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Abstract
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire 
neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma 
that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort 
of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a 
cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as 
ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene 
in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a 
PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, 
with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological 
review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant 
ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 
of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compart-
ment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months 
(for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neu-
roepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.
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Introduction

Ependymomas encompass a heterogeneous group of cen-
tral nervous system (CNS) neoplasms that occur along the 
entire neuroaxis and can affect both children and adults 
[18]. DNA methylation and gene expression profiling 
efforts in recent years have identified several molecular 
groups of ependymoma across different anatomic sites of 
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the CNS with distinct clinicopathological characteristics 
and molecular alterations or patterns [6, 7, 23–26, 40–42]. 
Within the supratentorial compartment, two molecularly 
defined types of ependymoma are characterized by recur-
rent gene fusions, one involving the gene ZFTA (formerly 
referred to as C11orf95, most frequently fused to RELA), 
and the other involving YAP1 [3, 12, 24, 26, 43]. More 
recently, several reports have expanded on the spectrum 
of gene fusions observed in supratentorial ependymoma 
and ependymoma-like tumors, in particular in the pedi-
atric setting [22, 35, 43]. Implementing these molecular 
markers into the WHO classification for brain tumors is 
of paramount importance in overcoming the challenge of 
histologically diverse tumor types and in increasing diag-
nostic accuracy. Still, many cases do not fit into the as of 
yet established CNS tumor types, leaving clinicians and 
patients with unclear or even incorrect diagnoses in further 
decision making.

Genome-wide DNA methylation profiling has emerged 
as a powerful tool for both robust classification of known 
CNS tumor entities and identification of novel and clini-
cally relevant subclasses of brain tumors with character-
istic alterations [5, 24]. Here, we describe a molecularly 
distinct subset of supratentorial neoplasms (n = 40) with 
predominant ependymal appearance identified by investi-
gation of a large cohort of DNA methylation data. These 
tumors harbor recurrent fusions involving the pleomorphic 
adenoma gene-like 1 (PLAGL1) gene.

Materials and methods

Sample collection

Tumor samples and retrospective clinical data from 40 
patients were obtained from multiple national and inter-
national collaborating centers and collected at the Depart-
ment of Neuropathology of the University Hospital 
Heidelberg (Germany). Sample selection was based on 
unsupervised visualization of genome-wide DNA meth-
ylation data that revealed a molecularly distinct group 
of tumors (n = 40) forming a cluster separate from all 
established entities. Due to the aspect of a multicenter 
cohort (23 different centers) including DNA methylation 
data that have been uploaded via the web platform https://​
www.​molec​ularn​europ​athol​ogy.​org, availability of tissue 
and/or clinical data was restricted for some of the cases. 
A proportion of data was generated in the context of the 
Molecular Neuropathology 2.0 study. Analysis of tissue 
and clinical data was performed in accordance with local 
ethics regulations. Clinical details of the patients are listed 
in Supplementary Table 1 (online resource).

Histology and immunohistochemistry

For all cases with sufficient material (n = 16), histological 
review of an H&E-stained slide was performed according 
to the World Health Organization (WHO) 2016 classifi-
cation of tumors of the CNS [17]. Immunohistochemical 
staining was performed on a Ventana BenchMark ULTRA 
Immunostainer using the ultraView Universal DAB Detec-
tion Kit (Ventana Medical Systems, Tucson, AZ, USA). 
Antibodies were directed against: glial fibrillary acid pro-
tein (GFAP; Z0334, rabbit polyclonal, 1:1000 dilution, 
Dako Agilent, Santa Clara, CA, USA), epithelial mem-
brane antigen (EMA; clone GP1.4, mouse monoclonal, 
dilution 1:1000, Thermo Fisher Scientific, Fremont, CA, 
USA), Sry-related HMG-BOX gene 10 (SOX10; clone 
EP268, rabbit monoclonal, dilution 1:100, Cell Marque 
Corp., Rocklin, CA, USA) and oligodendrocyte lineage 
transcription factor 2 (OLIG2; clone EPR2673, rabbit 
monoclonal, dilution 1:50, Abcam, Cambridge, UK).

