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Highlights 

• MDD participants have smaller GMV than HC in cerebellum and the frontal operculum 

• ANX participants have less GMV than HC in temporal gyrus and pars orbitalis 

• PTSD participants have smaller GMV in lingual gyrus and superior frontal gyrus 

• As patients age, GMV reductions are more pronounced in fronto-temporal regions 

• Higher proportion of females are related with GMV diminutions in temporal areas 

 

ABSTRACT 

The high comorbidity of Major Depressive Disorder (MDD), Anxiety Disorders (ANX), and Posttraumatic Stress Disorder (PTSD) has 

hindered the study of their structural neural correlates. The authors analyzed specific and common grey matter volume (GMV) 

characteristics by comparing them with healthy controls (HC). The meta-analysis of voxel-based morphometry (VBM) studies 

showed unique GMV diminutions for each disorder (p<0.05, corrected) and less robust smaller GMV across diagnostics (p<0.01, 

uncorrected). Pairwise comparison between the disorders showed GMV differences in MDD versus ANX and in ANX versus PTSD. 

These results endorse the hypothesis that unique clinical features characterizing MDD, ANX, and PTSD are also reflected by 

disorder specific GMV correlates. 
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1. Introduction 

Major depressive disorder (MDD), anxiety disorders (ANX) and posttraumatic stress disorder (PTSD) display 

a range of both overlapping and distinctive epidemiological and clinical features. From an epidemiological 

perspective, MDD and ANX are the most frequent mental disorders, being highly prevalent in the general 

population, and with comorbidity levels higher than expected by chance (Kessler et al., 2008, 2005). Likewise, 

MDD is the psychiatric comorbidity most commonly associated with PTSD (Rytwinski et al., 2013), a 

diagnosis that has been moved from the anxiety disorders category to the stress-disorder group in current 

diagnostic manuals (Diagnostic and Statistical Manual of Mental Disorders 5th Edition; DSM-5). 

Similarly, their phenotype is characterized by a high presence of negative emotional states (Eysenck and 

Fajkowska, 2018), distress, cognitive biases (Byllesby et al., 2016) and rumination. They also share prominent 

avoidance behaviors, which are linked with the development and maintenance of ANX and PTSD and also 

mediate subsequent progression to MDD (Struijs et al., 2018). Neurobiologically, they share a complex 

hereditary predisposition involving genes typically related to monoamine systems, neuropeptides and 

hypothalamus-pituitary-adrenal (HPA) axis, which in turn modify normal stress responses (Smoller, 2016).  

When focusing on the brain, neural correlates in structural magnetic resonance imaging (sMRI) have been 

regularly found in the three disorders, including lower grey matter volume (GMV) in the anterior cingulate 

(ACC)(Emre Bora et al., 2012; O’Doherty et al., 2015; Radua et al., 2010) and insular cortices (Bromis et al., 

2018; Radua et al., 2010; Sprengelmeyer et al., 2011). Indeed, the most recent meta-analysis of functional 

neuroimaging in mood and anxiety disorders described differences versus healthy controls in brain activity -

located in negative valence systems- shared across these disorders (Janiri et al., 2020a). However, each of 

them has specific and predominant symptom expressions, like sadness and apathy in MDD, worry and fear in 

ANX and intrusive thoughts and avoidance in PTSD, as well as particular neural correlates. Yet, the 
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identification of such disorder-specific correlates is particularly difficult as sMRI studies rarely exclude 

comorbidities and lower GMV in key regions such as ACC and insula appear to be a general marker of 

psychopathology (Goodkind et al., 2015). The few sMRI studies comparing MDD and ANX have pointed to 

potential differences in fronto-temporal regions (Lai and Wu, 2015; van Tol et al., 2010; Zhao et al., 2017), 

which have also demonstrated higher accuracy than clinical questionnaires distinguishing generalized anxiety 

disorder (GAD) from MDD using machine learning approaches (Hilbert et al., 2017). 

Given the above notions, the considerable amount of literature studying brain structure in these disorders and 

the necessity to measure their reproducibility, it is suitable to perform a meta-analysis of grey matter VBM 

(Ashburner and Friston, 2000) studies of MDD, ANX and PTSD. Samples will include non or minimal 

percentages of comorbidities in order to delineate their common and specific neural underpinnings. Specific 

neural correlates were studied looking at these disorders independently versus healthy controls (HC) and 

trough their direct comparison  

We hypothesized that common GMV reductions would overlap across disorders in key cognitive and 

emotional brain networks including cortical areas such as insula and cingulate gyrus, and also subcortical 

limbic structures such as hippocampus and amygdala (Janiri et al., 2020b; Logue et al., 2018; Sha et al., 2019). 

We also expected to find more prominent GMV reductions in prefrontal cortices (i.e. dorsolateral, orbitofrontal 

or ventromedial) in MDD (Bora et al., 2012; Wise et al., 2016; Wu et al., 2019). Regarding ANX disorders, 

PTSD has been included in the analyses until a few years ago, and there are no studies analyzing ANX 

disorders as they are conceptualized today in the DSM-5. However, based on proposed brain networks and 

recent studies on specific anxiety disorders, we expected to find GMV differences versus HC in regions 

included in fronto-parietal or/and ventral attention networks (i.e. ventrolateral PFC and temporo-parietal 

junction, Sylvester et al., 2012). Finally, based on a recent review of MRI findings in PTSD and a study using 

machine learning classification methods (Kunimatsu et al., 2020; Zilcha-Mano et al., 2020), we expected 

participants with PTSD diagnosis to display greater GMV reductions in fronto-occipital networks and 

Jo
ur

na
l P

re
-p

ro
of



 6 

putatively in the basal ganglia, as the structures with a greater amount of evidence potentially overlap across 

disorders (i.e. prefrontal cortices, hippocampus, amygdala, anterior cingulate or insula). 

2. Methods and materials 

2.1. Literature Search 

An extensive search of structural VBM studies comparing subjects with MDD, ANX and PTSD disorders with 

HC was conducted in PubMed, Web of Knowledge, Science Direct and Scopus databases (Figure 1). The 

search keywords were [Title/Abstract]: morphometry OR voxel-based OR voxel-wise AND depression OR 

anxiety disorder OR panic disorder OR agoraphobia OR phobia OR stress disorder OR posttraumatic stress 

disorder AND "1998"[Date - Publication]: "2020/01/17"[Date - Publication]. Studies were included if: 1) 

performed whole-brain analysis, 2) included a comparison between patients with MDD/ANX/PTSD disorders 

and HC, 3) participants’ age was above 18 and below 65, 4) provided the t-map or coordinates in Montreal 

Neurological Institute [MNI] or Talairach space, 5) samples were free of any comorbid neurological conditions 

and 6) samples of patients had no or minimal current comorbid psychiatric disorders. In order to find the most 

optimal balance between excluding samples with any comorbidity (as they may be then non representative) 

and including highly comorbid samples, the maximum rate of current comorbidity with MDD/ANX/PTSD 

diagnosis was set at 25%. The percentage of studies not reporting comorbidities was 18.7 (18% for MDD, 8% 

for ANX and 30% for PTSD. If a sample was used in several studies, only the larger one was included. 

