
Bialgebraic Foundations for the Operational Semantics
of String Diagrams

Filippo Bonchi1, Robin Piedeleu1, Pawel Sobociński1,, Fabio Zanasi1

aUniversità di Pisa, Italy
bUniversity College London, United Kingdom
cTallinn University of Technology, Estonia

Abstract

Turi and Plotkin’s bialgebraic semantics is an abstract approach to specifying
the operational semantics of a system, by means of a distributive law between
its syntax (encoded as a monad) and its dynamics (an endofunctor). This setup
is instrumental in showing that a semantic specification (a coalgebra) satisfies
desirable properties: in particular, that it is compositional.

In this work, we use the bialgebraic approach to derive well-behaved struc-
tural operational semantics of string diagrams, a graphical syntax that is in-
creasingly used in the study of interacting systems across different disciplines.
Our analysis relies on representing the two-dimensional operations underlying
string diagrams in various categories as a monad, and their bialgebraic semantics
in terms of a distributive law for that monad.

As a proof of concept, we provide bialgebraic compositional semantics for a
versatile string diagrammatic language which has been used to model both signal
flow graphs (control theory) and Petri nets (concurrency theory). Moreover, our
approach reveals a correspondence between two different interpretations of the
Frobenius equations on string diagrams and two synchronisation mechanisms
for processes, à la Hoare and à la Milner.

Keywords: String Diagram, Structural Operational Semantics, Bialgebraic
semantics

1. Introduction1

Starting from the seminal works of Hoare and Milner, there was an explo-2

sion [? ? ? ? ?] of interest in process calculi: formal languages for specifying3

and reasoning about concurrent systems. The beauty of the approach, and often4

the focus of research, lies in compositionality : essentially, the behaviour of com-5

posite systems—usually understood as some kind of process equivalence, the6

∗Supported by the ESF funded Estonian IT Academy research measure (project 2014-
2020.4.05.19-0001)

Preprint submitted to Theoretical Computer Science August 26, 2020

most famous of which is bisimilarity—ought to be a function of the behaviour7

of its components. The central place of compositionality led to the study of syn-8

tactic formats for semantic specifications [? ? ?]; succinctly stated, syntactic9

operations with semantics defined using such formats are homomorphic wrt the10

semantic space of behaviours.11

Another thread of concurrency theory research [? ? ?] uses graphical12

formalisms, such as Petri nets. These often have the advantage of highlighting13

connectivity, distribution and the communication topology of systems. They14

tend to be popular with practitioners in part because of their intuitive and15

human-readable depictions, an aspect that should not be underestimated: in-16

deed, pedagogical texts introducing CCS [?] and CSP [?] often resort to17

pictures that give intuition about topological aspects of syntactic specifications.18

However, compositionality has not—historically—been a principal focus of re-19

search.20

In this paper we propose a framework that allows us to eat our cake and have21

it too. We use string diagrams [?] which have an intuitive graphical rendering,22

but also come with algebraic operations for composition. String diagrams com-23

bine the best of both worlds: they are a (2-dimensional) syntax, but also convey24

important topological information about the systems they specify. They have25

been used in recent years to give compositional accounts of quantum circuits[?26

?], signal flow graphs [? ? ?], Petri nets [?], and electrical circuits [? ?],27

amongst several other applications.28

Our main contribution is the adaptation of Turi and Plotkin’s bialgebraic29

semantics (abstract GSOS) [? ?] for string diagrams. By doing so, we provide30

a principled justification and theoretical framework for giving definitions of op-31

erational semantics to the generators and operations of string diagrams, which32

are those of monoidal categories. More precisely we deal with string diagrams33

for symmetric monoidal categories which organise themselves as arrows of a34

particularly simple and well-behaved class known as props. Similar operational35

definitions have been used in the work on the algebra of Span(Graph) [?], tile36

logic [?], the wire calculus [?] and recent work on modelling signal flow graphs37

