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Delineating the molecular and phenotypic spectrum of the

SETDI B-related syndrome

Marjolein J. A. Weerts et al.*

PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including
intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely)
pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on
characterizing an expanded patient cohort.

METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence
variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and
genome-wide methylation assays.

RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of
global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and
variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts
physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more
severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of
SETD1B variants.

CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape
of newly diagnosed patients with the SETD1B-related syndrome.

Genetics in Medicine; https://doi.org/10.1038/s41436-021-01246-2

INTRODUCTION

SETD1B encodes a lysine-specific histone methyltransferase that
methylates histone H3 at position lysine-4 (H3K4me1, H3K4me2,
H3K4me3) as part of a multisubunit complex known as COMPASS
[1, 2]. The SETD1B protein consists of 1,966 amino acids and has
several (presumed) functional domains (Fig. 1). The N-terminus
contains an RNA recognition motif (RRM), whereas the middle
region is characterized by two long disordered regions that differ
from other homologs [3, 4], a conserved lysine-serine-aspartic
acid (LSD) motif [5] and a coiled-coil structure. At the C-terminus,
SETD1B harbors a catalytic SET domain crucial for histone
methyltransferase activity, bordered proximally by the N-SET
domain including a conserved WDR5-interacting (WIN) motif [6],
and distally by the post-SET domain. H3K4me3 is enriched at
promoter and transcription start sites whereas H3K4me1l and
H3K4me2 are enriched at enhancer sites, therefore being
associated with active gene transcription and euchromatin [7].
Indeed epigenetic changes have been observed in both animal
models and patient material [8-10] at promoters and intergenic
regions, confirming that SETD1B epigenetically controls gene
expression and chromatin state. In addition, SETD1B is constrained
for both missense and loss-of-function variants [11].

Consistent with this, pathogenic variants in SETD1B have been
associated with a syndromic intellectual developmental disorder
including seizures and language delay (IDDSELD, OMIM 619000).
To date, clinical features have been described for 11 affected
individuals with (likely) pathogenic SETDIB sequence variants
[8, 12-15]. Individuals with microdeletions encompassing SETD1B
have also been described [8, 16-19]; however, most of these

deletions encompass additional genes making phenotypic com-
parisons challenging. In this study, we further delineate the clinical
phenotype associated with SETD1B sequence variants, by describ-
ing 36 additional individuals. Comparing these new cases to the
published ones provides a comprehensive molecular and clinical
characterization of the SETD1B-related syndrome. In addition,
using protein modeling, in vitro assays, and genome-wide
methylation signatures we investigate the effects of selected
variants. Together, this expands the molecular and phenotypic
landscape associated with SETD1B variants.

MATERIALS AND METHODS

Cohort inclusion

After identification of three individuals with SETD1B variants at Erasmus MC
Clinical Genetics, additional cases were identified using GeneMatcher [20]
and the Dutch Datasharing Initiative [21] and via our network of
collaborators. Individuals were included based on SETDIB variants
detected in research or routine clinical diagnostics. Affected individuals
were investigated by their referring physicians.

Next-generation sequencing of affected individuals

Full details are provided in the Supplementary Methods and Supplemen-
tary Fig. S1.

Variant classification

SETD1B variants were initially classified as variants of uncertain significance
(VUS), likely pathogenic, or pathogenic at the performing laboratory or
local referring sites. Literature and public database search identified 30
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Fig. 1

Schematic representation of SETD1B variants in this study cohort (major circles, top labels) and in literature (minor circles, bottom

labels). The RRM (residues 94-182), coiled-coil (CC) (residues 1173-1204), N-SET (residues 1668-1821), SET (residues 1822-1948) and post-SET
(residues 1949-1966) domains in respectively magenta, orange, cyan, green and brown, the largely disordered regions (residues 320-682 and
residues 1338-1640) in light gray, and the LSD (exon 5, residues 577-583) and WIN (exon 12, residues 1745-1750, within N-SET) motifs both

in blue.

individuals with SETD1B sequence variants (Supplementary Table S1).
Reclassification of SETD1B sequence variants was performed according to
American College of Medical Genetics and Genomics/Association for
Molecular Pathology (ACMG/AMP) Standards and Guidelines [22] (Supple-
mentary Table S1), using reference sequence NM_001353345. For retrieval
of population allele frequencies and in silico predictions Alamut® Visual
2.15 (Feb 2020) was used.