Similarly, only baseline data of longitudinal studies was incorporated. Manuscripts were included from 1998 

for MDD (first VBM study in MDD, (Shah et al., 1998)) and from 2003 for anxiety disorders(Massana et al., 

2003) and PTSD(Yamasue et al., 2003) until 17th January 2020. See Table 1. 

2.2. Data Extraction 

Relevant data for the studies were retrieved by six authors -all investigators- (MSB, EV, AG, DPC and MC) 

and then compared by MSB, EV, AG and DPC in order to minimize interpretation and data entry errors. 

PRISMA guidelines were followed as recommended in the study of Moher and colleagues(Moher et al., 2009). 
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The corresponding authors (or the principal in case of no response) of all studies meeting inclusion criteria 

were contacted via e-mail and asked for their original (t-maps) and/or relevant missing data of the manuscript. 

2.3. Differences in Demographic Variables 

We combined the age means and standard deviations and the proportion of males of the samples and applied 

ANOVA/ꭓ2 tests on the resulting statistics to explore potential demographic differences between MDD, 

ANX, and PTSD patients (R Stats Package version 4.0, https://www.r-project.org/). Please see the Supplement 

methods for details on the specific formulas used. 

2.4. Differences in Grey Matter Volume 

2.4.1. Global Differences  

We assessed the differences in global GMV using the function “Globals” from SDM-PSI (see below), which 

conducts a random-effects meta-analysis. 

2.4.2. Regional Differences  

To investigate grey matter volume regional differences we used the Signed Differential Mapping with 

Permutation of Subject Images (SDM-PSI, https://www.sdmproject.com/) version 6.21 (Albajes-Eizagirre, 

2019; Radua et al., 2014, 2012), the newest version of a meta-analytical neuroimaging method successfully 

used in many published meta-analyses. Some new features in SDM-PSI include a familywise correction for 

multiple comparisons using the Freedman-Lane procedure for its optimal statistical properties, and threshold-

free cluster enhancement (TFCE, (Smith and Nichols, 2009)) statistics. SDM-PSI also includes an almost 

unbiased estimation of effect sizes based on MetaNSUE algorithms, which use maximum likelihood 

estimation and conduct repeated leave-one-out jackknife procedures to avoid the possibility that a single or 

few studies drive the results. 

2.5. Meta-analyses 
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We conducted seven main meta-analyses, namely 1) all patients versus HC, 2) patients with MDD versus 

patients with ANX, 3) patients with MDD versus patients with PTSD, 4) patients with ANX versus patients 

with PTSD, 5) patients with MDD versus HC, 6) patients with ANX versus HC, and 7) patients with PTSD 

versus HC. All meta-analyses were run combining peak coordinates of each sample or original t-maps if 

provided. The MDD vs HC meta-analysis was replicated I) without including the 6 MDD t-maps to explore 

the effect of raw and unbiased data inclusion (rather than solely using the coordinates provided by the authors) 

in neuroimaging meta-analyses and ii) without including remitted patients in order to explore potential effects 

of having an active MDD episode. Finally, we used meta-regression to understand the potential contribution 

of age and sex to all patients' neural correlates altogether. Psychotropic medication was meta-regressed in all 

patients as well as for each psychiatric condition separately. For the MDD samples, meta-regressions were 

used to explore the effects of illness duration (in years) and depression severity in GMV. Depression severity 

was mostly measured through the Hamilton Depression Rating Scale 17. For studies reporting Montgomery-

Åsberg Depressing Rating Scale (MADRS) scores, we converted them to HDRS-17 equivalents (HDRS-17=-

1.58+0.86*MADRS, 33). We explored potential publication bias of each cluster peak of statistically 

significant clusters via funnel plots and Egger’s test. 

We first set the statistical threshold at p<0.05 TFCE corrected with a minimum cluster size of 10 voxels. Later, 

we explored a more relaxed one (p<0.01, uncorrected), choosing only those clusters exceeding 50 voxels. In 

the case of the meta-analysis including all patients vs. all controls, smaller clusters were accepted giving the 

probable high levels of heterogeneity. In order to ease future replication analyses, we have generated an online 

database (available upon request) with all the clinical and methodological data from every study included in 

this meta-analysis. 

3. RESULTS 

3.1. Included Studies  

The search retrieved 3482 studies potentially suitable (Figure 1), from which finally 73 met all the inclusion 

criteria. The highest proportion of reported anxiety comorbidity in an MDD sample was 14.8% (Klauser et al. 
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2015) and the anxiety sample with highest reported MDD comorbidity was 24% (Irle et al. 2014). For PTSD, 

the proportion of comorbid cases was zero or not reported in three studies. All studies used parametric 

approaches, except for Koolscijn et al., 2010, Tavanti and colleagues (2012), Lai et al., (2012 and 2015), 

Rodriguez et al., 2014 and Lai et al. (2014 and 2015). A total of 7 original t-maps were achieved (MDD=6, 

ANX=1). See Table 1 for more detailed information. 

3.2. Sample Characteristics 

MDD meta-analysis included 45 studies with 53 MDD independent datasets. When the MRI was performed, 

145 patients (7.77%) were in remission and 1721 (92.23%) had an acute MDD episode. The mean score of the 

HDRS-17 was 2.07 for those patients in remission and 20.62 for those in an acute episode. Of the studies 

reporting psychotropic medication use, 47.21% of patients were taking at least one or more antidepressants at 

the time of the scanning. ANX meta-analysis included a total of 20 studies with 22 independent datasets. Of 

the 617 participants, 237 were diagnosed with panic disorder (PD, 38.4%), 234 with social anxiety disorder 

(SAD, 37.9%), 59 with GAD (9.6%), 59 with specific phobia (SP, 9.6%), 10 with panic disorder with 

agoraphobia (PDA, 1.6%) and 23 with comorbid anxiety disorders (2.76%). Of the studies reporting 

medication use, 9.6% were taking antidepressants or/and anxiolytics. For more detailed information of the 

studies included see Table 1). 

3.3. Age and gender differences 

3.3.1 Major Depression Versus Anxiety Disorders: patients with ANX diagnosis (age=33.09+/-11.02; 41.7% 

males) were younger (d=0.39, t=8.47, p<0.001) than those with MDD (age=38.04+/-13.07; 38.1% males) but 

had a similar proportion of men and women (X2=2.38, p=0.123,). Age was then included in the MDD vs ANX 

meta-analysis as covariate. 