DNA methylation array processing and copy‑number 
profiling

Genome-wide DNA methylation profiling of all sam-
ples was performed using the Infinium MethylationEPIC 
(EPIC) BeadChip (Illumina, San Diego, CA, USA) or 
Infinium HumanMethylation450 (450 k) BeadChip array 
(Illumina) according to the manufacturer’s instructions 
and as previously described [5]. Raw data were generated 
at the Department of Neuropathology of the University 
Hospital Heidelberg, the Genomics and Proteomics Core 
Facility of the German Cancer Research Center (DKFZ) 
or at respective international collaborator institutes, using 
both fresh-frozen and formalin-fixed paraffin-embedded 
(FFPE) tissue samples. All computational analyses were 
performed in R version 3.6.0 (R Development Core Team, 
2016; https://​www.R-​proje​ct.​org). Copy-number variation 
analysis from 450 k and EPIC methylation array data was 
performed using the conumee Bioconductor package ver-
sion 1.12.0 [4]. Raw signal intensities were obtained from 
IDAT-files using the minfi Bioconductor package version 
1.21.4. Illumina EPIC and 450 k samples were merged to 
a combined data set by selecting the intersection of probes 
present on both arrays (combineArrays function, minfi). 
Each sample was individually normalized by performing 
a background correction (shifting of the 5% percentile 
of negative control probe intensities to 0) and a dye-bias 
correction (scaling of the mean of normalization control 
probe intensities to 10,000) for both color channels. Sub-
sequently, a correction for the array type (450 k/EPIC) 
was performed by fitting univariable, linear models to the 
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log2-transformed intensity values (removeBatchEffect 
function, limma package version 3.30.11). The methyl-
ated and unmethylated signals were corrected individually. 
Beta-values were calculated from the retransformed inten-
sities using an offset of 100 (as recommended by Illumina). 
All samples were checked for duplicates by pairwise cor-
relation of the genotyping probes on the 450 k/EPIC array. 
To perform unsupervised non-linear dimension reduction, 
the remaining probes after standard filtering [5] were used 
to calculate the 1-variance weighted Pearson correlation 
between samples. The resulting distance matrix was used 
as input for t-SNE analysis (t-distributed stochastic neigh-
bor embedding; Rtsne package version 0.13). The follow-
ing non-default parameters were applied: is_distance = T, 

theta = 0, pca = F, max_iter = 10,000 perplexity = 20. 
DNA methylation sites of the PLAGL1 imprinted region 
(received via http://​www.​human​impri​nts.​net/#​data) were 
visualized in a heatmap using the R-package ‘pheatmap’. 
Control tissue DNA methylation samples (n = 119) as pre-
viously described [5] were used for comparison.

RNA sequencing and analysis

RNA was extracted from FFPE tissue samples using the 
automated Maxwell system with the Maxwell 16 LEV 
RNA FFPE Kit (Promega, Madison, WI, USA), according 
to the manufacturer’s instructions. Transcriptome analysis 
using messenger RNA (mRNA) sequencing of samples for 

Fig. 1   DNA methylation profiling reveals a molecular distinct group 
of neuroepithelial tumors. t-distributed stochastic neighbor embed-
ding (t-SNE) analysis of DNA methylation profiles of the 40 tumors 
investigated (NET_PLAGL1) alongside 1100 selected reference 
samples. Reference DNA methylation classes: ependymoma poste-
rior fossa group A (EPN_PFA), ependymoma posterior fossa group 
B (EPN_PFB), ependymoma spinal (EPN_SPINE), ependymoma 
with ZFTA fusion (EPN_ZFTA), ependymoma with YAP1 fusion 
(EPN_YAP1), myxopapillary ependymoma (EPN_MPE), spinal 
ependymoma (EPN_SPINE), posterior fossa subependymoma (EPN_
PF_SE), spinal subependymoma (EPN_SPINE_SE), supratentorial 
subependymoma (EPN_ST_SE) and spinal ependymoma with MYCN 
amplification (EPN_SPINE_MYC), pleomorphic xanthoastrocy-