Facial gestalt and severity scoring analysis

To generate a composite facial gestalt, Face2Gene (FDNA Inc., Boston, MA,
USA) research application was used (default settings). Details of severity
scoring are described in Supplementary Methods.

Structural protein modeling

Sequences were retrieved from Uniprot, SWISS-MODEL [23] to produce
homology models; RaptorX [3] for predicting secondary structure and
disorder; ConSurf [24] for conservation analysis; and eukaryotic linear motif
(ELM [25]) for short linear protein motif assessment. Models were manually
inspected, and variants evaluated, using Pymol (pymol.org).

Experimental procedures

For in vitro experiments flag-tagged wild type (kindly provided by David
Skalnik, Indiana University [5]) and variant SETD1B protein and HA-tagged
ASH2 were overexpressed in HEK293 cells. Protein expression, isolation,
western blotting, and immunocytochemistry were performed following
standard procedures [26-28]. Genome-wide methylation profiles were
obtained as described [8]. Details on experimental procedures and
statistical analysis are provided in Supplementary Methods.

RESULTS

Molecular spectrum of SETD1B sequence variants

A total of 36 individuals with either heterozygous (n =32, n=28
confirmed de novo, n=1 inherited from affected parent, n=1
inherited from unaffected parent), compound heterozygous (n =2,
biallelic inheritance from unaffected parents) or homozygous (n =2,
siblings, biallelic inheritance from unaffected parents) SETD1B
sequence variants were included in this cohort. Thirty-three variants
were detected, of which 2 were recurrent. This includes 8 truncating
(n =6 nonsense, n = 2 frameshift), 1 extension, 1 in-frame inversion,
and 23 missense variants (Fig. 1). Fourteen variants were classified as
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pathogenic, ten as likely pathogenic, and nine as uncertain
significance. For individuals with VUS, no alternative candidate
disease-causing variant was identified. In literature, 26 additional (4
recurrent) SETDTB variants have been reported including 7
truncating, 1 splicing, 1 extension, 3 in-frame insertions or deletions,
and 14 missense variants (Fig. 1). Variants are distributed along the
protein (Fig. 1), with the majority of (likely) pathogenic missense
variants located within the SET domain region.

Clinical spectrum

The cohort consists of 24 males and 12 females, whose age at last
evaluation ranged from 1 to 44 years (median 9 years, interquartile
range [IQR] 6-15 years). Table 1 gives an overview of the core
clinical phenotype, and Fig. 2 displays the facial appearance of
individuals for whom photographs were available. The phenotype
of individuals with VUS (either biallelic or heterozygous) matched
that of the overall cohort (Table 2). More details can be found in
Supplementary Case Reports and Supplementary Fig. 2-4.

Development and neurological findings

Most individuals were born after an uneventful pregnancy at full
term, with an unremarkable neonatal period and anthropo-
morphic measurements in the normal range. Seven individuals
(7/31, 23%) had postnatal hypoglycemia. Virtually all individuals
(34/36, 94%) showed global developmental delay in early infancy.
Notably, individuals 14 and 16 without documented develop-
mental delay are the youngest individuals (respectively 2 and 1
years old). Motor development was delayed in 32 individuals (32/
36, 89%), with independent ambulation acquired between 1.0 and
45 years of age (median 1.6, IQR 1.3-2.5, one individual is
nonambulatory). Motor performance remained an issue, with
clumsiness, coordination difficulties, and poor fine motor move-
ments reported. Hypotonia was documented for 16 individuals
(16/35, 46%), often manifesting in neonatal or childhood period.
Language development was delayed in the majority of individuals
(33/36, 92%), with first words acquired between 0.5 and 3.0 years
(median 2.0, IQR 1.1-2.1). Five individuals were nonverbal at time
of data collection (15%, respectively 2.5, 3, 3.5, 11, and 19 years
old), and at least five additional individuals (15%) speak far fewer
words than appropriate for their age. Regression of previously
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Individual 1 (P):
p.(His8fs)

Individual 13 and mother (P):
p.(Glud12fs)

Individual 15 (V):
p.(Pro545Arg)

Individual 2 (P):
p.(His8fs)
=Tt

M.J.A. Weerts et al.

