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Abstract—The number of devices that the edge of the Internet
accommodates and the volume of the data these devices generate
are expected to grow dramatically in the years to come. As a
result, managing and processing such massive data amounts at
the edge becomes a vital issue. This paper proposes ‘“‘Store Edge
Networked Data” (SEND), a novel framework for in-network
storage management realized through data repositories deployed
at the network edge. SEND considers different criteria (e.g.,
data popularity, data proximity from processing functions at
the edge) to intelligently place different categories of raw and
processed data at the edge based on system-wide identifiers of
the data context, called labels. We implement a data repository
prototype on top of the Google file system, which we evaluate
based on real-world datasets of images and Internet of Things
device measurements. To scale up our experiments, we perform
a network simulation study based on synthetic and real-world
datasets evaluating the performance and trade-offs of the SEND
design as a whole. Our results demonstrate that SEND achieves
data insertion times of 0.06ms-0.9ms, data lookup times of 0.5ms-
5.3ms, and on-time completion of up to 92% of user requests for
the retrieval of raw and processed data.

Index Terms—Edge computing, Internet of Things (IoT), Data
storage at the edge, Data management

I. INTRODUCTION

Traditionally, the flow of data on the Internet follows a
“core-to-edge” model based on the assumption that the data
reside in the core of the network infrastructure (e.g., in a
data-center) and is requested/consumed by users at the edge
of the network. With the explosion of the Internet-of-Things
(IoT) [I1], this model is reversed [2]: massive amounts of data
are generated by user devices at the edge and flow towards the
core of the network infrastructure for processing and storage
purposes. To alleviate the pressure on the network introduced
by this reverse data flow model and to achieve low-latency data
processing, edge computing emerged as a prominent paradigm
that makes computing and storage resources available at the
edge of the network [3]. In this context, storing and effectively
managing massive amounts of generated user device data at
the edge is an issue that needs to be addressed [1]. This issue
becomes particularly challenging, since the generated data may
be of different types (e.g., IoT sensor data, images, video
frames) and may also have different needs and purposes (e.g.,
to be processed, to be simply stored at the edge, or to be
eventually offloaded to a cloud).

To address this issue, in this paper, we propose a data
storage and management framework at the network edge,
called “Store Edge Networked Data” (SEND). SEND aims to
improve the performance of the network edge and the Quality
of Service (QoS) provided to users by keeping raw (gener-
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ated by user devices) and processed (output of processing
services/functions) data in persistent storage close to users for
periods of time longer than cache storage. In SEND, storage
servers, called Edge Data Repositories (EDRs), are deployed at
the edge and seamlessly interact with flows of network traffic.
EDRs accept different categories of data (e.g., data to be stored
at the edge, the data input(s) and output(s) of processing
functions running at the edge, the code of the processing
functions) that may transit through the edge environment.
Through a logically centralized management plane, SEND
takes advantage of the characteristics (attributes) of the data
generated at the edge to make decisions on where to store
and whether/how to replicate the data across different edge
locations in order to maximize the offered QoS.

In this paper, we make two main contributions:
o We present the design of SEND, which takes into consid-
eration different criteria (e.g., data popularity, proximity of
data to processing functions running at the edge) to improve
the placement of different categories of data at the edge. To
aid data placement and management decisions, SEND relies,
among other attributes, on system-wide identifiers of the data
context, called labels. Labels are used to tag the data that
enter the SEND system, offering a light-weight mechanism
for identifying the data type(s), the data generation sources,
and the processing functions supported. SEND also stores data
at EDRs for as long as the data may be useful at the edge (e.g.,
for processing purposes), offloading the data to the cloud for
archiving once they are not useful at the edge anymore.
e We perform a thorough evaluation study of SEND. First,
we implement an EDR prototype on top of the Google file
system [4], which we evaluate based on real-world datatets
of images and measurements/readings of IoT devices. To
scale up our experiments, we perform a network simulation
study based on synthetic and real-world datasets evaluating
the performance and trade-offs of the SEND framework as
a whole. Our experimental results demonstrate that SEND
achieves data insertion times of 0.06ms-0.9ms, data lookup
times of 0.5ms-5.3ms, and on-time completion of up to 92%
of user requests for the retrieval of raw and processed data.

The rest of our paper is organized as follows. In Section [II]
we present a brief background on storage frameworks and
discuss prior related work. In Section we present our
SEND system model and assumptions, while in Section [IV]
we present the design of SEND. In Section [V] we present
our experimental evaluation, in Section we discuss vari-
ous considerations and extensions of the SEND design, and,



finally, in Section we conclude our work.

II. BACKGROUND AND PRIOR RELATED WORK

In this section, we present a brief background on storage
frameworks, including storage on the cloud and the network
edge, along with previous related work.