and Petri nets [? ?]. In each case, semantics was given either monolithically or38

via a set of SOS rules. The link with bialgebraic framework—developed in this39

paper—provides us a powerful theoretical tool that (i) justifies these operational40

definitions and (ii) guarantees compositionality.41

In a nutshell, in the bialgebraic approach, the syntax of a language is the ini-
tial algebra (the algebra of terms) TΣ for a signature functor Σ. A certain kind
of distributive law, an abstract GSOS specification [?], induces a coalgebra (a
state machine) β : TΣ → FTΣ capturing the operational semantics of the lan-
guage. The final F-coalgebra Ω provides the denotational universe: intuitively,
the space of all possible behaviours. The unique coalgebra map [[·]]β : TΣ → Ω

2

represents the denotational semantics assigning to each term its behaviour.

TΣ

[[·]]β
❴❴❴❴❴❴❴

β

Ω

F(TΣ) F([[·]]β)
 F(Ω)

(1)

The crucial observation is that (??) lives in the category of Σ-algebras: Ω also42

carries a Σ-algebra structure and the denotational semantics is an algebra homo-43

morphism. This means that the behaviour of a composite system is determined44

by the behaviour of the components, e.g. [[s+ t]] = [[s]] + [[t]], for an operation +45

in Σ.46

We show that the above framework can be adapted to the algebra of string47

diagrams. The end result is a picture analogous to (??), but living in the48

category of props and prop morphism. As a result, the denotational map is a49

prop morphism, and thus guarantees compositionality with respect to sequential50

and parallel composition of string diagrams.51

Adapting the bialgebraic approach to the 2-dimensional syntax of props52

requires some technical work since, e.g. the composition operation of monoidal53

categories is a dependent operation. For this reason we need to adapt the usual54

notion of a syntax endofunctor on the category of sets; instead we work in a55

category Sig whose objects are spans N ←− Σ −→ N, with the two legs giving the56

number of dangling wires on the left and right of each diagram. The operations57

of props are captured as a Sig-endofunctor, which yields string-diagrams-as-58

initial-algebra, and a quotient of the resulting free monad, whose algebras are59

precisely props.60

In addition to the basic laws of props, we also consider the further imposition61

of the equations of special Frobenius algebras. We illustrate the role of this62

algebraic structure with our running example, a string diagrammatic process63

calculus CircR that has two Frobenius structures and can be equipped with two64

different semantics, one which provides a compositional account of signal flow65

graphs for linear time invariant dynamical systems [?], and one which is a66

compositional account of Petri nets [?].67

We conclude with an observation that ties our work back to classical concepts68

of process calculi and show that the two Frobenius structures of CircR are closely69

related to two different, well-known synchronisation patterns, namely those of70

Hoare’s CSP [?] and Milner’s CCS [?].71

Structure of the paper. In §?? we introduce our main example and recall72

some preliminaries, followed by a recapitulation of bialgebraic approach in §??.73

We develop the technical aspects of string-diagrams-as-syntax in §?? and adapt74

the bialgebraic approach in §??. Finally, we exhibit the connection with classical75

synchronisation mechanisms in §?? and conclude in §??.76

This work extends the conference paper [?] with a greatly expanded sec-77

tion on preliminaries (Section ??), ??, and all the missing proofs. Moreover,78

Section ??, Remark ?? and Section ?? are new contributions.79

3

: (1, 0) : (1, 2) x

k

: (1, 1) k : (1, 1) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) x

k

: (1, 1) k : (1, 1) : (1, 2) : (1, 0)

: (0, 0) : (1, 1) : (2, 2)

c : (k1, k2) d : (k2, k3)

c ; d : (k1, k3)

c : (k1, l1) d : (k2, l2)

c⊕d : (k1+k2, l1+l2)

Figure 1: Sorting discipline for CircR

k−→
ε

k−−→
k k

k l−−→
k+l

ε−→
0

ε−→
k

k k−−−→
k

k+l−−−→
k l

0−→
ε

k
l−→

l·k k k
l·k−−→
l

k x

k
l−→
k

x

l

x

k
k−→
l

x

l

Figure 2: Structural Operational Semantics for the generators of CircR. Intuitively, from
left to right, these are elementary connectors modelling discard, copy, one-place register,
multiplication by a scalar, addition, and the constant zero.