Individual 3 (V):
p.[(His10GIn);[(Arg927His)]

Individual 18 (V):
p.(Arg982Gin)

Individual 22 (LP):
p.(Arg1424Gin)

Individual 24 (P):
p.(GIn1666*)

Individual 27 (LP):
p.(Arg1792Trp)

Individual 29 (LP):
p.(Lys1827Arg)

Individual 33 (P :
p.(Glu1948Lys)

Individual 36 (P): p.(Glu1948Lys)

Individual 34 (P):
p.(Glu1948Lys)

te209

Individual 35 (P):
p.(Glu1948Lys)

composite (LP/P/V) composite LP/P

Fig. 2 Facial images of affected individuals. Photographs of 16 individuals (plus one affected mother) with indicated SETD1B variants.
Dysmorphic features included, among others, a slightly elongated face, high anterior hairline, thick arched or straight eyebrows, deep-set
eyes, a prominent nose, and thin upper lips. Lower right corner shows facial composite images for all individuals, or only those with a likely
pathogenic or pathogenic variant (note: individual 13 and mother were not included in the composite, given the image angle and glasses
hindering Face2Gene program analysis). LP likely pathogenic variant, P pathogenic variant, V variant of uncertain significance.

Structural modelling of variants

The eight truncating variants (p.[His8fs], p.[Phe95*], p.[Tyr96*],
p.[Glu412fs], p.[Arg1329%], p.[Arg1524%], p.[GIn1666%],
p.[Ala1730*]) are likely to be targeted for nonsense-mediated
decay, but if not would result in removal of the SET region
eliminating catalytic activity. Variants p.(His10GIn) and
p.(Glu94Asp) are located in a disordered region preceding the

Genetics in Medicine

RRM (Figs. 1 and 3a) and could affect the specificity of the potential
interactions mediated by RRM’s N-terminus [28]. The nucleotide
inversion leading to p.(Asn113_Asp121delins9) and substitution
p.(Met170Thr) are located in the canonical (3;0;B,B30,8s RRM
region, whereas p.(Gly195Val) is located at the C-terminal loop of
a3 (Fig. 3a). Residues 113-121 are located in the a; helix known to
participate in protein—protein interactions in RRM proteins [28].
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Table 2.

Summary of main phenotypic features in this study cohort and in literature.

This study

Literature

This study This study

Variant classification (ACMG/AMP) (Likely) pathogenic

Variant zygosity Heterozygous
17/28 (61%
20/28 (71%
16/20 (80%
15/19 (79%
26/28 (93%

Sex (male) )
)
)
)
)
25/28 (89%)
)
)
)
)
)

Seizure

Seizure type at onset (generalized)

Response to treatment (yes/partly)

Developmental delay

Motor development

26/28 (93%

21/25 (84%

18/28 (64%

15/27 (56%
6/25 (24%

Language development
Intellectual disability

Autism/autistic behavior
Other behavioral issues

Sleep disturbance

(Likely) pathogenic
Heterozygous
8/11 (73%) ( (
10/10 (100%) ( (

8/9 (89%) 1/1 ( (

3/7 (43%) ( (
11/11 (100%) ( (

7/9 (78%) 3/4 (75%) 4/4 (100%)
11/11 (100%) ( (
11/11 (100%) ( (

7/11 (64%) ( (

3/7 (43%) ( (

( (

Uncertain significance Uncertain significance
Biallelic

4/4 (100%)

4/4 (100%)

2/3 (66%)

3/4 (75%)

4/4 (100%)

Heterozygous
3/4 (75%)
4/4 (100%)
100%)
1/3 (33%)
4/4 (100%)

3/4 (75%)
3/3 (100%)
3/4 (75%)
4/4 (100%)
2/4 (50%)

4/4 (100%)
4/4 (100%)
3/4 (75%)
4/4 (100%)
2/4 (50%)

clinical characteristics.

As information on the different features was not always available for each individual, the denominator of the frequencies differs between the different

ACMG/AMP American College of Medical Genetics and Genomics/Association for Molecular Pathology.

