy gradient is modest. In the absence
of frictional and diabatic effects, other factors such as a background strain or unbalanced
flow have been shown to sharpen fronts towards a discontinuity (Hoskins & Bretherton
1972; Blumen 2000). It remains unclear whether a discontinuity could develop in response
to TTW flow alone. For all Rossby numbers considered here, frontogenesis only occurs
during a transient and eventually gives way to frontal spreading as predicted by the
theory.

Finally, we derived a new scaling for the vertical velocity. This scaling agrees with
the numerical simulations as long as the dominant balance in the buoyancy equation is
between time dependence and shear dispersion (the horizontal diffusion is small) and the
region of enhanced vertical velocity is sufficiently resolved in the numerical simulation.

A dimensional vertical velocity can be obtained from the theoretical prediction (W =
∆bH2/(fL2)) using typical parameters for upper ocean fronts. For example, with ∆b =
10−3ms−2, H = 100m, L = 3km and f = 10−4s−1 the vertical velocity scale is W ≈
10−2ms−1. Numerically we find that w ∼ 10−2 corresponding to a dimensional vertical
velocity of w∗ = Ww ∼ 10−4ms−1 or 10m/day. This prediction is of the same order of
magnitude as vertical velocity diagnosed from ocean models (e.g. Mahadevan & Tandon
(2006); Capet et al. (2008)), suggesting that the vertical circulation associated with
turbulent thermal wind balance could contribute significantly to the vertical velocity at
fronts.

The model presented in Crowe & Taylor (2018) and analyzed here parameterizes
turbulent mixing through a depth-dependent viscosity and diffusivity. While this is
very useful from a theoretical perspective, turbulence might not be well-described by a
viscous/diffusive closure. The assumption of a time-independent viscosity and diffusivity
effectively decouples the influence of the front on turbulence. For example, in the limit of
weak mixing, the slumping of the front can modulate the vertical density gradient, with
stable stratification developing in some regions of the flow. This could suppress turbulence
and the associated rate of vertical mixing (see e.g. Taylor & Ferrari (2010)). Large-
eddy simulations would be a useful tool to investigate details of the coupling between
turbulence and the evolution of the front.

While the theory presented in Crowe & Taylor (2018) allowed for a three-dimensional
front (including for example horizontal meanders), it neglects any non-TTW components
of the flow. This prevents the development of baroclinic instability. Baroclinic instability
and the resulting eddies extract potential energy from the front and cause the front to
slump in the cross-front direction (e.g. Fox-Kemper et al. (2008)). A recent study by
Bachman & Taylor (2016) investigated the combined effects of baroclinic instability and
TTW-driven flow on the equilibrium stratification at a front. However, to our knowledge
the evolution of an isolated front under the combined effects of baroclinic instability and
TTW-driven shear dispersion has not been investigated.

The processes that act to broaden a front, including shear dispersion and baroclinic
instability, can balance other processes acting to sharpen the front, ultimately controlling
the frontal width. The frontal width (and hence the associated horizontal density gradi-
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ent) is a crucial parameter for parameterizations of submesoscale processes (Fox-Kemper
et al. 2011; Bachman et al. 2017). Since many fronts are under-resolved in global ocean
and climate models, an improved desription of the frontal width could lead to improved
parameterizations of submesoscale processes.
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