toma (PXA), posterior fossa pilocytic astrocytoma (PA_PF), midline 
pilocytic astrocytoma (PA_MID), pilocytic astrocytoma and gangli-
oglioma (PA/GG), ganglioglioma (GG), rosette-forming glioneuronal 
tumor (RGNT), dysembryoplastic neuroepithelial tumor (DNT), 
extraventricular neurocytoma (EVN), papillary glioneuronal tumor 
(PGNT), diffuse leptomeningeal glioneuronal tumor subclass 1 and 
2 (DLGNT_1/2), glioblastoma IDH wild-type subclass mesenchymal 
(GBM_MES), glioblastoma IDH  wild-type subclass RTK I (GBM_
RTK I), glioblastoma IDH wild-type subclass RTK II (GBM_RTK II), 
glioblastoma IDH wild-type H3.3 G34 mutant (GBM_G34) and dif-
fuse midline glioma H3 K27M mutant (DMG_K27). Additional clus-
tering analyses indicated that the PLAGL1 cohort can potentially be 
further subdivided into two clusters (not shown)

http://www.humanimprints.net/#data
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which RNA of sufficient quality and quantity was available 
was performed on a NextSeq 500 instrument (Illumina) as 

previously described [31]. This was possible for 20 tumors 
within the novel group and 14 ZFTA:RELA-fused epend-
ymomas. In addition, a reference cohort of other glioma and 
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glioneuronal subtypes were used for differential gene expres-
sion analysis (YAP1:MAMLD1-fused ependymoma (n = 3), 
central neurocytoma (n = 9), extraventricular neurocytoma 
(n = 8), dysembryoplastic neuroepithelial tumor (n = 11), 
papillary glioneuronal tumor (n = 9), KIAA1549:BRAF-
fused pilocytic astrocytoma (n = 14), diffuse midline glioma 
H3 K27M mutant (n = 14) and glioblastoma IDH wild-type 
(n = 9)). Fastq files from transcriptome sequencing were 
used for de novo annotation of fusion transcripts using the 
deFuse [20] and Arriba (v1.2.0) [36] algorithms with stand-
ard parameters. All further analysis was performed in R (ver-
sion 3.6.0; R Core Team, 2019) using the DESeq2 package 
(v1.28.1) [19]. Principal Component Analysis (PCA) was 
performed after variance stabilizing transformation of the 
count data and normalization with respect to library size, 
based on the selection of the top 1,000 most variable genes 
with relative log expression normalization. Similarities 
between samples were determined by computing Manhat-
tan distances on the variance stabilized data followed by 
unsupervised hierarchical clustering. Differential expression 
testing was performed on raw count data after fitting a nega-
tive binomial model. P-values were adjusted for multiplicity 
by applying the Benjamini–Hochberg correction.

Targeted next‑generation DNA sequencing 
and mutational analysis

Genomic DNA was extracted from FFPE tumor tissue sam-
ples of 18 patients within the cohort using the automated 
Maxwell system with the Maxwell 16 FFPE Plus LEV DNA 
Purification Kit (Promega, Madison, WI, USA), according 
to the manufacturer’s instructions. Capture-based next-gen-
eration DNA sequencing was performed on a NextSeq 500 
instrument (Illumina) as previously described [29] using 
a custom brain tumor panel (Agilent Technologies, Santa 
Clara, CA, USA) covering the entire coding and selected 

intronic and promoter regions of 130 genes of particular 
relevance in CNS tumors (Supplementary Table 2, online 
resource).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
9 (GraphPad Software, La Jolla, CA, USA). Data on sur-
vival could be retrospectively retrieved for eleven patients. 
Distribution of time to progression or recurrence (TTP) 
after surgery was estimated by the Kaplan–Meier method. 
Patients lost to follow-up are censored at date of last contact 
in analysis of TTP.

Results

DNA methylation profiling reveals a molecular 
distinct group of neuroepithelial tumors

DNA methylation profiling has emerged as a powerful 
approach for robust classification of CNS neoplasms [5]. 
Using a screening approach based on unsupervised visu-
alization of a large cohort of genome-wide DNA methyla-
tion data, we identified a highly distinct group of tumors 
(n = 40) forming a cluster separate from all established enti-
ties of which a high proportion of tumors (19/32, 59%) were 
histopathologically diagnosed as ependymoma. A more 
focused t-SNE analysis of DNA methylation patterns of 
these samples alongside 1100 other well-characterized glial 
and glioneuronal neoplasms (reference samples included 
in the current version of the Heidelberg DNA methylation 
classifier with a calibrated score > 0.9) confirmed the dis-
tinct nature of this novel group (Fig. 1). Analysis of copy-
number variations (CNVs) derived from DNA methylation 
array data revealed a relatively balanced profile in most 
of the cases, with structural aberrations on chromosome 
22q (21/40, 52.5%) and 6q (19/40, 47.5%) most frequently 
observed (Supplementary Fig.  1a, online resource). A 
chromothripsis-like pattern affecting chromosomes 6 and 
13 was seen in one of the samples (Supplementary Fig. 1b, 
online resource). In one case, a homozygous deletion of 
CDKN2A/B was detected. An integrated plot of CNVs 
identified in all samples is given in Supplementary Fig. 1c 
(online resource).