2. Motivating Example80

As our motivating example, we recall from [? ? ?] a basic language CircR

given by the grammar below. Values k in x

k

and k range over elements
of a given semiring R.

c, d ::= | | x

k

| k | | | | | (2)

x

k

| k | | | (3)

| | | c ; d | c⊕ d (4)

The language does not feature variables; on the other hand, a simple sorting81

discipline is necessary. A sort is a pair (n, m), with n,m ∈ N. Henceforth we82

will consider only terms sortable according to the rules in Figure ??. An easy83

induction confirms uniqueness of sorting.84

The operational meaning of terms is defined recursively by the structural85

rules in Figs. ?? and ?? where k, l range over R and a, b, c over R, the set of86

words over R. We denote the empty word by ε and concatenation of a, b by87

ab. As expected +, · and 0 denote respectively the sum, the product and zero88

of the semiring R. For any term c : (n, m), the rules yield a labelled transition89

system where each transition has form c
a−→
b

d. By induction, it is immediate90

that d has the same sort as c, the word a has length n, and b has length m.91

4

c
a−→
b

c′ d
b−→
c

d′

λsq

c ; d
a−→
c

c′ ; d′

s
a1−−→
b1

c′ d
a2−−→
b2

d′

λmp

c⊕ d
a1a2−−−−→
b1b2

d′ ⊕ d′

λ
ε−→
ε

λid
k−→
k

λsy
k l−−→
l k

Figure 3: Structural operational semantics for the operations of CircR.

Our chief focus in this paper is the study of semantics specifications of the92

kind given in Figs. ?? and ??. So far, the technical difference with typical93

GSOS examples [?] is the presence of a sorting discipline. A more significant94

difference, which we will now highlight, is that sorted terms are considered up-to95

the laws of symmetric monoidal categories. As such, they are “2-dimensional96

syntax” and enjoy a pictorial representation in terms of string diagrams.97

2.1. From Terms to String Diagrams98

In (??)-(??) we purposefully used a graphical rendering of the components.
Indeed, terms of CircR are usually represented graphically, according to the con-

vention that c ; c′ is drawn c c0...
...

... and c⊕c′ is drawn
c

c0 ...

...
...

...

. For instance,

the term ((;)⊕) ; ((⊕ (; x

k

;))) ; ((;)⊕
) is depicted as the following diagram.

pk ::=
x
k (5)

Given this graphical convention, a sort gives the number of dangling wires on99

each side of the diagram induced by a term. A transition c
a−→
b

d means that100

c may evolve to d when the values on the dangling wires on the left are a and101

those on the right are b. When R is the natural numbers, the diagram in (??)102

behaves as a place of a Petri nets containing k tokens: any number of tokens103

can be inserted from its left and at most k tokens can be removed from its right.104

Indeed, by the rules in Figs. ?? and ??, pk
i−→
o

pk′ iff o ≤ k and k′ = i+ k − o.105

The graphical notation is appealing as it highlights connectivity and the ca-
pability for resource exchange. However, syntactically different terms can yield

the same diagram, e.g. (⊕) ; (⊕) ; (⊕) ; (⊕ x

k

) ; (⊕
) ; (⊕) ; (⊕) also yields (??). Indeed, one defines diagrams

to be terms modulo structural congruence, denoted by ≡. This is the smallest
congruence over terms generated by the equations of strict symmetric monoidal

5

≡ ≡

≡ ≡

≡ ≡

≡ ≡ ≡

Figure 4: Axioms of special Frobenius bimonoids

categories (SMCs):