3.3.2. Major Depression Versus Post-Traumatic Stress Disorder: There were no differences regarding age 

(d=0.13, t=1.69, p=0.09).  However, participants with PTSD (age=36.44+/-10.41; 54.7% males) had higher 
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proportion of males (X2=20.47, p<0.001) than those with MDD. Sex was then included in the MDD vs PTSD 

meta-analysis as covariate. 

3.3.3. Anxiety Disorders Versus Post-Traumatic Stress Disorder: There were significant differences regarding 

age (d=-0.31, t=-3.80, p<0.001) and sex proportion (X2=9.96, p=0.002), so both were included in the ANX vs 

PTSD meta-analysis as covariates. 

3.4. Differences in Grey Matter Volume 

3.4.1. Global Differences in Grey Matter Volume 

A total of 22 samples reported global GMV (13 MDD; 5 ANX and 4 PTSD). Individuals with MDD had lower 

global GMV compared to HC (Hedges g=-0.174, SE=0.059; z=-2.966; p=0.003, CI=-0.289—0.059) with low 

heterogeneity (τ<0.001; Q=10.590; df=12 and p=0.564). There were no global GMV differences between 

ANX and HC (Hedges g=0.092, SE=0.116; z=0.795; p=0.426, CI=-0.135—0.320) with no heterogeneity 

(τ<0.001; Q=4.540; df=4 and p=0.338), or between PTSD and HC (Hedges g=-1.226, SE=0.964; z=-1.271; 

p=0.203, CI=-3.116—0.664) with significant levels of heterogeneity (τ<3.540; Q=47.725; df=3 and p<0.001). 

After performing a sensitivity analysis, it was observed that the study from Tavanti and colleagues (2012) 

drove the heterogeneity levels (τ<0.000; Q=1.623; df=2 and p<0.444), although the lack of GMV differences 

persisted (Hedges g=-1.375, SE=0.210; z=-1.787; p=0.08, CI=-0.786—0.036). See Figure 2.  

3.4.2. Regional Differences in Grey Matter Volume 

3.4.2.1. MDD Versus HC analysis: There were two clusters showing significant GMV reductions in patients 

with MDD compared to HC in the bilateral cerebellum and in the left inferior frontal gyrus (IFG). When 

applying a more liberal threshold (p<0.01, uncorrected), the volume reductions extended to the right IFG 

including bilateral insula, left superior frontal gyrus (SFG) including anterior cingulate subregions and right 

ventromedial prefrontal cortex, bilateral hippocampi and left rolandic operculum including right posterior 

cingulum (Figure 3A). Patients with MDD did not show regional GMV increases with respect to HC. For 
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more detailed information about the cluster’s statistics, heterogeneity and publication bias see Table 2 (TFCE 

p<0.05) and Supplementary Table 1 (p<0.01, uncorrected). 

3.4.2.1.1 MDD Versus HC analysis (excluding t-maps): When excluding the 6 original MDD t-maps (Figure 

4), the brain region showing the largest GMV reduction was the left insula extending to the rolandic operculum 

and the IFG. When applying a more liberal threshold (p<0.01, uncorrected), regions were then more similar 

to those appearing in the analysis including the t-maps (right SFG extending to anterior cingulate and right 

ventromedial prefrontal cortex). Patients with MDD did not show regional GMV increases with respect to HC 

(Supplementary Table 2). 

3.4.2.1.2 MDD Versus HC analysis (excluding remitted patients): When excluding remitted patients 

(Supplementary Table 3), the brain region showing the largest GMV reduction were the left inferior frontal 

gyrus (BA 48) and the left hippocampus (BA 20). When applying a more liberal threshold (p<0.01 

uncorrected), GMV of patients were smaller in bilateral cerebellum, bilateral insula, right gyrus rectus (BA 

11), right hippocampus (BA 20), right superior frontal gyrus (BA 8 and 11), right heschl gyrus (BA 48), left 

ACC (BA 32), right middle frontal gyrus (BA 46) and left angular gyrus (BA 22). Patients with acute MDD 

did not show regional GMV increases with respect to HC. 

3.4.2.2. ANX Versus HC analysis: Patients with ANX had significantly smaller GMV than HC in left STG 

extending to IFG (Table 2). When relaxing the threshold (Supplementary Table 1), GMV reductions 

appeared in left orbitofrontal and dorsolateral prefrontal gyri (BA 10), in the bilateral paracingulate gyrus (BA 

24) and in bilateral insula.  Patients with ANX did not show regional GMV increases with respect to HC. 

Results are shown in Figure 3B. 

3.4.2.3. PTSD Versus HC analysis: Patients with PTSD showed smaller GMV than HC in left lingual gyrus 

extending to fusiform gyrus and in the bilateral SFG (BA 8) as shown in Table 2. When applying a more 

liberal threshold (see Supplementary Table 1), left post central gyrus, right fusiform gyrus, left calcarine 

fissure, left parahippocampal and left middle cingulate cortex also appeared reduced (Figure 3C). 
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3.4.2.4. MDD vs ANX analysis: The bilateral cerebellum and the superior temporal gyrus (STG) differentiated 

the MDD and ANX groups, with patients with ANX (compared to HC) displaying smaller temporal volumes 

and patients with MDD pronounced smaller cerebellar volumes (Table 3, Figure 3D). 

3.4.2.5. PTSD Versus ANX analysis: Participants with ANX showed less GMV in BA 48, including rolandic 

operculum, right STG and right insula when compared to HC than participants with PTSD. Also, participants 

with PTSD showed smaller GMV in left fusiform gyrus extending to lingual gyrus and cerebellum (BA 18) 

(Table 3, Figure 3E). 

3.4.2.6. PTSD Versus MDD analysis: There were no significant differences at any explored threshold between 

PTSD and MDD, covarying by sex.  

3.4.2.7. Conjunction analysis (MDD, ANX and PTSD vs HC): The conjunction analysis did not show 

significant results at p<0.05, TFCE corrected. When applying a more liberal threshold (p<0.01, uncorrected), 

a cluster of reduced GMV in the left middle cingulate cortex (MCC), (Supplementary Table 4, Figure 3F) 

appeared. There were no regions of larger volume in patients compared to HC at any threshold. 