A. Storage Frameworks

Extensive research has been conducted on storage frame-
works. The community has explored distributed file systems,
such as the Network File System (NFS) [3] and Coda [6],
and more recently Hadoop [7] and the Google file system [4]].
Alternative database designs (e.g., relational, object-oriented,
graph-based) have been proposed for data storage and indexing
of the stored data [8]. Lately, the community has focused on
key-value stores for the deployment of distributed network
storage and middleware applications [9], including mecha-
nisms to increase the performance of such stores through
programmable hardware [10]. SEND is orthogonal to these
approaches and is able to utilize different file system or key
value store designs for its internal data storage structure.

B. Cloud Storage

Data storage has been a popular cloud-based service offered
by the majority (if not all) of cloud providers, such as
Microsoft, Amazon, and Google. At the same time, there
are companies such as Dropbox and Box that specialize on
providing storage as a service on the cloud. Extensive research
on cloud storage has been conducted by the community. Per-
formance and scalability were among the first properties to be
explored [11], [12], while solutions to improve the availability
of cloud storage services have been also investigated [13]].

Data deduplication designs have been studied to ensure that
a single copy of redundant data is stored on the cloud [14],
[15], reducing the space and bandwidth requirements of data
storage services. Several approaches have also been pro-
posed to safeguard the privacy of the stored user data [L16],
[17] and perform operations, such as data searches, in a
privacy-preserving manner [18]]. Finally, issues, such as multi-
tenancy [19]], data replication [20]], and data management [21],
as well as their impact on cloud storage have been studied.

Storage services residing on remote clouds typically result
in high response delays for applications. Such delays may
not be tolerated by applications that require low-latency data
access. Moreover, [oT devices generate massive amounts of
data, which put significant pressure on the core network for
their transmission to remote clouds. To this end, SEND focuses
on providing storage as close to users as possible (at the edge
of the network) for both raw and processed data.

C. Storage and Data Placement at the Edge

Psaras et al. performed an initial exploration of the benefits
and challenges of data storage at the edge to alleviate the stress
that the massive amounts of data generated by IoT devices
put on the core network for the transmission of these data
to cloud storage [2]. Nicolaescu et al. built on top of this

concept by developing and assessing a preliminary design for
the management of popular data at the edge [22]]. Liu et al.
investigated the impact of the size and number of data storage
units on the data availability and operational cost [23]].

The majority of existing literature tackles the problem of
edge data storage from a service point of view. Strategies for
the optimal placement of data storage units have been pro-
posed, aiming to maximize the QoS offered by the edge [24],
[25], [26]. Other approaches follow a management-driven
direction by utilizing the logically centralized intelligence of
Software Defined Networking (SDN) to install forwarding
rules on edge routers, so that generated data can be forwarded
to the closest edge server for processing and storage [27].

Service/function and data placement at the edge has been
further explored in the context of specific application do-
mains. Scientific workflows may require taking into account
the dependencies between different data types to improve
the workflow execution efficiency [28]]. Social virtual reality
applications may require considering the data of users and the
processing logic on these data as a bundle [29]]. In this context,
optimizing the data placement at the edge is performed to en-
able user interactions. Finally, for the deployment of connected
vehicles, strategies to prefetch and process data at Road Side
Units (RSUs) have been designed and evaluated [30].

The approaches mentioned above did not offer integrated
data location awareness along with data storage and distribu-
tion of (raw or processed) data or the code of the processing
functions. SEND offers such an integrated approach where all
data (raw data entering the system or processed data created by
the system—for example, the output(s) of a processing function
at the edge) are stored at the edge for as long as it may
be useful to users and applications. SEND utilizes different
placement strategies/algorithms based on the context (labels)
of each data piece, the processing function(s) that each data
piece may be associated with, and the period of time that each
data piece may be useful to users and applications at the edge.
At the same time, SEND aims to enhance the provided QoS for
all applications, users, and devices, without being a solution
limited only to certain application domains.

III. SYSTEM MODEL AND ASSUMPTIONS

As we illustrate in Figure [T} we assume an edge computing
environment, where a number of EDRs (EDR,, EDRs,...,
EDRy) have been deployed one-hop away from user devices.
We further assume that the devices generate data based on their
nature or the applications they may be running (e.g., periodic
temperature readings for an IoT sensor, video frames captured
by a mobile device running an augmented reality application
that requires real-time object recognition). Once these data are
offloaded by a device and is received by an EDR, it can be
stored at the edge for future processing or low-latency access,
or it can be processed right away and the processing results
can be stored at the edge. As we will discuss in Section [[V-B|
each data piece may be useful (e.g., as an input of a function
at the edge) for a certain period of time. After this period of
time, the data can be archived from an EDR to the cloud.