(f ; g) ; h ≡ f ; (g ; h) (f ; idm) ≡ f (idn; f) ≡ f (6)

(f ⊕ g)⊕ h ≡ f ⊕ (g ⊕ h) (⊕ f) ≡ f (f ⊕) ≡ f (7)

(f ; g)⊕ (h ; i) ≡ (f ⊕ h) ; (g ⊕ i) (8)

σ1,1 ; σ1,1 ≡ id2 (σ1,n; (f ⊕ id1)) ≡ (id1 ⊕ f);σ1,m (9)

(σn,1; (id1 ⊕ g)) ≡ (g ⊕ id1);σm,1 (10)

where identities idn : (n, n) and symmetries σn,m : (n+m, m+ n) can be re-106

cursively defined starting from id0 := and σ1,1 := . Therefore, sorted107

diagrams c : (n, m) are the arrows n → m of an SMC with objects the natural108

numbers, also called a prop [?].109

2.2. Frobenius Bimonoids110

We will also consider additional algebraic structure for the black (, ,111

,) and the white (, , ,) components. When R is the field112

of reals, CircR models linear dynamical systems [? ? ?] and both the black and113

the white structures form special Frobenius bimonoids, meaning the axioms of114

Fig. ?? hold, replacing the gray circles by either black or white. When R is the115

semiring of natural numbers, CircR models Petri nets [?] and only the black116

structure satisfies these equations. In § ??, we shall see that the black Frobenius117

structure gives rise to the synchronisation mechanism used by Hoare in CSP [?118

], while the white Frobenius structure to that used by Milner in CCS [?].119

3. Background: Bialgebras and GSOS Specifications120

(Co)algebras for endofunctors. Given a category C and a functor F : C →121

C, an F-algebra is a pair (X,α) for an object X and an arrow α : FX → X in C.122

An F-algebra morphism f : (X,α) → (X ′,α′) is an arrow f : X → X ′ such that123

f ◦α = α′ ◦Ff . The category of F-algebras and their morphisms is denoted by124

Alg(F).125

Coalgebras are defined dually: an F-coalgebra is a pair (X,β) for an objectX126

and an arrow α : X → FX in C; an F-coalgebra morphism f : (X,β) → (X ′,β′)127

6

is an arrow f : X → X ′ such that α′ ◦f = Ff ◦α. The category of F-coalgebras128

and their morphisms is denoted by CoAlg(F).129

When C is Set, coalgebras can be thought as state-based systems: an F-130

coalgebra (X,β) consists of a set of states X and a ”transition” function β : X →131

FX. The functor F define the type of the transitions: for instance, coalgebras132

for the functor FX = 2 × XA are deterministic automata (see ??). When a133

final object (Ω,ω) exists in CoAlg(F), this can be thought as a universe of all134

possible F-behaviours. The unique F-coalgebra morphism [[·]] : (X,β) → (Ω,ω)135

is a function mapping every state of X into its behaviour.136

Monads. An endofunctor T forms a monad when it is equipped with natural137

transformations η : Id → T and µ : T T → T such that µ ◦ ηT = IdT = µ ◦ Tη138

and µ ◦ Tµ = µ ◦ µT . An Eilenberg-Moore algebra for a monad (T , η, µ) is a139

T -algebra α : T X → X such that α◦ηX = idX and g ◦µX = g ◦T g. Morphisms140

are simply morphisms of T -algebras. The category of Eilenberg-Moore algebras141

for T and their morphisms is denoted by EM(T). For the sake of brevity,142

when T is a monad, T -algebra will not mean algebra for the endofunctor T ,143

but Eilenberg-Moore algebra for the monad T .144

A monad morphism from a monad (T , η, µ) to a monad (T ′, η′, µ′) on the145

same category C is a natural transformation κ : T → T ′ such that κ ◦ η = η′146

and κ ◦ µ = µ′ ◦ κκ.147

A recurrent monad in our work is the powerset monad Pκ bounded by a cardi-148

nal κ. It maps a setX to the set PκX = {U | U ⊆ X, U has cardinality at most κ}149