Recurrent rearrangements involving PLAGL1 are 
characteristic for the novel group of neuroepithelial 
tumors

Since a high proportion of supratentorial ependymomas are 
driven by gene fusions involving ZFTA (C11orf95, most 
frequently fused to RELA) or YAP1, we performed mRNA 

Fig. 2   Illustration of the PLAGL1 fusion genes and transcriptional 
profiling of tumors samples in the novel group (NET_PLAGL1). 
Visualization of the PLAGL1 fusion genes detected by RNA sequenc-
ing for three selected samples. EWSR1:PLAGL1 fusion in case #1, in 
which exons 1–9 of EWSR1, as the 5’ partner, are fused to exon 5 
of PLAGL1 (a), PLAGL1:FOXO1 fusion in case #18, in which exons 
1–5 of PLAGL1 are fused to exons 2–3 of FOXO1 as the 3’ partner 
(b), and PLAGL1:EP300 fusion in case #19, in which exons 1–5 of 
PLAGL1 are fused to exons 15–31 of EP300 as the 3’ partner (c), 
conserving the zinc finger structure (C2H2 type) as part of the fusion 
products. Differences in gene expression profiles between samples in 
the novel group and ZFTA:RELA-fused ependymomas. Normalized 
transcript counts from samples in the novel group and ZFTA:RELA-
fused ependymomas clustered by Pearson’s correlation coefficient (d) 
and principal component analysis (e). Volcano plot depicting genes 
differentially expressed between samples in the novel group versus 
ZFTA:RELA-fused ependymomas (f). PLAGL1 (g), H19 (h), IGF2 
(i), ZFTA (j), and RELA (k) expression in the novel group (n = 20) 
compared to ZFTA:RELA-fused ependymoma samples (n = 14)

◂
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sequencing of all samples with sufficient material (n = 20). 
In 19/20 of the cases, a gene fusion involving PLAGL1 was 
detected, conserving the zinc finger structure (C2H2 type) 
as part of the fusion product, with either EWSR1 as 5’ part-
ner or FOXO1 or EP300 as a 3’ partner (Fig. 2a–c). In the 
most common EWSR1:PLAGL1 fusions (n = 13), exons 
1–9 or 1–8 of EWSR1 (NM_013986), which is located on 
chromosome 22q12.2, were fused to exon 5 of PLAGL1 
(NM_001289039), which is found on chromosome 6q24.2. 
Five out of 20 cases with exons 1–5 of PLAGL1 fused to 
FOXO1 upstream of exons 2–3 (NM_0017612) were also 
observed. In one case, exons 1–5 of PLAGL1 are fused to 
exons 15–31 of EP300 (NM_001429). In all rearrange-
ments, the DNA binding domain (zinc finger structure) of 
PLAGL1 was retained and fused to the respective transac-
tivation domain (TAD) of the partner gene (Fig. 2a–c). We 
next performed an exploratory differential gene expression 
analysis of tumor samples (n = 20) within the novel group 
in comparison to ZFTA:RELA-fused ependymomas (n = 14). 
Unsupervised hierarchical clustering demonstrated a clear 
segregation of tumor samples in comparison to ZFTA:RELA-
fused ependymoma (Fig. 2d). These results were recapitu-
lated by PCA of normalized transcript counts (Fig. 2e). 
Quantification of mRNA expression revealed that the 
PLAGL1 gene itself was more highly expressed in tumors 
within the novel group than in ZFTA:RELA-fused epend-
ymoma (adjusted p = 1.22e − 14; Fig. 2f, g). Additionally, 
upregulated genes of potential interest included H19 and 
IGF2 (adjusted p = 1.31e − 83, adjusted p = 5.04e − 08; 
Fig. 2h, i), both regulated by PLAGL1 and with known func-
tions in the tumorigenesis of different cancers [38]. RELA 
and ZFTA transcript levels were upregulated in ZFTA:RELA-
fused ependymomas (adjusted p = 1.03e − 61 and adjusted 
p = 1.10e − 19, respectively; Fig. 2j, k). Differential gene 
expression analysis between tumors within the novel 
group and a reference cohort of other glial and glioneu-
ronal subtypes confirmed high transcript levels of PLAGL1 