We assume that a number of processing functions (e.g.,
object recognition, data analytics) may be offered by an EDR.
We further assume that requested functions will exist in the
EDR environment. Functions may be pre-installed by an EDR
or a data/application provider. Alternatively, the function code
can be offloaded directly by user devices if their hardware
capabilities allow. The instantiation of functions will take place
through the use of Virtual Machines (VMs) within an EDR,
while the VM hardware allocation in “cloudlets” of EDRs is
elastic. A function consists of application-level code, applied
to input data, towards obtaining a result (output data) requested
by either a data provider or a user registered with a data
provider. Data providers may be corporations, such as ZipCar,
Uber, Nest, etc., which utilize edge services and network data
storage for the data needed by them or their users.

In the context of our system, we assume the existence
of a logically centralized EDR management module at each
edge network. This component can be realized through, for
instance, an SDN controller. Each EDR periodically sends
statistics about the stored, processed, and served data and their
attributes to the management module, which is responsible for
making data management and placement decisions. Based on
these decisions, EDRs may relocate or replicate data within
their environment. Finally, data providers may interact with
the cloud and the EDRs to retrieve raw or processed data
generated by their users for further processing and insights.
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are stored in the EDR environment, which is managed by a
logically centralized EDR management entity. Data providers
can retrieve raw and processed data from EDRs or the cloud
once the data are archived from the edge to the cloud.

IV. SEND DESIGN

In this section, we first present an overview of the SEND
design and, subsequently, its design components in detail.

A. SEND Design Overview

In Figure 2] we present an overview of the SEND design
and operational workflow. As illustrated on the left of Fig-
ure 2] SEND includes a management component that considers
stored data and available functions. This component makes
function instantiation decisions based on the location of the

stored data and the execution locations of available functions.
All of the above are taken into account when new or previously
stored/processed (e.g., associated with known labels) data are
introduced to the system. As a result, data are relocated (or
replicated) to EDRs (edge locations) where it is likely to be
needed in the future in order to satisfy user requests for the
execution of functions or the retrieval of the data themselves.

As illustrated on the right side of Figure 2 SEND inter-
acts with network flows, accepting data that transit through
the EDR environment. SEND separates data transiting edge
networks, at least upstream (i.e., from the user devices to
the network core), into: (i) function-related data that may
represent the actual code of processing functions running at
the edge or input(s) for the execution of such functions; and
(ii) storage-related data that are simply stored at the edge
for future use. The SEND design is driven by attributes that
can be common among different categories of data (e.g., size,
generation timestamp, hash). Each piece of data is stored at the
edge for as long as it may be useful to users and applications.
This “usefulness” time period is represented by the shelf life
of the data, which we further discuss in Section Once
the shelf life of raw or processed data expires, these data may
be offloaded from the edge to the cloud for archival purposes.
Note that all data attributes are considered important, however,
the most important attribute for our design, which also has not
been given much consideration until now, are the labels. Labels
can significantly contribute to optimizing: (i) data placement
and replication among different storage locations at the edge;
and (ii) the execution location of available functions.

In the following subsections, we present the components of
the SEND design in more detail. We first present different data
attributes and categories of data as defined in the context
of SEND (Section [[V-B). We then present how the most
important data attributes (labels and hashes) improve data
storage and servicing (Section and describe the SEND
data management operation and different strategies for the
placement of data at the edge (Section[[V-D). Finally, we put
all the components of the SEND design together to elaborate
on the overall operation process of EDRs (Section [IV-E).

B. Data Attributes and Categories

Data attributes: In SEND, EDRs consider a number of
attributes for the data, such as the data size, generation
timestamp, hash, freshness period, shelf life, and labels. The
freshness period represents a deadline for the execution of a
time-sensitive processing function, while the shelf life refers
to the maximum storage period or the maximum window for
the data to be processed by a function at the edge. Once the
data shelf life expires, the data are archived to the cloud. These
attributes help with data management decisions such as storage
time, processing needs, and storage/archiving after processing.

Labels are a data characteristic flexible enough to be at-
tributed to all types of data entering our system. This attribute
is rather flexible—it can be lightweight so that it does not im-
pose high overhead on the network or our system or it can have
a more sophisticated form that provides deeper context into
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Fig. 2: SEND Design Overview. SEND seamlessly interacts
with network flows to accept function- and storage-related
data. Raw and processed data are stored at the edge until
its shelf life expires. After shelf life expiration, the data
are archived on the cloud. The SEND management plane
receives feedback from EDRs about the labels of received data
and successful/unsuccessful on-time completion of function
requests to optimize function and data placement at the edge.

the data. For example, temperature data generated by an IoT
sensor can be labelled based on its type (e.g., “temperature-
data”), the application that generated the data combined with
the type (e.g., “home-loT-app/temperature-data”), or its gen-
eration location and context (e.g., “beautiful-city/beautiful-
neighborhood/house123/temperature-data”). Each data piece
can also carry multiple labels if it is relevant to multiple
functions. For example, let us assume that a driver uses a
mobile navigation application while driving to find the fastest
route to his/her destination. Data about the speed of the driver’s
vehicle reported by this application may be useful to multiple
functions at the edge—for example, a function that reports
accidents and traffic conditions to local authorities and a
function that optimizes the routes for users of this application.
To this end, the vehicle speed data may carry two labels (e.g.,
“speed-accident-reporting” and “speed-route-calculation”) to
associate the data with both relevant functions.