and a function f : X → Y to Pκf : PκX → PκY , Pκf(U) = {f(u) | u ∈ U}.150

The unit η of Pκ is given by singleton, i.e., η(x) = {x} and the multiplication µ151

is given by union, i.e., µ(S) =

U∈S U for S ∈ PκPκX.152

For instance, with κ = ω, Pω is the finite powerset monad, mapping a set153

to its finite subsets.154

Free monads. We recall the construction of the monad F† : C → C freely155

generated by a functor F : C → C. Assume that C has coproducts and that,156

for all objects X of C, there exists an initial X + F-algebra that we denote157

as X + F(F†X)
[ηX ,κX]−−−−−→ F†X. It is easy to check that the assignment X →158

F†X induces a functor F† : C → C. The map ηX : X → F†X gives rise to159

the unit of the monad; the multiplication µX : F†F†X → F†X is the unique160

algebra morphism from the initial F†X + F-algebra to the algebra F†X +161

F(F†X)
[id,κX]−−−−→ F†X.162

Distributive laws and bialgebras. A distributive law of a monad (T , η, µ)163

over an endofunctor F is a natural transformation λ : T F ⇒ FT s.t. λ◦ηF = Fη164

and λ ◦ µF = Fµ ◦ λT ◦ T λ. A λ-bialgebra is a triple (X,α,β) s.t. (X,α) is an165

Eilenberg-Moore algebra for T , (X,β) is a F-coalgebra and Fα◦λX◦T β = β◦α.166

Bialgebra morphisms are both T -algebra and F-coalgebra morphisms.167

Given a coalgebra β : X → FT X for a monad (T , η, µ) and a functor F ,168

if there exists a distributive law λ : T F ⇒ FT , one can form a coalgebra169

β : T X → FT X defined as T X
T β−−→ T FT X

λT X−−−→ FT T X
Fµ−−→ FT X. Most170

importantly, (T X,µ,β) is a λ-bialgebra.171

7

GSOS specifications. An abstract GSOS specification is a natural trans-172

formation λ : SF ⇒ FS†, where F is a functor representing the coalgebraic173

behaviour, S is a functor representing the syntax. It is important to recall the174

following fact.175

Proposition 1 ([?]). Any GSOS spec. λ : SF ⇒ FS† yields a distrib. law176

λ† : S†F ⇒ FS†.177

We refer the reader to ?? for a fully developed example of a GSOS specification,178

in the context of the semantics of nondeterministic automata.179

Coproduct of GSOS specifications. Suppose to have two functors S1,S2 : C →
C modelling two syntaxes and a functor F : C → C modelling the coalgebraic
behaviour, such that there are two GSOS specifications

λ1 : S1F ⇒ FS†
1 and λ2 : S2F ⇒ FS†

2 .

Then we can construct a GSOS specification

λ1 · λ2 : (S1 + S2)F ⇒ F(S1 + S2)
†

as follows

S1F

γ1

λ1 FS†
1

Fι1

(S1 + S2)F ∼= S1F + S2F ❴❴❴ F(S1 + S2)
†

S2F

γ1

λ2

 FS†
2

Fι1

In the above diagram, the dashed map is given by universal property of the180

coproduct S1F + S2F . The definitions of γ1 and γ2 are as follows. For X ∈ C,181

γ1(X) is the unique X +S1-algebra map from the initial X +S1-algebra S†
1(X)182

to (S1+S2)
†(X). Indeed, since (S1+S2)