(adjusted p = 2.35e − 18), H19 (adjusted p = 9.12e − 15), 
IGF2 (adjusted p = 7.91e  −  06) and DLK1 (adjusted 
p = 1.12e − 10) in the PLAGL1-fused cohort (Fig. 3a–c and 
Supplementary Fig. 2, online resource). Expression of par-
ticular markers differentially expressed in astrocytic and in 
ependymal neoplasms [10, 14, 21] revealed low OLIG2 and 
SOX10 expression (adjusted p = 3.89e − 26 and adjusted 
p = 7.75e − 65) within the novel group, with similar expres-
sion of GFAP (Fig. 3d–f and Supplementary Fig. 2, online 
resource). Moreover, the nearby imprinting control region 
(ICR) of PLAGL1 showed evidence for loss of imprinting 
in the corresponding DNA methylation profiles (Supple-
mentary Fig. 3, online resource). Analysis of the mutational 
landscape of 19/40 tumors in the novel group using targeted 
next-generation sequencing revealed TERT promoter muta-
tions (C228T) in two of the cases (Supplementary Table 1, 
online resource), with no other relevant events involving 
putative brain tumor genes. 

Clinical characteristics and morphological 
features demonstrate pediatric‑type tumors 
with ependymoma‑like appearance

Analysis of available clinical data demonstrated that median 
age of the patients at the time of diagnosis was 6.2 years 
(n = 25; range 0–30; with 92% of the tumors occurring in 
patients < 17 years of age, Fig. 4a) and the sex distribution 
was relatively balanced (F/M = 1:1.2, Fig. 4b). All tumors 
in our series were located supratentorially (Fig. 4c). The 
proportion of PLAGL1-fused tumors from all supratento-
rial tumors cannot yet be accurately determined. However, 
within the pediatric Molecular Neuropathology 2.0 study, 
PLAGL1-fused tumors account for approximately 0.7% of 
all supratentorial neoplasms included in the study. Outcome 
data were available for 11 patients. Median progression-free 
survival was 35 months (range 10–85 months; Fig. 4d). The 
initial histopathological diagnoses of the tumors within the 
cohort were relatively wide, although a high proportion of 
cases were designated as ependymoma (19/32, 59%). Other 
recurrent diagnoses included ‘embryonal tumor’ and differ-
ent low- and high-grade gliomas (Supplementary Table 1, 
online resource). More detailed descriptions of the cases 
are given in Supplementary Table 1. A histopathological 
review of samples with available material (n = 16) con-
firmed a relatively wide morphological spectrum of tumors 
with ependymoma-like features (Fig. 5a–i). Histologically, 
all reviewed tumors shared a moderate to high increase in 
cellular density in a mostly fine neurofibrillary matrix with 
prominent microcystic changes (Fig. 5a–d). The tumor cells 
typically had monomorphic, round to oval nuclei with finely 
dispersed chromatin and prominent nucleoli. Single cases 
presented more pleomorphic cells. In many cases, perivas-
cular pseudorosettes were observed, at least focally. Two of 

Fig. 3   Transcriptional profiling of PLAGL1-altered neuroepithelial 
tumor. Differential gene expression analysis between samples in the 
novel group (NET_PLAGL1) and a reference cohort of different glial/
glioneuronal tumors (ZFTA:RELA-fused ependymoma (EPN_ZFTA), 
YAP1:MAMLD1-fused ependymoma (EPN_YAP1), central neurocy-
toma (CN), extraventricular neurocytoma (EVN), dysembryoplastic 
neuroepithelial tumor (DNT), papillary glioneuronal tumor (PGNT), 
KIAA1549:BRAF-fused pilocytic astrocytoma (PA), diffuse mid-
line glioma H3 K27M mutant (DMG) and glioblastoma IDH  wild-
type (GBM). PLAGL1, IGF2 and H19 are more highly expressed in 
NET_PLAGL1 cases when compared with representative glial/gli-
oneuronal tumors (a–c). GFAP levels are similar compared to differ-
ent glial/glioneuronal tumors (d). Expression of markers differentially 
expressed in astrocytic and in ependymal tumors revealed low OLIG2 
and SOX10 expression in NET_PLAGL1 compared to astrocytic/gli-
oneuronal tumors (e, f)