SEND offers the flexibility to application developers to
define their own labels and select the values of attributes,
such as the freshness period and the shelf life. Alternatively,
SEND itself can set the values of these attributes based on
statistics collected over time about applications, the data these
applications generate, as well as the usage of functions.

Main data categories: SEND considers three main cate-
gories of data for its operation:

o Storage-related data: These data have the purpose of being
stored at the edge. Their future use may vary. For example,

they can be used as input for the future execution of functions
or be stored for distributed and time-constrained access.

o Function-related data: These data may be the function code
or data to be directly used as input for the execution of a
function (typically associated with a short freshness period).
e Data to be offloaded to the cloud: These data has already
been used for as long as it was valid (passed its shelf life),
therefore, it is not useful for any further operations at the edge.
To this end, such data can be offloaded to the cloud for archival
purposes. Both storage- and function-related data (in addition
to processed data, such as function outputs) will fall into this
data category once its shelf life expires.

C. Labels and Hashes to Improve Data Storage and Servicing

The goal of the SEND design is to improve system per-
formance by keeping data in persistent storage for periods
longer than cache storage. These improvements come with the
help of the data management algorithm and the data placement
strategies (Section [[V-D)) with the goal of storing data closer:
(i) to functions that may need the data for processing in
the future; and/or (ii) to users and devices that may request
the data in the future. The management algorithm and the
strategies make use of the data attributes to make informed
decisions. Among the most important data attributes are data
hashes and labels, which benefit SEND as described below.

Data hashes: Data hashes offer the ability to track data
from their source to their destination. The hash of each data
piece is immutable, that is each data piece retains its hash after
replication or after it is used as input to a function. Hashes
can be used to, for example, find the origin of certain data
pieces or inspect certain data pieces to verify their validity.

Data labels: The labels offer the ability to track perfor-
mance, the popularity of data, and data placement statistics.
For example, if SEND determines that data labelled as “video-
data” are popular in a certain edge region, it may decide to
place more data characterized by the same labels in that region,
or, for instance, diversify the data in the region, while keeping
the “video-data” label as the predominant label. This is the
reason why the labels are the most essential data attribute in
SEND. In other words, labels make the system aware of the
context of the data that it handles and improves its performance
by enabling accurate data placement and storage decisions.

D. Data Management and Placement Strategies

Management entity: Data management decisions in each
edge network are made by a logically centralized management
entity (e.g., an SDN controller), which hosts the management
intelligence of the EDR environment. The management entity
periodically receives up-to-date information about the labels
of the data recently received by EDRs, the recently executed
functions, and the recent EDR performance. Based on this
information, it makes decisions about data and function place-
ment and provides feedback to EDRs about these decisions.
Each EDR takes into account the feedback provided by the
management entity to relocate/replicate incoming and stored



data, available functions, and function requests in order to
maximize the system performance and QoS.

More specifically, the decisions of the management entity
of each EDR environment can determine the following:

1) Function placement: where (on which EDRSs) to instantiate
functions in an edge network, so that the offloaded user data
can be processed before the expiration of its freshness period.
2) Data placement: where (on which EDRs) to relo-
cate/replicate stored data based on a data placement strategy
(explained below) to satisfy different requirements. For exam-
ple, data deemed as highly likely to be used for the execution
of a function in the future may be pre-fetched by an EDR to
ensure that they are co-located with the function code.

3) Routing process: how to route requests for data towards
the closest copy of the requested data or requests for function
execution along with the needed input data for processing
towards the closest instance of the requested function.

Data placement strategies: The management entity exe-
cutes a data placement strategy, which determines the locations
where data should be placed at the edge, whether data need
to be replicated across multiple locations, and for how long
data should be stored at the edge. Subsequently, the strategy
instance running at the management entity provides feedback
to an instance of the strategy running at each EDR, which
helps EDRs decide how to handle incoming data. Examples of
data placement strategies offered by SEND are the following:

General-purpose storage strategy: Priority is given to stor-
ing and replicating the data introduced to the system that
has certain values for a set of attributes as data already
present in the EDR environment. For example, if data with
a label “video-data” and a generation timestamp within the
last hour have been already stored, data with the same label
and generated within the last hour will also be given priority.