3.5. Meta-regressions 

Meta-regression analyses of age and sex (Supplementary Table 5) indicated that studies with older patients 

(altogether) had smaller volumes relative to HC in the superior temporal gyrus (BA 38 and 48, including the 

insula and the rolandic operculum) and in the middle temporal gyrus (BA 20). Those studies with bigger 

proportion of women found smaller grey matter volume compared with HC in left insula extending to left 

rolandic operculum, left heschl gyrus, left putamen and also in the right inferior, middle and STG (BA 20, 21 

and 22 respectively) and the left middle temporal gyrus (BA 21). Studies including participants with longer 

MDD duration reported less GMV in the right fusiform gyrus extending to the parahippocampus (BA 37) and 

the left cerebellum. (Supplementary Table 5). The meta-regression with depression severity showed no 

statistically significance. 
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Finally, those samples with higher proportion of medicated patients (Supplementary Table 6) showed lower 

GMV in the bilateral angular gyrus (BA 39), right middle occipital gyrus (BA 39), right middle temporal gyrus 

(BA 20), right hippocampus, right dorsolateral and middle PFC (BA 9) and left ACC (BA 11). When analyzing 

the effect of medication separately for each disorder, those MDD samples with higher proportion of medication 

showed lower GMV in bilateral ACC (BA 11), those samples with patients with ANX in bilateral insula and 

in right rolandic operculum (BA 48), and those patients with PTSD exhibited a positive relationship between 

GMV and medication intake in left inferior parietal gyri (BA 39, 40 and 7), right angular gyrus (BA 39), right 

inferior parietal gyri (BA 40) and right middle occipital gyrus (BA 19). 

3.6. Publication Bias and Heterogeneity Tests  

All results reported in meta-analyses and meta-regressions were nonsignificant in the Egger tests (p>0.05), 

suggesting no publication bias. Also, the I2-statistic percentages ranges between 0 and 40%, which is 

considered irrelevant regarding heterogeneity (Deeks et al., 2020). 

4. Discussion 

This is the first meta-analysis providing a quantitative evaluation of GMV alterations across MDD, ANX and 

PTSD and including information both from reported coordinates and original t-maps. The findings showed 

disorder-specific GMV reductions in fronto-limbic and cerebellar regions in MDD, fronto-temporal in ANX 

and fronto-occipital in PTSD. These findings replicate and extend the findings of previous studies and provide 

a much-needed summary of an often disparate literature that is difficult to integrate. 

Contrary to what it was hypothesized based on prior research, there are not statistically significant 

structural brain correlates overlapping across disorders (Goodkind et al., 2015). Although Goodkind et al. was 

cited to support the hypothesis of a transdiagnostic marker of psychopathology, they do not include the PTSD 

category and instead included schizophrenia, bipolar disorder, OCD, or substance abuse patients, partly 

explaining the lack of replication in the current meta-analysis. In any case, what they do report as common 

neurobiological substrates are bilateral insulae and dorsal ACC. Insula has shown smaller volumes in many 

meta-analyses of the current work, including MDD and ANX samples (despite some emerged at uncorrected 
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level), thus supporting its presence as a transdiagnostic marker for mood and anxiety disorders. On the other 

hand, the region that has appeared when lowering the statistical threshold (<0.01, uncorrected) in the common 

meta-analysis (mid-cingulate cortex) is in line with the widely reported role of this corticolimbic structure in 

mood, anxiety, and trauma-related disorders. In fact, the mid-cingulate region may represent a hub for various 

brain circuits as it is involved in numerous functions including a cognitive role in decision making, response 

initiation in the context of free choice, selective/divided/oriented attention, conflict monitoring or encoding 

reward values (Vogt, 2016). More specifically, MCC has been associated with avoidance (Hayes et al., 1996) 

and cognitive reappraisal or emotion suppression (Picó-Pérez et al., 2017), which are regulation strategies 

identified to be disturbed in those patients. Indeed, this cingulate sub-region has been found to play a key role 

when training emotion regulation in healthy participant’s trough neurofeedback (Cohen Kadosh et al., 2016) 

and to be involved in pain and fear processing (Vogt et al., 2003), so it may be related to the common 

etiopathogenic factors and shared clinical characteristics of these conditions. In any case, this result should be 

taken cautiously as did not surpass the FWER correction.  

The results of the MDD meta-analyses consolidate the previously described prefrontal alterations but 

mostly highlight the relevance of the cerebellum in MDD. Probably due to the modest understanding of the 

cerebellum emotional and cognitive processes, this structure has often been overlooked and less discussed in 

psychiatric neuroimaging studies. However, a non-negligible part of the cerebellum is linked with affective, 

cognitive and self-referential functions  and participates in functional networks of information processing 

(Klein et al., 2016); cerebellar GMV reduction have been linked with persistence of cognitive deficits in MDD 

patients (Depping et al., 2020). This relationship between GMV cerebellar reduction and symptom persistence 

might also underlie our finding of an association of such reductions and illness duration in MDD. While those 

structures do not coincide with the few reported to date, the extended use of ROIS in longitudinal studies (of 

the hippocampus) together with other methodological differences, makes it difficult to draw conclusions now. 

It is also worth noting that the latest mega- and meta-analytical research in MDD do not analyze volumetric 

differences in cortical structures, favoring cortical thickness and surface area, which could explain why our 

main MDD results do not coincide with the ones reported in their latest review (Schmaal et al., 2020). Also, 
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to truly elucidate the causality of the observed relation between illness duration and brain structure, more 

whole-brain longitudinal studies are needed. The current meta-analysis of patients with MDD vs HC has also 

confirmed the GMV reduction of cortical regions like the opercular part of the IFG and, with a wicker 

statistical significance, of the left insula and the anterior cingulate. Interestingly, prefrontal regions showing 

smaller volumes in MDD samples, have been linked to MDD prognosis (Belden et al., 2015; Fonseka et al., 

2018), providing more evidence of their potential value of reliable MDD biomarker. 

Anxiety disorder studies were characterized by a significantly greater GMV reduction in the left STG 

area when compared with MDD studies. Of the hypothesized altered circuits (Sylvester et al., 2012), GMV 

decreases in brain structures of the ventral attention network (VAN) show statistical significance. VAN 

network includes STG amongst other regions and is documented to play an important part in the orientation 

of the stimulus-driven attention. It has been hypothesized that a similar reorienting mechanism may mediate 

the shift from internally directed stimuli (i.e., worrisome thoughts) to environmental events, and that VAN 

may have a main role in this process. Thus, the present meta-analysis confirms the previous findings of reduced 

temporal and frontal gyrus in patients with anxiety disorders, and points toward a pronounced involvement of 

the left temporal pole. Also, when directly comparing ANX with PTSD, the former presented smaller volumes 

of the STG along with insula, rolandic operculum and anterior cingulate, which are areas closely related with 

the cingulo-opercular network (CON) network, which is the other neuronal circuit described to be altered in 

ANX (Sylvester et al., 2012). 