Furthermore, the RRM domain interacts with COMPASS compo-
nent WDR82 [5]. Thus, substitution of this 9-residue stretch could
severely compromise the RRM fold and its interactions. p.-
(Met170Thr) and p.(Gly195Val) could affect substrate recognition
of RRM because both residues are involved in RNA binding [29].
p.(Thr281lle) and p.(Thr318Met) are located downstream of the
RRM, in a disordered serine, threonine and proline-rich region
containing numerous predicted phosphorylation sites [25]. Hence,
p.(Thr281lle) and p.(Thr318Met) might affect the phosphorylation
landscape of this region. Substitutions p.(Arg429Trp), p.(Pro545Arg),
p.(Pro698Ser), p.(Pro793arg), p.(Arg927His), p.(Arg982GIn), p.(Ala1010-
Val), p.(Ala1129Val), p.(Pro1328Ser), and p.(Arg1424GlIn) are all located
in the middle, largely disordered region of SETD1B. The middle
portions of Setd1 proteins are divergent [1], suggesting they may
have a role in differential genomic targeting of COMPASS through
interaction with different targeting proteins. This role might be
affected by the mostly nonconservative nature of these substitutions.
p.(Ala1129Val), however, is predicted to introduce a noncanonical 5’
splice donor site at nucleotide position ¢.3384, which would result in a
truncated protein p.(Ala1129fs) with eliminated SET catalytic domains.
p.(Arg1748Cys) is located in the WIN motif (Fig. 3a) and expected to
significantly decrease interaction between SETD1B and WDR5, which
is essential for COMPASS assembly and SETD1B participation in H3K4
methylation [6]. Substitutions p.(Arg1792Trp), p.(Arg1825Pro), and
p.(Lys1827Arg) are located at the interface with the nucleosome
(Fig. 3a) and therefore likely affect interaction with histones and
complex  stability. Variants  p.(Ala1901Val),  p.(Ala1901Glu),
p.(Tyr1941fs), and p.(Glu1948Lys) are located in the catalytic SET
domain (Fig. 3a). Ala1901 is situated in a loop that is part of the S-
Adenosyl methionine (SAM) substrate-binding pocket, but is facing
away toward an opposing {3-strand that is part of the structural core
of the SET domain. The substitution of alanine by the larger and
negatively charged glutamic acid would create a large stress on
the core of the SET domain and potentially disrupt the structural
frame maintaining the SAM substrate-binding site and interactions
with the adjacent subunits of the complex, whereas alanine to valine
substitution introduces a small physicochemical difference which is
likely to create some disturbance. p.(Tyr1941fs) would extend the
protein, altering the SET domain and post-SET region that are
involved in catalysis and cofactor binding, thus likely rendering
SETD1B inactive (Fig. 3a). This C-terminal segment is highly
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conserved [24]. It covers a substantial portion of the binding pocket
for histone H3 and the SAM substrate (including the SAM-binding
Tyr1943), and three cysteine residues that together with Arg1962
coordinate a zinc atom. Glu1948 is located in a loop adjacent to the
histone H3 binding site and, when superimposed to the yeast
COMPASS EM structure (PDB:6ven), it is found to be close to the DNA
binding surface between Set1 and Bre2 (homolog of ASH2) (Fig. 3a).
The replacement of the glutamic acid by a lysine changes the charge
of that side chain and could affect interactions of this region.

Functional evaluation of selected SETD1B variants

Based on the structural modeling, seven variants in different
regions of SETD1B were selected for in vitro studies: p.(His10GIn)
and p.(Glu94Asp) N-terminal of RRM; p.(Asn113_Asp121delins9) in
RRM; p.(Thr318Met) C-terminal of RRM; and p.(Ala1901Val),
p.(Ala1901Glu), and p.(Glu1948Lys) in the catalytic SET domain.
First, stability of SETD1B in cells was evaluated by western
blotting of wild-type and variant SETD1B overexpressed in HEK293
cells (Fig. 3b, Supplementary Fig. S4A). No significant differences
in protein levels were observed, suggesting that the evaluated
variants do not affect protein stability. Genomic targeting of
SETD1B might depend on the central region and the catalytic
domain, whereas RRM could reinforce chromatin binding [1, 30],
resulting in distribution in the nucleus and not in the nucleoli.
Therefore, SETD1B nuclear distribution of wild type and variant
was assessed by immunofluorescence of transiently transfected
HEK293 cells. Overexpressed FLAG-SETD1B was detected in the
cytoplasm and nucleus. Nuclear localization patterns of SETD1B
remained similar between wild type and variants, except for
p.(Asn113_Asp121delins9), which failed to localize to the nucleus
(Fig. 3c). Exclusion from the nucleus correlates with an inability to
bind chromatin, resulting in loss of function of this variant. As
suggested by structural modeling, Glu1948 could be involved in
interaction with COMPASS subunit ASH2. Co-transfection and
immunostaining were performed to evaluate colocalization
(Fig. 3d). Both overexpressed SETD1B and ASH2 were detected
in the nucleus and cytoplasm of transfected HEK293 cells, with a
higher colocalization correlation for wild type compared to
p.(Glu1948Lys) (Pearson’s correlation value of 0.5 and 0.3