Popularity-based strategy: The data are placed at edge
locations where their associated label(s) is considered to be
popular (i.e., the rate of user requests for data associated with
such label(s) exceeds a certain threshold). For example, if
higher numbers of requests for one or a number of labels are
present in a part p of the EDR environment, data that carry one
or more of these labels will be replicated or relocated towards
EDRs available within p.

Function-based strategy: Data are placed close in terms of
network hops to where functions that expect input data with
the same label(s) have been already instantiated. The data
are collected in common, pool-like storage, so that several
functions can make use of them. For example, let us consider
functions that expect input data with labels “video-data”, “IoT-
measurements”, and “highway-traffic”. When data with these
labels are present in the vicinity of the functions at the edge,
the strategy replicates data associated with one or more of
these labels into storage in the functions’ vicinity or at the
EDRs that offer these functions.

Hybrid strategy: This strategy combines both function prox-
imity and label-based data popularity to make placement
decisions. It first places data close to functions that expect

input data with the same label(s). If such functions cannot be
found, the data are placed at EDRs based on its popularity.

E. EDR Operation

Having discussed the different components of SEND, in this
subsection, we present the operation of EDRs (Algorithm [T).
Once a user application/device offloads data or requests the
execution of a function, these data or requests will reach the
EDR closest to the user—for example, let us assume that
EDR; of Figure[l]is the EDR closest to the user. In the case of
data, the data placement strategy instance running on ED R,
will determine whether the data should be stored locally or
should be replicated/relocated to another EDR. In the case of
a function request, EDR; will determine whether to execute
this request locally or route (distribute) it to another EDR for
execution. The input data can be carried by the request itself or
have already been stored at one or more EDRs. For example, if
the majority of the input data are available at ED Ry instead
of EDR; in Figure[I] or the requested function is unavailable
at EDRq, but available at EDRy, EDR; will re-route the
request towards EDRy for execution. Once a function is
executed, the output will be returned to the user that requested
its execution. The output will also be stored by the EDR that
executed the function or be relocated/replication to other EDRs
according to the data placement strategy.

Finally, statistics about the stored and relocated/replicated
data (e.g., based on the label(s) of the data) or the function
requests may be maintained by EDRs. Periodically, each EDR
will send its latest statistics to the management entity of the
edge network. This entity will provide feedback to EDRs on
how to handle future incoming data and function requests.

V. EVALUATION

In this section, we present the evaluation of SEND using
two different setup First, we implement an EDR prototype,
which we evaluate based on real-world datasets. To scale up
our experiments, we perform a network simulation study to
evaluate the SEND framework as a whole.

A. EDR Prototype Experiments

We have implemented an EDR prototype on top of the
Google file system [4]. We evaluated our prototype under two
scenarios: (i) storage of images containing complex scenes;
and (ii) storage of measurements captured by IoT devices.

Datasets, implementation, and experimental setup: For
our first scenario, we used 100,000 images from the COCO
dataset [31]]. For our second scenario, we used a dataset
captured and publicized in the context of the IoT Inspector
project [32] from 3,000 users and 30,000 IoT devices. For
both scenarios, we evaluated the following metrics (without
any network latency): (i) the time to insert a data piece (image
or IoT measurement) to the EDR as we increase the number
of data pieces inserted (load on the EDR); and (ii) the time to
search for stored data based on labels and other attributes such

'We make our prototype and simulation code available to the community
at https://github.com/(omitted-for-double-blind-review)!
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ALGORITHM 1
EDR Operation

1: Inputs: Input ¢ received from a user device

2: if (type(i) == data) then

3: ‘ data_destination_EDR =
data_placement_strategy(labels());

4: if (data_destination_EDR == local_EDR) then

5: ‘ store(?);

6: else

7: ‘ replicate(7, data_destination_EDR);

8: end if

9: label_statistics Is =
update_label_population(labels(z));

10: else if (type(¢) == function_request) then

11: function_execution_EDR = routing_process(7);

12: if (function_execution_EDR == local_EDR) then

13: input = get_input_data(s);

14: output o = execute(function_to_execute(z), input);

15: output_EDR = data_placement_strategy(o);

16: replicate(o, output_EDR);

17: else

18: distribute(z, function_execution_EDR);

19: end if

20: function_statistics fs = update_function_statistics(4);

21: end if

22: if (time_to_send_update()) then

23: ‘ send_update_to_management_entity(ls, fs)

24: end if

as generation timestamps. These experiments were performed
on a server equipped with an Intel i5-9600K processor, 32GB
of RAM, and an SSD SATA III drive. We ran each experiment
ten times and we report on the average results.

Data insertion time: In Figure 3] we present the insertion
time results for every 20,000 data insertions for images and
IoT measurements. For the image use-case, we vary the total
number of labels for the inserted data. Our results demonstrate
that as the amount of stored data increases, the data insertion
times increase as well. This is due to the fact that data access
time is needed to find the proper place to insert each incoming
data piece within an increasingly larger pool of stored data.
However, the overall data insertion time stays below 0.9ms.