The meta-analysis comparing patients with PTSD to HC detected reductions of GMV in the left lingual 

and fusiform gyrus and with superior frontal gyrus (BA8). These structural findings are partially in line with 

a recent review of MRI studies in PTSD (Kunimatsu et al., 2020; Wang et al., 2020). Such divergence may be 

explained by the fact that first studies on PTSD were guided by the hypothesis of hippocampal involvement 

(due to its relationship with stress responses) and hence all research was highly focused on this structure. With 

most of the literature limited to certain ROIs, it seems easy to devote less attention to brain regions not included 

in initial operating hypothesis. Neuroimaging biomarker studies of brain structure have as well mainly focused 

on anterior cingulate and hippocampus, finding inconsistent results (Colvonen et al., 2017). Interestingly, 
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when comparing PTSD against ANX, PTSD individuals presented with less GMV in fusiform gyrus, 

extending to lingual gyrus and cerebellum. Thus, these volume differences located in occipital regions might 

underlie key clinical differences between those disorders. The present meta-analysis of whole-brain studies 

brings back the focus on occipital and frontal regions and points (with weaker statistical power) to regions 

highly reported in PTSD neuroimaging research such as the middle cingulate and the parahippocampus. 

There are some limitations that are worth highlighting. First, as voxel-based meta-analyses are mostly 

based on summarized data (except for those cases in which original maps were available) it is likely to expect 

some imprecise results. In addition, despite VBM being a relatively consistent methodology, there are many 

analysis parameters, such as slice thickness, smoothing, statistical threshold, cluster based, standard space, 

correction and Jacobian modulation, which, although reported, are not possible to be considered in the analysis 

with current methodologies. Likewise, the covariates included are also heterogeneous as each study controls 

for age, sex, total intracranial volume or total GMV quite arbitrarily. Likewise, although some clinical 

characteristics have been considered (i.e., depressive symptomatology, illness duration or medication), factors 

such as the number of previous episodes or age of onset have not. Also, the fact that we focused mainly on 

non-comorbid diagnosis reduces the power in the comparisons versus HC, but conversely allowed us to draw 

strong conclusions about disorder specificity. In this regard, it should be noticed that, although 81% of the 

total sample explicitly reported no comorbidities, a 19% did not described such sample characteristic. 

Regarding the method employed, although it controls for false-positive results, false-negative results could not 

be completely ruled out. Related to this, the meta-analysis comparing all participants with a psychiatric 

diagnosis versus HC only reached significance with the more relaxed threshold, which leads to take this result 

with appropriate caveats and require to be replicated in future independent datasets. Finally, as recent clinical 

and imaging studies on psychiatric population suggest, using data-driven methods instead of only diagnosis 

guidance would allow studying heterogeneity within clinical populations. 

The current meta-analysis points to specific neural correlates for highly comorbid disorders such as 

MDD, ANX and PTSD: MDD was uniquely characterized by cerebellar and frontal GMV decreases, ANX by 

temporal lobe GMV decreases, and PTSD by occipital lobe GMV decreases. Also, although the result must 
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be taken prudently because of lower statistical significance, mid-cingulate cortex appears as the brain structure 

altered across MDD, ANX and PTSD, which is consistent with the struggle in stress coping experienced by 

the three disorders. 
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Table 1. Demographics and clinical characteristics of the study clinical populations 
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MAJOR DEPRESSIVE DISORDER (n=1866) 

HEALTHY CONTROLS 

(n=1773) 

Study/Sample n 
Age 

Mean (SD) 

Sex 

(M, F) 

Illness duration 

Years (SD) 

Age at 

Onset Years (SD) 

HDRS-17 

Mean (SD) 

Antidepressants 

(%) 

Comorbidities 

(%) 
n 

Age 

Mean (SD) 

Sex 

(M,F) 

Abe et al., 2010 21 48.1(13.5) 11, 10 6(7.2) 41.13(13.4) 9.2(8.6) 90 0 42 48(13.2) 22/20 

Arnone et al., 2012† 64 

cMDD= 36.3(8.8)  

                    rMDD= 

34.5(11) 

17/47 

cMDD= 14.3(-) 

rMDD= 9.4(-) 

cMDD=22.08(8.1

) 

rMDD=25.1(10.8 

cMDD= 21.8(-)* 

                    rMDD= 

0.312(-)* 

NA 0 66 32.1(9.3) 20/46 

Bergouignan et al., 2009 20 33.16(9.6) 3/17 8.45(9) 23.80(8.7) 23.11(-)* NA NA 21 28.21(5.5) 7/14 

Cai et al., 2015 23 30(7.3) 13/10 4.35(2.4) 25.7(6.8) 29.7(6.2) 26 0 23 28.2(3.8) 13/10 

Chen et al., 2018 36 30.7(8.5) 20/16 2.68(3.92) 26.8(8.60) 19.83(SD) 50 0 47 29.7(9.2) 22/25 

Cheng et al., 2010 68 29.91(7.9) 21/47 10.98(8.2) 28.94(7.8) 22.32(3.7) Drug-naïve 0 68 30.54(7.3) 21/47 

Grieve et al., 2013 102 33.8(13.1) 48/54 11.30(11.8) 22.1(12.2) 21(3.9) Drug-naïve 
PTSD= 0  

ANX= NA  

34 31.5(12.4) 18/16 

Guo et al., 2014 44 27.52(8.6) 22/22 1.59(3.04) - 25.18(5.2) NA 0 44 29.39(6.7) 20/24 

Jung et al., 2014 50 
NR: 40.8(12.7) 

RE: 43(10.1) 
14/36 - - 

NR= 18.8(4.7) 

RE= 20.9(4.1) 

100 0 29 43.6(13.4) 8/21 Jo
ur

na
l P

re
-p

ro
of



 28 

Kandilarova et al., 

2019† 

39 46.4(13.9) 13/29 10.8(8.89) 37.3(12.6) 23.45(-)* 77 0 42 42.6(13.7) 13/29 

Klauser et al., 2015† 27 35.02(9.7) 9/18 9.04(6.5) 26.04(9.4) Not reported 48 ANX= 14.8  33 34.71(9.9) 12/21 

Kong et al., 2013 52 

Naïve= 34.43(8.2) 

Treated= 

36.12(5.7) 

21/31 
Naïve= 2.11(0.9) 

Treated= 4.12(0.9) 
- 

Naïve= 21.64(3.5) 

Treated= 3.42(2.5) 

Drug-naïve= 0 

Treated= 100 

0 28 32.07(9.3) 14/14 

Koolschijn et al., 2010 28 64.04(10.90) 0/28 7.79(1.5) - 14.18(-)* 60.1 0 38 61.89(11.1) 0/38 

Kroes et al., 2010 29 33.4(NA) 8/21 - - - 76 0 29 32.45(NA) 13/16 

Lai et al., 2014 38 36.57(5.5) 18/20 5.68(1.5) - 22.26(2.4) Drug-naïve 0 27 38.29(11.8) 12/15 

Lai et al., 2015 53 40.07(9) 25/28 0.42(0.1) - 22.43(2.3) Drug-naïve 0 54 40.38(10.5) 12/42 

Lee et al., 2011 47 46(9.1) 5/42 3.89(6.3) 42.11(-) 20.1(6.9) 62 NA 51 45.7(8.04) 5/46 