Genetics in Medicine
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respectively). To evaluate the effect of p.(Ala1901Val), p.(Ala1901- type and variants, melting temperature (T,) was compared
Glu), and p.(Glu1948Lys), protein stability and ligand binding were (Fig. 3e, left panel; Supplementary Fig. S4C, D). The T, of
evaluated using thermal shift analysis of the catalytic domain p.(Glu1948Lys) was 1.2 °C higher compared to wild type, which
(Fig. 3e). After GST-tagged SETD1B SET domain expression of wild indicates that this substitution increases stability of the SET
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Fig. 3 Structural and functional evaluation of SETD1B variants. (a) Homology models of SETD1B domains: RRM domain (top left), based on
the crystal structure of the RRM of human SETD1A (PDB ID 3S8S, identity = 66%, QMIEAN = 0.25). The segment of Asn113 to Asp121 is colored
in blue. This region is known to support different protein—protein interactions in other RRM proteins. Met170 and Gly195 are shown as blue
sticks. Homology model of the N-SET and catalytic SET domains of SETD1B (gray cartoon), based on the EM structure of the yeast COMPASS in
a complex with a ubiquitinated nucleosome (PDB ID 6ven, identity= 40.21%, QMEAN = —5.10) (center superimposed to the template PDB,
and zoom-in panels). The region containing Arg1748 was observed more accurately in the X-ray structure of the WDR5:SETD1B Win motif
peptide binary complex (PDB ID 4es0 [6], top right): Arg1748 (blue sticks) is inserted into the pocket of WDR5 (yellow) and interacts with the
backbone oxygen atoms of Ser91, Phe133 and Cys261 (hydrogen bonds shown as yellow dashed lines). Arg1792 (blue sticks) and
the substitution by Trp (dark gray sticks) interacting with surrounding residues in the adjacent alpha helix (e.g., Glu1796, gray sticks) or with
the SWD1 subunit (RBBP5 in humans, shown in violet). The insets with Arg1825 and Arg1827 show the proximity of these residues (dark blue
sticks) to histone H2A (light blue cartoon). The SET domain containing Ala1901Val, Ala1901Glu, Tyr1941fs and Glu1948Lys was modeled more
accurately based on the crystal structure of the yeast COMPASS catalytic module (PDB ID 6chg [40], identity=62%, QMEAN = —1.78). Ala1901
and Glu1948 are presented as blue sticks in the center figure and right insets. The Ala1901Val and Ala1901Glu substitutions (dark gray sticks)
could compromise the stability of the adjacent SAM (olive sticks) binding site and the interaction with the SWD1 subunit (RBBP5 in humans,
violet cartoon), which in turn contacts ubiquitin (red cartoon). Tyr1941fs alters a segment of SET and Post-SET regions involved in catalysis and
cofactor binding (blue cartoon in center figure and right inset): SAM (olive sticks) and histone H3 (green sticks) binding pocket, the key
Tyr1943 residue (yellow sticks), three Cys and one Arg (yellow sticks) coordinating a zinc atom (shown as a sphere). The Glu1948Lys
substitution (blue/dark gray sticks in center figure and right inset) could disturb potential interactions between the flexible loops and the
adjacent subunit (Bre2, homologous to human ASH2, is shown in teal cartoon). (b) Overexpression of wild-type and variant SETD1B protein in
HEK293 cells 48 hours post-transfection assessed by western blot. CC cell control, lysate of mock transfected HEK293 cells (one-way analysis of
variance [ANOVA] p = 0.09). (c) Nuclear localization of SETD1B variants in HEK293 cells. Upper panel—SETD1B detected by anti-Flag antibody;
lower panel—overlay of nuclear staining (DAPI, cyan) and SETD1B (red); scale bar 20 pm. Images representative of 2 independent experiments
are shown. (d) Colocalization of SETD1B and ASH2 in HEK293 cells. Left to right: nuclear staining (DAPI), ASH2 (anti-HA tag), SETD1B (anti-Flag
tag), merge of ASH2 (green) and SETD1B (red); scale bar 20pm. Pearson’s r value (range: —1, negative correlation, 1, max correlation) calculated
with coloc2 plugin (Imagel), Z-stacks of min. 12 nuclei were used for the analysis. t-test **p = 0.005. (e) Thermal shift analysis of the SET
domain. Left: T,,, of GST-SETD1B proteins and GST control. Right: change in T, of the proteins in presence of SAM substrate. Two independent
protein preparations were used for the assay performed in triplicates. One-way ANOVA multiple comparison test *p < 0.05, ***p < 0.0001. (f,g)
Analysis of methylation profiles. (f) Hierarchical clustering (rows represent methylation probes, columns-samples). (g) MDS plot (control
samples in blue, proband samples in red, SETD1B cases from the database in pink). Sample numbers correspond to case numbers: individual 3
p.([His10GIn];[Arg927His]) (3.1 and 3.2 are the parents of individual 3), individual 4 p.([Glu94Asp];[Pro1328Ser]), individual 5 p.(Phe95%),
individual 7 p.(Asn113_Asp121delins9), individual 18 p.(Arg982GlIn), individual 19 p.(Ala1010Val), individual 20 p.(Ala1129Val), individual 31
p-(Ala1901Glu), and individual 33 p.(Glu1948Lys).