For the use-case of IoT measurements, we consider varying
numbers of labels as well as data generation timestamps. Our
results indicate that the different attributes do not significantly
affect the insertion time. As we increase the total amount of
inserted data, the insertion time stays between 60us and 100us
due to the fact that IoT measurements are of considerably
smaller sizes (about 40 bytes each) compared to images (up
to 2MB per image). As a result, not only the individual data
pieces inserted are of small sizes, but also the total size of
inserted data is smaller than the use-case of images.

Data lookup time: In Figure |4] we present the data lookup
time results for every 20,000 insertions for both images and
IoT measurements. Our results demonstrate that the lookup
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Fig. 3: Data insertion times. Results reported for every 20,000

insertions for both use-cases (images and IoT measurements).

time increases as we increase the total amount of stored data.
The lookup time also increases with the complexity of the
lookup operations—for example, by increasing the total number
of labels or performing lookups based on a combination of
data attributes (e.g., labels and generation timestamps). The
lookup times for images range from 0.5ms to 5.3ms, while
the lookup times for IoT measurements ranges from 0.8ms to
4ms. The IoT measurement lookup times are comparable to
the lookup times for images due to the characteristics of the
IoT dataset, which results in larger numbers of stored data
pieces (IoT measurements) matching our lookup queries.

[ Images-10 Labels YW Images-100 Labels
77 \'mages-1000 Labels [ loT-Generation Timestamps
1oT-100 labels E=—=loT-Generation Timestamps and 100 Labels

6000 -

N oW A& O
Q 9 2 9
S © © ©
S © o o

Data Lookup Time (us)
<)
8

o

Data Insertions (x10000)
Fig. 4: Data lookup times. Results reported for every 20,000
insertions for both use-cases (images and IoT measurements).

B. SEND Simulation Experiments

Simulation setup, parameters, and evaluation metrics:
For our simulation environment, we utilized the Icarus network
simulator [33]], a python-based, discrete-event simulator. We
extended Icarus with an EDR implementation and the concept
of data labels, and we also implemented the data placement
strategies mentioned in Section

In Figure 5] we present our tree-like topology, which
consists of EDRs, gateways that receive user requests and data
(attached to EDRs at the lowest tree level), a management
entity, and a cloud provider. We present our simulation pa-
rameters and datasets in Table Il At the beginning of each
simulation, there is a data generation round where EDRs
are populated with data. After this round, users continue to
generate data, but also send requests for data (raw or after
being processed by a function). Each user request is associated
with a latency deadline by which the user needs to retrieve the
requested data. As a baseline for comparison, we implement
a strategy that optimizes data and function placement based
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on the number and deadlines of requests but without the use
of labels [24], which we call “hybrid-no labels” strategy. To
perform a fair comparison with this baseline strategy, we use
the same method to generate request deadlines that Ascigil et
al. used [24]. Specifically, a request deadline is a random time
value (in ms) between the following lower- and upper-bounds:
Round Trip Time (RTT) from the gateway that receives the
request to its adjacent EDR at the lowest tree level (lower-
bound) and RTT to reach the cloud from the gateway that
receives the request (upper-bound). We run each experiment
ten times and report on the average results. Note that we
experimented with various different link delays across the
entire topology to verify that the presented results still hold.

At the edge, data are replicated among EDRs according
to the selected placement strategy, while once the data shelf
life expires, the data are archived on the cloud. For our
experiments, we use the following datasets: (i) a synthetic
dataset; and (ii) a Microsoft Azure dataset [34] and a Google
cloud dataset [35], which we utilize to extract the populations
of raw data, functions, and labels, the assignment of labels to
data, as well as the rates and the actual requests for both raw
data and functions. We focus on the following metrics:

« Request satisfaction rate: The percent of user requests that
are satisfied by their associated deadlines.

« Normalized overhead: The volume (in bytes) of overhead
traffic per (raw or processed) data piece normalized by the
average size (in bytes) of each data piece. The overhead traffic
includes the traffic generated for the replication of data among
EDRs, the archival of data from the edge to the cloud, and the
feedback from and to the management entity.

Each EDR exchanges feedback updates with the manage-
ment entity for every 1,000 received requests. We selected this
frequency, so that each EDR is able to gather a reasonable
population of data label and function usage statistics, avoid
overloading the edge with overly frequent feedback updates,
and, at the same time, maintain up-to-date feedback from the
management entity. We experimented with lower and higher
frequencies. More frequent updates do not substantially im-
prove the request satisfaction rates, but increase the overhead.
Less frequent updates can degrade the request satisfaction rates

TABLE I: Simulation parameters and used datasets.