Leung et al., 2009 17 45.5(8.5) 0/17 7(4.1) - - 100 NA 17 45.8(9.8) 0/17 

Li et al., 2019 56 35.1(8.9) 20/36 1.1(1.3) - - Drug-naïve 0 56 30.7(8.0) 23/33 

Lu et al., 2019 30 23.95(5,3) 17/13 2.61(2.22) - - Drug-free 2 weeks 0 48 21.5(3.84) 18/30 

Ma et al., 2012 35 
TRD= 27.39(7.7) 

TSD= 26.71(7.7) 
21/14 

TRD= 2.95(4.2) 

TSD= 0.22(0.1) 
- 

TRD= 23.89(3.7) 

TSD= 25.58(6.3) 

TRD=100 

TSD=Drug-naïve 

NA 17 24.24(4.4) 10/7 

Machino et al., 2013 29 39.57(8.3) 16/13 4.38(4.8) - 13.90(4.3) 97 NA 29 38.66(8.4) 16/13 

Mak et al., 2009 17 45.5(8.5) 0/17 - - - 100 0 17 45.8(9.8) 0/17 

Nakano et al. 2014 36 49(11.4) 14/22 5.56(6.74) 40(19.4) 15.40(10.20) 86 0 54 45.40(16.1) 27/27 
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Peng et al., 2010 22 46.7(8.9) 8/14 0.72(0.5) 45.98(-) 18.50(6.3) 23 0 30 45.9(9) 11/19 

Qi et al., 2014 18 31.06(7.4) 7/11 - - 22.28(3.3) Drug-free 6 months 0 28 28.61(5.5) 15/13 

Rodriguez et al., 2014† 32 48.68(13) 12/20 10.96(10.5) 37.71(13.7) 21.73(-)* 88 ANX= 9.4  64 46.03(9.8) 26/38 

Salvadore et al., 2011 85 

dMDD= 

38.80(11.1) 

rMDD= 

40.20(12.2) 

27/58 
dMDD= 18.4(10.5) 

rMDD= 15.1(12.2) 
- 

dMDD= 20.78(-)* 

rMDD= 0* 

dMDD= 86 

rMDD= 93 

0 107 36.2(10.3) 47/60 

Scheuerecker et al., 

2010 

13 37.9(10.1) 10/3 4.36(6) -  Drug-free 1 year 0 15 35.5(10.9) 10/5 

Serra-Blasco et al., 2013  66 

FE= 44(6.9) 

Rem= 48(8.7) 

TRD= 49(8) 

13/53 

FE= 0.47(0.4) 

Rem= 17.86(10.8) 

TRD= 22.62(12.1) 

FE=43.5(6.6) 

Rem=29.1(11) 

TRD=27.4(8.4) 

FE= 16(6.5) 

Rem= 4(5.2) 

TRD= 21(4.6) 

FE= 100 

Rem= 75 

TRD= 86 

0 32 46(8.3) 9/23 

Shah et al., 1998 40 
Rec= 47.70(9.9) 

TRD= 48.90(9.8) 
26/14 

Rec=1.58(1.2) 

TRD=5.48(22.6) 

Rec=38.20(10.1) 

TRD=38.90(13.5) 

Rec= 2.6(1.7) 

TRD= 20.6(5.3) 

Rec= 45 

TRD= 100 

NA 20 49.3(11.8)  13/7 

Shen et al., 2016 147 30.5(9.8) 50/97 8.49(7.5) 29.89(3.8) 23.83(4.8) Drug-naïve 0 130 30.09(7.1) 49/81 

Soriano-Mas et al., 2010 70 61.56(9.7) 29/41 10.45(10.1) 51.11(12.6) 28.60(7.6) 71 0 40 59.23(7.1) 17/23 

Tae et al., 2015 20 42.5(14) 0/20 9.5(11.3) 31.8(13.1) 21.7(8.7) Drug-free 3 months 0 21 42.3(10.2) 0/21 

Ueda et al., 2016 30 44.3(13) 17/13 - - 7,7(5.1) Drug-naïve NA 48 41.2(11.4) 35/13 

Van tol et al., 2010  68 37.16(10.2) 24/44 - 25.62(10.4) 9.61(-)* 26 0 65 40.54(9.7) 24/41 

Vasic et al., 2008 15 37.4(8.5) 9/6 3.62(3.1) - 18.46(-)* 100 0 14 31.4(9.6) 8/6 
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Wagner et al., 2011 30 37.55(11.5) 5/15 5.95(6.8) 31.6(11.6) 20.08(-)* NA 0 30 35.1(10.4) 5/25 

Yang et al., 2017a 35 44.54(11.2) 0/35 2.69(0.8) 41.25(10.1) 28.29(8) Drug-free 6 months 0 23 39.09(14.4) 0/23 

Yang et al., 2017†b 84 30.88(7.84) 23/61 0.75(0.66) - 23.83(5.02) Drug-naïve ANX= 15.5  84 30.39(6.71) 23/61 

Yoshikawa et al., 2006 22 48(4.9) 0/22 - - - Drug-free 1 month 0 29 49(5) 0/29 

Zhang et al., 2009 15 33.5(10.2) 10/5 10.3(4.8) - 17.08(-)* 100 NA 15 33.4(10.2) 10/5 

Zhang et al., 2012 33 20.52(1.7) 17/16 - - - Drug-naïve 0 32 21.08(1.5) 17/15 

Zhao et al., 2017 37 26.7(7.1) 25/12 2(0.5) - 25(5.2) Drug-naïve 0 41 27.1(7.2) 26/15 

Zou et al., 2010 23 31.1(10.4) 10/13 0.63(0.4) 30.47(-) 24.4(3.9) Drug-naïve 0 23 36.6(12.9) 10/13 

  

ANXIETY DISORDERS DISORDERS (n=617) HEALTHY CONTROLS (n=602) 

        Study/Sample n Age (Mean, SD) Sex (M, F) Diagnosis 

Anxiety 

scores 

(Mean, SD) 

Medication (%) Comorbidities (%) n 
Age  

Mean (SD) 

Sex  

(M, F) 

Asami et al., 2009 24 37.03(10.2) 9/15 PD - - 
MDD= 12.5 

PTSD= 0  

24 

37.01(9.

5) 

9/15 

Cheng et al., 2015 20 23.3(3.7) 13/7 SAD 

SAD=6.2(4.8)

a 

Drug-naïve 0 30 

26.2(6.6

) 
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Hayano et al., 2009 27 38.2(9.9) 10/17 PD - - 
MDD= 11.1  

                    PTSD= 0 

30 

35.3(10.

5) 

9/21 

Hilbert et al., 2015† 59 23.95(5) 14/45 SP - - 0 37 

22.76(3.