◂
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the cases showed focal oligodendroglial morphology with 
perinuclear halos due to cytoplasmatic clearing (Fig. 5e). 
Extensive calcification was seen in a small number of tumors 
(n = 3). Necrosis was not observed. Mitotic activity was gen-
erally low, with exception of two cases. Immunoreactivity 
for GFAP was present in all cases (Fig. 5f). The tumor cells 
neither expressed OLIG2 nor SOX10 (Fig. 5g, h). In 3/16 
of the cases, a dot-like positivity for EMA was detected 
(Fig. 5i).

Discussion

Here, we provide evidence for the pathobiological heteroge-
neity of neuroepithelial tumors beyond the established spec-
trum by reporting the existence of an epigenetically distinct 
group of rare pediatric-type supratentorial neoplasms with 
often ependymoma-like appearance that shows recurrent 
gene fusions involving the PLAGL1 gene.

Our findings suggest rearrangements involving PLAGL1, 
particularly EWSR1:PLAGL1 and PLAGL1:FOXO1 fusions, 
as a molecular hallmark of this novel group of tumors. Gene 
fusions of PLAGL1 with EWSR1 have been reported excep-
tionally rarely in neoplasms of the CNS, including single 
cases of a SMARCB1-deficient atypical teratoid/rhabdoid 
tumor (AT/RT) [27] and a glioneuronal tumor, not elsewhere 
classified (NEC) [16]. However, in a very recent report, a 
PLAGL1:EWSR1 fusion was described in a supratentorial 
ependymoma of a six-year-old child [44]. While EWSR1 has 
long been known to be involved in gene fusions in Ewing 
sarcoma and several other tumor entities [34], the role of 
PLAGL1 in tumorigenesis is not yet fully understood. The 
PLAGL1 gene encodes a C2H2 zinc finger protein that acts 
as a transcription factor as well as a cofactor of other regu-
latory proteins, and is expressed in diverse types of human 
tissues amongst others in neural stem/progenitor cells and 
developing neuroepithelial cells [37, 39]. Although its spe-
cific role in tumorigenesis is controversial and its functions 

appear to depend on the cellular context, altered expression 
of PLAGL1 has been linked to various types of cancer [1, 8, 
32]. More recent studies provide evidence for its oncogenic 
function in brain tumors with overexpression of PLAGL1 
being involved in tumorigenesis of glioblastoma [9, 13] 
and interaction of PLAGL family transcription factors in 
ZFTA:RELA-fused supratentorial ependymoma [3].

In the EWSR1:PLAGL1 fusions described here, the 
whole N-terminal transcriptional activation domain (TAD) 
of EWSR1 is fused in-frame to the zinc finger domain (with 
DNA binding activity) of PLAGL1, very similar to other 
oncogenic EWSR1 fusions, in particular rearrangements 
between EWSR1 and PATZ1 [28, 30]. This indicates aber-
rant recruitment of the TAD of EWSR1 to the DNA binding 
domain of PLAGL1 with subsequent downstream effects, 
as described for other EWSR1 rearrangements, as the likely 
oncogenic function of this fusion [11]. This also fits to the 
increased expression of PLAGL1 in these samples. In addi-
tion, five cases harbored a fusion between PLAGL1 and the 
transcriptional factor FOXO1, which is a known partner in 
other rearrangements [2, 15]. In the PLAGL1:FOXO1 fusion 
observed here, the DNA binding domain of PLAGL1 is jux-
taposed to the C-terminal TAD of FOXO1, which seems 
quite similar to PAX3:FOXO1 rearrangements as frequently 
observed in alveolar rhabdomyosarcoma [15]. In a single 
case, PLAGL1 was fused to EP300, a fusion partner known 
from ‘CNS tumors with BCOR alteration’ [33]. Addition-
ally, upregulated genes included H19, IGF2 and DLK1, all 
regulated by PLAGL1 and with known functions in tumo-
rigenesis of different cancers [38]. This might indicate a 
potential downstream effect of the fusion. However, the 
precise oncogenic mechanism of the EWSR1:PLAGL1, 
PLAGL1:FOXO1 and PLAGL1:EP300 chimeric proteins 
remain to be elucidated. Further studies will be needed to 
reveal the exact role of the fusions in these tumors.