Parameter Value(s)
Number of EDRs 14
Distance and link delay 3-5 hops and 40ms following
between EDRs at the values reported by recent studies [36], [37]
highest edge level and cloud and cloud computing trends [38]
Synthetic dataset: 10,000 unique raw
data pieces, 10,000 unique functions, 1,000
unique labels (pseudo-randomly generated),
150 user requests per second, 600,000 requests
for raw data, 400,000 requests for functions
Microsoft Azure dataset: 50,000 unique raw
data pieces, 50,000 unique functions,
5,000 unique labels, 100 user requests per
second, 320,000 requests for raw data,
680,000 requests for functions
Google cloud dataset: 100,000 unique raw
data pieces, 100,000 unique functions,
100 unique labels, 100 user requests per
second, 480,000 requests for raw data,
520,000 requests for functions

Used Datasets

EDR-Management

feedback frequency Per 1,000 received user requests

Ranging from 40 bytes that represent

Data sizes IoT measurements to SMB that
represent high-quality images
Link delay between EDRs 10ms
Link delay between a
2ms

gateway and its adjacent EDR

with no substantial improvement of the overhead.

Simulation results: In Figure [6] we present the request
satisfaction rate results for different datasets. For our synthetic
dataset (Figure [6d), the general-purpose placement strategy
performs the best, reaching 92% of satisfaction rates. This
is due to the following reasons: (i) this strategy does not
concentrate on specific labels (e.g., the most popular data
labels), treating equally data of different labels that is stored
in the system; and (ii) none of the labels in this dataset
is far more popular than others. This is also evident by
the fact that specialized strategies (e.g., focusing on data
popularity, proximity of data from processing functions) result,
in general, lower satisfaction rates than the general-purpose
strategy, being able to satisfy on-time 61-72% of the requests.

For the Azure dataset (Figure [6b), the function-based place-
ment strategy achieves the highest request satisfaction rates (up
to 90%). The SEND hybrid and the general-purpose strate-
gies perform slightly worse than the function-based strategy
reaching about 85% of satisfaction rates as the number of
requests increases. This is due to the fact that the majority of
the requests in this dataset are for processed data. Therefore,
placing pieces of data close to EDRs, which offer functions
that may require such pieces as inputs, results in executing the
requested functions and returning the results (processed data)
to users in a timely manner.

For the Google cloud dataset (Figure[6c)), the SEND general-
purpose and hybrid strategies achieve the highest satisfaction
rates (up to 90%). This is attributed to the fact that this dataset
contains a relatively balanced mix of requests for both raw data
and functions (processed data). Note that for all datasets, the
strategy that does not make use of labels for data placement
results in satisfaction rates of roughly 10-55%. These results
demonstrates the importance of labels, which make SEND
aware of the data context, for the efficient placement of both



data and functions in the EDR environment.
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(a) Satisfaction rate for the synthetic dataset.
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(b) Satisfaction rate for the Microsoft Azure dataset.
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(c) Satisfaction rate for the Google cloud dataset.

Fig. 6: Request satisfaction rates for different datasets.

In Figure [/| we present the overhead results for different
datasets and numbers of user requests. For our synthetic
dataset (Figure [7d), the general-purpose strategy incurs the
highest overhead, since each data label is roughly evenly
distributed in the synthetic dataset. As a result, all raw and pro-
cessed data are replicated at the edge to the same extent, which
is also the reason that the general-purpose strategy achieves
the highest satisfaction rates (as illustrated in Figure [6a). For
the Azure dataset (Figure [7D), the function-based placement
strategy incurs the highest overhead, since the majority of the
requests in this dataset are requests for functions.

Finally, for the Google cloud dataset (Figure [7c]), the SEND
general-purpose and hybrid strategies result in the highest
overheads. This dataset contains fewer labels compared to the
previous datasets and a relatively balanced mix of requests
for raw and processed data. To this end, the general-purpose
strategy replicates the majority of data in this dataset, since
data with the same label are typically already present in the

[T Hybrid-No Labels END General-Purpose
XYY SEND Popularity-Based SEND Function-Based
E== SEND Hybrid

2 10

Normalized O

200 400 600 800 1000
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(a) Normalized overhead for the synthetic dataset.
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(b) Normalized overhead for the Microsoft Azure dataset.
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(c) Normalized overhead for the Google cloud dataset.

Fig. 7: Normalized overhead for different datasets.

EDR environment, while the SEND hybrid strategy prioritizes
the replication of data based on both their labels and the
proximity to relevant function locations at the edge.

VI. DISCUSSION

In this section, we discuss various extensions and consider-
ations of the SEND design.

A. SEND Performance Optimizations

A number of different approaches can be applied to optimize
the performance of SEND as a whole.