9) 

11/26 

Irle et al., 2014 67 31(10) 32/35 SAD 43(10)b 9 
MDD= 23.9 

PTSD= 0 

64 32(10) 33/31 

Lai et al., 2012 30 47.03(10.6) 11/19 PD - Drug-naïve 0 21 

41.14(1

1.8) 

10/11 

Lai et al., 2015 53 43.28(10.1) 25/28 PD 23.35(1.9)a Drug-naïve 0 54 

40.38(1

0.5) 

25/29 

Liao et al., 2011 18 22.67(3.8) 12/6 SAD 

6.39(5)a / 

41.11(8.7)b 

Drug-free 0 18 

21.89(3.

7) 

13/5 

Ma et al., 2019 21 34.92(9.48) 12/9 GAD 17.09(5.3)a 

Drug-free (>6 

month) 

0    

Massana et al., 2003 18 36.8(11.3) 7/11 PD - - 0 18 

36.7(8.8

) 

8/10 

   Meng et al., 2012 20 21.8(3.7) 14/6 SAD 5.85(5)a Drug-naïve 0 19 

21.58(3.

7) 

13/6 
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Moon et al., 2014 22 37(10.7) 13/9 GAD 17.9a - 0 22 

33.4(9.7

) 

13/9 

Na et al., 2013 22 
PD= 43.08(9.6) 

PDA= 36.7(11.6) 
13/9 

PD=12 

PDA=10 

PD=47.09(7.8)b 

PDA=40.60(5

.3)b 

- 

 

0 22 

40.18(1

2.4) 

11/11 

Schienle et al., 2010 16 22.9(4.1) 0/16 GAD - Drug-free 0 15 

23.7(3.7

) 

0/15 

Talati et al., 2013 49 
PD= 31.8(10) 

SAD= 34.1(6.7) 
12/37 

PD=16 

SAD=33 

PD=35.5(10)b 

SAD=42(NA)

b 

PD=56 

SAD=27 
NA 37 

31.4(7.8

) 

3/34 

Tükel et al., 2015 27 27.7(6.7) 12/15 SAD 6.83(5.4)a 
Drug-naïve=63 

Drug-free=37 

0 27 

27.7(6.7

) 

12/15 

Uchida et al., 2008 19 37.05(9.8) 3/16 PD - 78.9 
MDD= 15.8 

PTSS= 0 

20 

36.46(9.

9) 

4/16 

Van Tol et al., 2010 68 35.96(9.5) 18/50 

PD=20 

SAD=25 

Comorbid ANX=23 

14.12(9.6)c 31 0 65 

40.54(9.

7) 

24/41 

Yoo et al., 2005 18 33.3(7.1) 9/9 PD 8.7a - 0 18 32(5.8) 11/7 

Zhao et al., 2017 24 24.5(4) 15/9 SAD - Drug-naïve 0 41 

27.1(7.2

) 

26/15 
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POST-TRAUMATIC STRESS DISORDER (n=203)  HEALTHY CONTROLS (n=329) 

Study/Sample n 

Age (Mean, 

SD) 

Sex (M, 

F) 

Anxiety scores 

(Mean, SD) 
Medication (%) 

Comorbiditi

es (%) 
n 

Age 

(Mean, 

SD) 

Sex (M, F) 

Bossini et al., 

2017 

1

9 

40(9) 10/9 75.8(21.8)d Drug-naïve 0 19 41(6) 15/4 

Chen et al., 2006 

1

2 

34.56(4.9) 4/8 - - 

0= MDD 

NA= ANX 

12 

33.25(5.

3) 

4/8 

Cheng et al., 

2015 

3

0 

26.3(8.1) 21/9 10.9(2.3)a Drug-naïve 0 30 26.2(6.6) 21/9 

Corbo et al., 

2005 

1

4 

33.36(12.1) 6/8 - - 0 14 

33.29(12

.3) 

6/8 

Hakamata et al., 

2007 

1

4 

45.6(6.2) 0/14 - - 
MDD= 0  

ANX= NA  

100 47.1(5.7) 0/100 

Kroes et al., 

2010 

2

4 

35.9(NA) 9/15 30.39(14.4) 41.7 
MDD= NA  

ANX= 0 

29 

32.45(N

A) 

13/16 

Nardo et al., 

2010 

2

1 

41.7(9.4) 15/6 - 2.39 0 22 40.8(8.9) 16/6 
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Footnote: SD=Standard Deviation, M=Male, F=Female, MDD= Major depressive disorder, HDRS= Hamilton depressive rating scale, cMDD=Current 

MDD, rMDD= remitted MDD, NR= Non-responder, RE=Responder, TRD= treatment-resistant depression, TSD= treatment-responsive depression, 

dMDD= depressed MDD, FE= first episode, Rem= remitted, Rec= recovered, PD=Panic disorder; PTSD= posttraumatic stress disorder, PDA=Panic 

Disorder with agoraphobia; SAD=Social anxiety disorder; SP=Specific phobia; GAD= generalized anxiety disorder, . NA=Not available.  

aHAMA 

bSTAI 

cBAI 

dClinician Administered PTSD Scale (CAPS)  

Herringa et al., 

2012 

1

3 

28.9(4.2) 11/2 - Drug-naïve 0 15 30.1(6.3) 14/1 

Tan et al., 2013 

1

2 

37.6(3.7) 12/0 53.8(7.3)b Drug-free (>1 month) 0 14 40.8(5.2) 14/0 

Tavanti et al., 

2012 

2

5 

38.16(10.9) 8/17 25.8(6.6)a Drug-naïve 0 25 

38.08(11

.01) 

8/17 

Yamasue et al., 

2003 

9 44.6(16) 5/4 - - 0 16 44.4(14) 10/6 

Zhang et al., 

2011 

1

0 

40.8(6.8) 10/0 - - 
MDD= 0  

ANX= NA 

10 34.3(5.4) 10/0 
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†Studies that provided original t-maps 

*Studies originally reporting Montgomery-Åsberg Depressing Rating Scale scores converted to HDRS equivalents (Heo et al., 2007) 
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Table 2. Results of the brain volumes showing differences between MDD and HC (A), ANX and HC (B) and PTSD and HC (C) with TFCEb correction 

(p<0.05) 

A) MDD < HEALTHY CONTROLS 
Num. 

voxels 

MNI 

coordinates 

(x,y,z) 

SDM-Z Voxel p I2 

Effect 

sizea 

Egger 

test p 

L cerebellum, hemispheric lobule VIII 2067 -26,-60,-54 -5.149 <0.001 

0.00

0 

-0.222 0.919 

R cerebellum, hemispheric lobule 

VIII 

 14,-60,-48 -4.452 0.001    

L cerebellum, hemispheric lobule 

VIIB 

 -36,-62,-46 -4.427 0.002    

L cerebellum, hemispheric lobule IX  -10,-60,-44 -3.900 0.003    

Cerebellum, vermic lobule IX  2,-60,-42 -3.894 0.003    

Cerebellum, vermic lobule VIII  -2,-64,-42 -3.886 0.003    

R cerebellum, crus II  36,-70,-44 -3.835 0.019    

R cerebellum, crus I  28,-82,-34 -3.622 0.024    

L inferior frontal gyrus, opercular 

part, BA 48 

162 -48,14,8 -5.593 0.004 

0.68

0 

-0.251 0.545 
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B) ANX < HEALTHY CONTROLS        