<

domain, which can result in disturbance of interactions within
COMPASS, perhaps at the interface between SETD1B, the
nucleosome, and the ASH2 subunit, as suggested by colocalization
analysis of this variant with ASH2 subunit (Fig. 3d). Substitutions
p.(Ala1901Val), p.(Ala1901Glu) resulted in a 0.3 °C negative and
positive shift of T, respectively, suggesting that these substitu-
tions have minor effects on thermal stability and thus on
conformation of the SET domain. However, since these substitu-
tions are predicted to influence interactions between SETD1B and
the SAM substrate, the effect on T, in presence of SAM was
evaluated (Fig. 3e, right panel). Generally, substrate-binding
stabilizes proteins resulting in an increased T,, and indeed a
mean T, increase of 0.3°C was observed for wild type. The T,
changes of the control GST-protein remained < 0.1 °C, suggesting
no contribution of GST tag to the SAM interactions. The increase of
0.17°C T,, for both p.(Ala1901Val) and p.(Ala1901Glu) indicates no
significant effect on SAM interaction.

A specific DNA methylation profile (episignature) for individuals
with heterozygous loss-of-function pathogenic SETD1B variants
has been described [8]. We performed episignature analysis for
nine individuals (individuals 3, 4, 5, 7, 18, 19, 20, 31, 33), and the
parents of individual 3 (Fig. 3f-g, Supplementary Fig. S4F).
Individuals 5 (p.[Phe95*]), 7 (p.[Asn113_Asp121delins9]), 20 (p.

p(Arg982GIn),  p.(Ala1010Val),  p.(Ala1901Val),
([Arg927His]), and p.([GIu94Asp]);([Pro1328Ser]).

p.([His10GIn]);

DISCUSSION

We report on the molecular and phenotypic spectrum of 36
individuals with sequence variants in SETDI1B, representing the
largest cohort reported to date. Previous work suggested a
possible gain-of-function effect of pathogenic variants in SETD1B
[14]; however, further reports [8, 12, 13, 15-19], including this
work, point toward a loss-of-function mechanism. Clinical features
of our cohort compared to previously reported individuals with a
(likely) pathogenic SETDIB variant [8, 12-15] are provided in
Table 2.