Another important finding was the relatively wide mor-
phological spectrum of tumors within this group. Although 
most tumors were originally diagnosed as ependymoma, a 

Fig. 4   Clinical features of the investigated cohort. Age at diag-
nosis with the median age of 6.2  years (a), patient sex distribu-
tion (b) and distribution of tumor location (c). Time to progression 

or recurrence (TTP) of the 11 patients from the investigated cohort 
(NET_PLAGL1) for whom follow-up data were available (d)
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significant proportion of cases were designated to other enti-
ties, including different low- and high-grade tumors. Con-
sistent with that, a histopathological review of cases with 
sufficient material revealed a morphologically heterogeneous 
group of tumors often with ependymoma-like features. A 
putative ependymal differentiation was further supported by 

differential gene expression analysis between tumors within 
the novel group and a reference cohort of other glial and 
glioneuronal tumors, that revealed low expression levels of 
OLIG2 and SOX10, both suggested to distinguish astrocytic 
from ependymal tumors [10, 14, 21]. However, the absence 
of a unifying morphological pattern in this group of tumors 

Fig. 5   Morphological and immunohistochemical features of tumors 
within the cohort. Histologically, tumors shared a moderate to high 
increase in cellular density with mostly monomorphic, round to oval 
nuclei and often prominent microcystic changes (a–d). Perivascular 
pseudorosettes were observed in several of the cases, although very 
subtle in some the samples (a–d). Occasionally, tumor cells showed 

oligodendroglial morphology with perinuclear halos due to cytoplas-
matic clearing (e). Immunohistochemically, tumors were GFAP posi-
tive (f) and OLIG2- and SOX10 negative (g, h). In 3/16 of the cases, 
a dot-like positivity for EMA was detected (i). Scale bars denote 
200 μm
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underlines the relevance of molecular profiling for precise 
diagnosis of these CNS neoplasms. This group has not been 
identified as a distinct subset in previous large-scale studies 
due to the relatively small case numbers, broad morphology 
and lack of routine RNA profiling in previous cohorts, again 
highlighting the importance of RNA sequencing in standard 
brain tumor diagnostics. According to the structure of speci-
fying ‘essential diagnostic criteria’ of the upcoming 5th edi-
tion of the WHO classification of CNS tumors, we suggest 
(a) the specific signature by DNA methylation profiling or 
(b) the combination GFAP expression and PLAGL1 fusions 
as essential diagnostic criteria for these tumors.

A limitation of our study is the relatively low extent of 
clinical data due to diverse origins and the retrospective 
nature of the series, in particular patient outcome data, 
which allows only a rough estimation of the malignancy of 
the tumors within this novel group. Considering the high 
number of cases without sequencing data, it seems also pos-
sible that other alterations apart from the described fusions 
could be present, particularly in those tumors which do not 
show indication for a PLAGL1 fusion in the copy-number 
profile. Follow-up analyses are needed to characterize this 
new group of CNS neoplasms in more detail.

In summary, we provide evidence for a novel group of 
supratentorial brain tumors and identify PLAGL1 as a puta-
tive relevant driver in this entity. Since there is no absolutely 
clear indication of a particular lineage at the moment, we 
suggest the term ‘supratentorial neuroepithelial tumor with 
PLAGL1 fusion’ to describe this novel group of tumors. 
However, we hope to further specify the name once addi-
tional studies provide a clearer picture of the cellular origin. 
These findings have immediate implications for brain tumor 
profiling in order to avoid incorrect diagnoses due to lack of 
alignment with established tumor types. PLAGL1 fusion-
positive neuroepithelial tumors should thus be included into 
upcoming classifications of brain tumors.
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tary material available at https://​doi.​org/​10.​1007/​s00401-​021-​02356-6.
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