L temporal pole, superior temporal 

gyrus 

105 -36,16,-20 -5.713 0.01 

7.26

3 

-0.450 0.391 

L inferior frontal gyrus, orbital part  -36,22,-16 -4.922 0.017    

C) PTSD < HEALTHY CONTROLS        

TFCE corrected (p<0.05)b        

L lingual gryus, BA 18 731 -14,-64,-4 -5.247 <0.001 

4.22

0 

-0.686 0.713 

L fusiform gyrus, BA 18  -24,-70,-14 -4.196 <0.001    

L fusiform gyrus, BA 37  -30,-58,-16 -3.733 <0.002    

L superior frontal gyrus, medial, BA 8 94 0,30,52 -4.452 0.012 

1.06

7 

-0.564 0.598 

R superior frontal gryus, medial, BA 

8 

 5,28,50 -4.163 0.012    

Footnote: MDD= major depressive disorder, HC= healthy controls, ANX= anxiety disorders, PTSD= posttraumatic 

stress disorders, MNI=Montreal Neurological Institute, SDM= Signed Differential Mapping, p= p-value; I2= 

Percentage of variance attributable to study heterogeneity; L= left, R= right, BA= Brodmann area, unc= uncorrected p 

value. 

aExtracted from Hedges’ g value 

bThreshold-free cluster enhancement TFCE correction at p<0.05 
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*Areas already reported in the TFCE corrected analysis are not shown 
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Table 3. Results of the brain volumes showing common (A) and different (B, C, D) grey-matter differences in MDD, ANX and 

PTSD. Threshold-free cluster enhancement TFCE correction at p<0.05. 

MDD, ANX and PTSD 
Num. 

voxels 

MNI 

coordinates 

(x,y,z) 

SD

M-Z 
Voxel p I2 

Effect 

Sizea 

Egger 

test p 

A) Reductions in MDD, ANX and PTSD vs 

HC   

No suprathreshold clusters 

B) MDD < ANX*        

L cerebellum, hemispheric lobule VIII 1823 -24,-62,-50 2.390 <0.001 

0.00

0 

0.219 0.614 

Cerebellum, vermic lobule, IV/V  0,-50,-6 2.267 0.002    

R cerebellum, hemispheric lobule VIII  18,-62,-50 2.194 <0.001    

        Cerebellum, vermic lobule XI  0,-60,-40 2.156 <0.001    

MDD > ANX*        

L temporal pole, superior temporal gyrus, 

BA 38 

1145 -42,18,-20 -4.872 <0.001 

0.00

8 

-0.432 0.322 

        L heschl gyrus, BA 48  -54,-10,10 -2.978 0.003    
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        L temporal pole, superior temporal 

gyrus, BA 38 

 -50,12,-14 -2.942 <0.001    

        L superior temporal gyrus, BA 22  -58,-12,-4 -2.852 0.005    

        L rolandic operculum, BA 48  -46,-6,10 -2.228 0.005    

        L superior temporal gyrus, BA 48  -58,-6,0 -2.103 0.011    

R superior temporal gyrus, BA 38 430 58,0,-4 -3.465 0.003 

1.41

6 

-0.312 0.474 

C) PTSD vs MDD** No suprathreshold clusters 

D) PTSD > ANX***        

Right heschl gyrus, BA 48 1112 52,-6,4 3.138 <0.001 

1.84

6 

0.535 0.569 

R rolandic operculum, BA 48  54,-2,8 3.096 <0.001    

R insula, BA 48  48, -6,6 2.923 <0.001    

L superior temporal gyrus, BA 48 213 -52,-4,-2 2.302 0.026 

0.02

2 

0.384 0.669 

L anterior cingulate / paracingulate gyri, BA 

10 

70 -2,52,-2 2.541 0.013 

1.25

5 

0.397 0.658 

PTSD < ANX***        
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L fusiform gyrus, BA 18 602 -26,-70, -14 -2.784 0.002 

0.00

9 

-0.492 0.594 

L lingual gyrus, BA 18  -14,-62,-6 -2.419 0.012    

L cerebellum, hemispheric lobule VI, BA 

18  

 -16,-64,-16 -1.614 0.037    

 

Footnote: MDD= major depressive disorder, ANX= anxiety disorders, PTSD= posttraumatic stress disorder, MNI=Montreal 

Neurological Institute, SDM= Signed Differential Mapping; p=p-value; I2= Percentage of variance attributable to study 

heterogeneity, L= left, R= righ 

bExtracted from Hedges’ g value 

*Comparison including age as covariate 

**Comparison including sex as covariate 

***Comparison including age and sex as covariates 
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Figure 1. Flowchart of the systematic literature search  
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Footnote: ROI=region of interests, SVC= small volume correction, VBM= voxel-based morphometry, 

MDD= major depressive disorder, ANX= anxiety disorders, PTSD= posttraumatic stress disorder  

* (34, 47, 48) 

 

Figure 2. Forest plots of the the mean (Hedge’s g) along with its corresponding z and P values,  the standard 

error (SE) and the confidence interval (CI) of global gray matter volume differences between patients with 

major depressive disorder (MDD), anxiety disorders (ANX) and post-traumatic stress disorder (PTSD) 

versus healthy controls (HC). 

 
Figure 3. (A) Results of meta-analysis between patients with MDD and HC. (B) Results of meta-analysis 

between patients with ANX and HC. (C) Results of meta-analysis between patients with PTSD and HC. (D) 

Results of meta-analysis between all patients and healthy controls (HC). (E) Results of meta-analysis between 

patients with MDD and patients with ANX. (F) Results of meta-analysis between patients with ANX and 

patients with PTSD. 
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* Brain regions that reach p<0.05 TFCE correction in bold 

Foonote: MDD= major depressive disorder, HC= healthy controls, ANX= anxiety disorders; PTSD= 

posttraumatic stress disorder, L= left, R= right, STG= superior temporal gyrus, BA= Brodmann area, IFG= 
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inferior frontal gyrus, ACC= anterior cingulate cortex; MCC= middle cingulate cortex; SFG, superior frontal 

gyrus, PH= parahippocampal, CF= calcarine fissure, HG= heschl gyrus. Color bar indicates SDM z scores. 

 

Figure 4. Major depressive disorder versus healthy controls without t-maps  

Footnote: L=left, R=right, BA= Brodman area  
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