The emerging phenotype of SETD1B-associated disorder con-
sists of global developmental delay, language delay including
regression, intellectual disability, autism, and epilepsy. Other often
observed neurobehavioral issues include hyperactivity, anxiety,
anger, or aggressive behavior, and sleep disturbance. Importantly,
in most cases, developmental delay predates seizure onset, and
eight individuals (up to 16 years old) are seizure-free. This
indicates that SETD1B dysfunction severely impacts physiological
neurodevelopment even in the absence of epilepsy, suggesting
the condition is a developmental encephalopathy, with or without

[Ala1129Val]), 31 (p.[Ala1901Glu], and 33 (p.[Glu1948Lys]) showed
the previously established SETD1B episignature; individual 18
(p.[Arg982GIn]) showed an inconclusive result, whereas individuals
3 (p.[His10GInJ;[Arg927His], nor his parents 3.1 and 3.2), 4
(p.[Glu94Asp]);([Pro1328Ser]), and 19 (p.[Ala1010Val]) did not
show the episignature associated with heterozygous loss-of-
function SETD1B variants.

Taken together, through structural modeling and functional
analyses we provide evidence for reduced function and therefore
pathogenicity of p.(Phe95*), p.(Asn113_Asp121delins9), p.(Ala1129-
Val), p.(Ala1901Glu), and p.(Glu1948Lys), whereas functional conse-
quences and clinical significance remains uncertain for p.(Thr318Met),
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epilepsy. Previously alterations of SETD1B were mainly associated
with myoclonic absences [13] and predominantly refractory
epilepsy. Although myoclonic absence seizures were often
observed in our cohort—confirming this association—other
seizure types were regularly encountered at onset, including focal
or generalized tonic-clonic seizures. Epilepsy was well or partially
controlled in most cases, with 7/26 (27%) remaining refractory to
treatment. Brain imaging was unremarkable in most cases and
observed abnormalities were without a consistent phenotype. Our
cohort identifies a number of mild but consistent dysmorphisms
in 30 individuals, including a prominent rounded nasal tip and
bulbous nose, high anterior hairline, a thin upper lip, mild ear
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dysmorphisms, deep-set eyes, and mild hand abnormalities
including tapering fingers, brachydactyly, small hands, and nail
hypoplasia. Finally, previous work reported potential susceptibility
to malignancy in SETD1B-related disorder [12]. Malignancies were
not identified in our cohort, although this remains important for
follow-up given the relatively young age of the cohort.

To identify possible genotype-phenotype correlation, a severity
score was calculated for each individual in our cohort based on
clinical features (Supplementary Methods). No association could be
identified between the clinical severity score and the effect or
location of the corresponding SETD1B variant (Supplementary
Fig. S5). Intriguingly, there is a significant overrepresentation of
males in both our cohort and in literature, with a total of 36 males
and 16 females with SETD1B sequence variants reported (binom-
inal test two-tailed p=0.008) (Supplementary Methods). The
reason for this remains unclear. Incidence of hypotonia and
seizures did not differ between males and females in our cohort
(hypotonia respectively 12/24, 50% and 4/11, 36%; seizures
respectively 19/24, 79% and 9/12, 75%), and seizure onset was
similar (respectively range and median years 0-12, 3 and 0-11, 2).
Behavioral issues were seen more often in males than females
(autistic behavior respectively 19/24, 79% and 5/12, 42%;
hyperactivity respectively 10/23, 43% and 3/11, 27%; anxiety
respectively 9/23, 39% and 2/12, 17%; aggression respectively 9/23,
39% and 2/12, 17%; sleep disturbance respectively 8/20, 40% and
2/12, 17%), although differences were not significant between
both sexes. The clinical severity score is significantly lower in
females compared to males, especially when considering beha-
vioral features as a group (Supplementary Fig. S5). It is thus
possible that females present with a milder phenotype that may
not prompt medical evaluation. However, ascertainment bias for
the neurodevelopmental phenotype could also contribute to the
male predominance. Nevertheless, it is tempting to speculate that
sex-linked traits could affect susceptibility to clinical penetrance
and spectrum of SETD1B variants, as female-protective effects have
been proposed for other neurodevelopmental disorders [31, 32].