Optimal allocation of computing and storage resources:
As we mentioned in Section EDRs keep statistics about
the data generated by users at the edge as well as the data
attributes and the requested functions. In addition to being
sent to the EDR management entity of the edge network,
such statistics can also be sent to the cloud. On the cloud,
the statistics can be combined with historical usage data of
multiple edge networks maintained by the EDR providers. The
EDR providers may utilize different models (based on machine



learning and other optimization methods) to determine the
optimal allocation of computing and storage resources across
different edge networks based on the projected user demand.

Computation reuse: The concept of computation reuse
refers to reusing/sharing computation (results of function ex-
ecution) among users for the execution of incoming function
requests [39], [40]. As a result, computation reuse can reduce
the function execution times and the usage of computing
resources. To realize computation reuse, results of previously
executed functions will be stored by EDRs, which will de-
termine whether these results can satisfy incoming requests
without the need to execute incoming requests from scratch.
We will explore this direction in our future work.

Accurate data and function placement: In Section [[V-D]
we mentioned examples of placement strategies. Such strate-
gies can be augmented with reinforcement and machine learn-
ing approaches for the accurate prediction of when and what
types of data and functions to be placed at different EDRs. This
will increase the likelihood of placing the most relevant data
and functions as close as possible to where they may be re-
quested by users in the future. The reinforcement and machine
learning approaches can be located at the management entity
of each edge network or further up at strategic locations of the
core network, having visibility across multiple edge networks.

Data naming, indexing, and compression: Mechanisms
for data naming/identification and indexing within storage can
enable efficient data lookup, insertion, and other operations.
Compression techniques may also be able to reduce the overall
size of the required storage while preserving throughput [41]].

B. Security and Privacy Considerations

A storage environment built around SEND at the edge
involves security considerations. A first consideration is related
to malicious users. Let us consider a vehicular use-case, where
a mobile navigation application is used to find the fastest route
to a destination. The application may be reporting its speed
and ongoing traffic conditions over time, so that the edge
can compute the fastest routes for other drivers that use the
same application. However, malicious users may report bogus
speeds or traffic conditions. Such data may be stored by EDRs
and may also be archived on the cloud in the long run to help
the city authorities with traffic planning. Mechanisms involv-
ing the use of machine learning or statistical modeling [42]]
can be utilized to identify and flag potential bogus data and
processed results that might involve bogus input data.

Another issue to consider is the existence of malicious
EDRs, which can alter stored data as well as the code and
results of functions. Verifiable proofs of computation [43]
may enable EDRs and users to verify the validity of function
execution results. Moreover, data generated by users and stored
by an EDR may be logged into a distributed ledger, such as a
blockchain, accessible by EDRs to avoid modifications of data
as they get replicated, processed, or relocated at the edge.

Finally, storing user data at EDRs allow EDR providers to
have access to the user data and their attributes, effectively be-
ing able to identify the types of data that a user device may be

generating and the application(s) that it might be running. En-
cryption mechanisms, such as attribute-based encryption [44],
can be utilized to “hide” the data and their attributes from
EDR providers and enable access to it only by authorized users
and/or data providers. However, such mechanisms may come
at a cost of sub-optimal management operations, since SEND
utilizes data attributes to make efficient management decisions.
Alternative approaches may allow access to certain attributes
to help SEND efficiently manage the data, but encrypt the
actual data and attributes that are considered sensitive.

C. Techno-Economic Aspects

SEND will impact several techno-economic aspects of edge
computing ecosystems. First of all, pricing schemes are needed
for users and data providers that occupy storage and computing
resources at the edge. For example, an intuitive solution might
be for SEND to inherit the “pay-as-you-go” model of cloud
computing. More sophisticated approaches may involve auc-
tions between users or data providers and EDR providers [45],
as well as optimizations for profit maximization [46]. Another
challenge is related to enabling collaboration among EDR
providers. Collaboration may be needed, for example, in order
to exchange data that have been generated by users sub-
scribed to a particular EDR provider but is requested by users
subscribed to another EDR provider. Smart contracts can be
utilized to provide a consistent definition of the collaboration
terms and automate their execution [47].

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an in-network data storage
management framework, named SEND. SEND is realized
through the deployment of EDRs (1-hop away from users),
seamlessly interacting with network traffic originated from
user devices. Through a logically centralized management
plane, SEND utilizes data attributes to make intelligent de-
cisions about the placement of functions and data among
EDRs. We implemented an EDR prototype to evaluate the
performance of EDR operations and conducted a network
simulation study to evaluate the SEND design as a whole.

While SEND is off to a promising start, we plan to investi-
gate the following directions in the future: (i) mechanisms to
enhance the performance of SEND; (ii) mechanisms to enable
the collaboration among EDR providers for the exchange of
data requested by users subscribed to different providers; (iii)
security and privacy challenges related to SEND; and (iv)
the deployment of SEND in large-scale settings where it will
interact with a variety of real-world applications.
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