We report four males from three families with biallelic variants
in SETDIB, in which variants were inherited from unaffected
parents. The two consanguineous siblings (individuals 11 and 12)
share, besides the homozygous VUS in SETD1B, also homozygous
VUS in NBAS (associated with immune defects) and NOST
(associated with achalasia). If disease causing, these variants could
explain parts of the phenotypes of these individuals, but not their
neurological findings. For both individuals, as well as for the other
two individuals with biallelic SETD1B VUS, no alternative candidate
variants were identified. Pathogenicity of the biallelic variants
could not be experimentally proven by in vitro assays for p.
(His10GIn) p.(Glu94Asp) and p.(Thr318Met), nor did p.([His10GIn]);
([Arg927His]) and p.([Glu94Asp]);([Pro1328Ser]) show the episigna-
ture previously associated with heterozygous SETDIB loss-of-
function variants. However, this does not exclude the involvement
of these variants in yet unknown SETD1B functions. Given that the
phenotype of these individuals is similar to the heterozygous
individuals (Table 2), and complete absence of SETD1B is lethal in
several species [10, 33, 34], we speculate that the combined action
of both alleles in biallelic cases results in a phenotype similar to
that observed in heterozygous cases by reducing the remaining
SETD1B activity below a required threshold. A small subset of
genes that typically harbor de novo variants has already been
associated with recessive inheritance [35]. Further investigations
remain necessary to establish causality of these variants, and the
possibility of recessive inheritance of the SETD1B-related disorder.

SETD1B adds to a growing list of chromatin modifying genes
implicated in neurodevelopmental disorders. SETD1B is one of the
six H3K4 methyltransferases present in mammals, and remarkably
loss of function of each is associated with human disease (KMT2A:
Wiedemann-Steiner syndrome [OMIM 605130]; KMT2B: early-onset
dystonia [OMIM 617284]; KMT2C: Kleefstra syndrome type 2 [OMIM
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617768]; KMT2D: Kabuki syndrome [OMIM 147920]), with the latest
additions to this list being SETDTA and SETD1B (also known as
KMT2F and KMT2G, respectively). SETD1B is paralogous to SETD1A
(derived from the orthologue Set1) and both associate with the
same noncatalytic COMPASS components. SETD1A and SETD1B,
however, show nonoverlapping localization within the nucleus and
thus likely make nonredundant contributions to epigenetic control
of chromatin structure and gene regulation [1]. This might explain
why both SETDTA and SETD1B knockout mice are embryonically
lethal, albeit at different developmental stages [33]. Also, in adult
mice, SETDIB knockout is lethal and provokes severe defects in
hematopoiesis [34]. Heterozygous pathogenic variants in SETD1A
have been described in individuals with developmental delay,
intellectual disability, subtle facial dysmorphisms, and behavioral
and psychiatric problems [36] (OMIM 619056). Interestingly,
despite the anticipated nonredundant contributions of SETD1A
and SETD1B to epigenetic control, the clinical phenotype of both
related disorders shares many similarities [36]. These include global
developmental delay with motor and language delay, intellectual
disability, and behavioral abnormalities. SETD1A variants have also
been found in schizophrenia cohorts [36] and mouse models
support SETD1A involvement in schizophrenia [37]. One likely
pathogenic SETD1B variant without clinical information was
identified in a schizophrenia cohort [38], but psychosis was not
reported in our SETD1B cohort. Given the relatively young age of
the cohort, this will be an important point for follow-up. Noticeable
differences between both syndromes are the incidence of epilepsy,
which is more common for SETD1B (20% in SETD1A [36], 78% in this
cohort), and the absence of a male predominance for SETD1A (9
males of 19 cases [36, 39]).

Germline mutants of Setl, the orthologue of SETDIA and
SETD1B in Drosophila melanogaster, are embryonically lethal [10],
whereas postmitotic neuronal knockdown shows that Set? is
required for memory in flies, suggesting a role in postdevelop-
ment neuronal function [36]. In Caenorhabditis elegans, the
SETD1A/SETD1B orthologue Set-2 is important for transcription
of neuronal genes, axon guidance, and neuronal functions [9],
further underscoring the importance of both SETD1A and SETD1B
for neural function. Interestingly, whereas we found multiple
missense variants in the functional domain of SETD1B (RRM, N-
SET, SET), in SETD1A only one missense variant is reported within a
functional domain (post-SET). Finally, of the 23 missense variants
found in SETD1B, 17 are in regions that are homologous in
SETD1A. Of note, p.(Arg982GlIn) in the disordered region is at a
homologous position in SETD1A previously described in a patient
with early-onset epilepsy (NM_014712.2(SETD1A):c.2737C>T,
p.(Arg913cys]) [39]. It will be interesting to decipher the down-
stream epigenetic alterations causative for the resulting overlaps
and differences in phenotype between both syndromes.
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