†(X) is the initial X+S1+S2-algebra,183

it is in particular a X + S1-algebra by precomposition with the coproduct map184

X + S1 −→ X + S1 + S2. The definition of γ2(X) is analogous, using the fact185

that (S1 + S2)
†(X) is also a X + S2-algebra.186

Quotients of monads and distributive laws. Given the correspondence187

between finitary monads and algebraic theories [?], it natural to consider188

quotients of monads by additional equations. Following [? ? ?], for a monad189

T on a category C, T -equations can be defined as a tuple E = (A, l, r) consisting190

of a functor A : C → C and natural transformations l, r : A ⇒ T . The intuition191

is that A acts as the variables of each equation, whose left- and right-hand192

sides are l and r, respectively. Assuming mild conditions that generalise the193

properties of Set (see [? , Ass. 7.1.2]), one constructs the quotient of T by194

T -equations. The conditions hold in our setting: categories of presheaves over195

a discrete index category.196

8

Proposition 2 (cf. [?]). If C = SetD for discrete D, T -equations E yield a197

monad T/E : C → C with algebras precisely T -algebras T A
α−→ A that satisfy E,198

in the sense that α ◦ lA = α ◦ rA. Moreover, there exists a monad morphism199

qE : T → T/E with epi components.200

One may also quotient distributive laws, provided these are compatible with
the new equations. Fix an endofunctor F and a monad T on SetD, together
with T -equations E = (A, l, r). We say that a distributive law λ : T F ⇒ FT
preserves equations E if, for all A ∈ C, the following diagram commutes:

AFA
lFA

rFA

 T FA
λA
 FT A

FqEA
 FT/EA

Proposition 3 (cf. [?]). If λ : T F → FT preserves equations E then there201

exists a (unique) distributive law λ/E : T/EF ⇒ FT/E such that λ/E◦qEF = FqE◦λ.202

4. Diagrammatic Syntax as Monads203

4.1. The Category of Signatures204

Syntax and semantics of string diagrams will be specified in the category205

Sig := Span(Set)(N,N), where objects are spans N ←− Σ −→ N in Set and arrows206

are span morphisms: given objects N s←− X
t−→ N and N s′←− Σ′ t′−→ N, an arrow is207

a function f : Σ → Σ′ such that t′ ◦ f = t and s′ ◦ f = s. We think of an object208

of Sig as a signature, i.e. a set of symbols Σ equipped with arity and coarity209

functions a, c : Σ → N. We write Σ(n,m) for the set {d ∈ Σ | 〈a, c〉(d) = (n,m)}210

of operations with arity n and coarity m. Note that we allow coarities different211

from 1: this is because string diagrams express monoidal algebraic theories, not212

merely cartesian ones.213

Since the objects in Sig are spans with identical domain and codomain, we214

will often write Σ for the entire span N a←− Σ
c−→ N. In particular, N means the215

identity span N id←− N id−→ N.216

Example 4. Recall the language CircR from § ??. Line (??)-(??) of its syntax217

together with the first two lines of the sorting discipline in Fig. ?? define a218

signature Σ: every axiom d : (n, m) gives the symbol d arity n and coarity m.219

For instance, Σ(1, 2) = { , }.220

For computing (co)limits, it is useful to observe that Sig is isomorphic to221

the presheaf category SetN×N, where N×N is the discrete category with objects222

pairs (n,m) ∈ N× N.223

4.2. Functors on Signatures224

We turn to (co)algebras of endofunctors F : Sig → Sig generated by the
following grammar:

F ::= Id | Σ | N | F ; F | F ⊕ F | F + F | F × F | G

9

where G ranges over functors G : Set → Set and Σ is a span N ←− Σ −→ N. In225

more detail:226

• Id : Sig → Sig is the identity functor.227

• Σ : Sig → Sig is the constant functor mapping every object to N ←− Σ −→ N228

and every arrow to idΣ; an important special case is N : Sig → Sig the229

constant functor to N id←− N id−→ N.230

• (·) ; (·) : Sig2 → Sig is sequential composition for signatures. On objects,
Σ1 ; Σ2 is

N s1◦π1←−−−− {(d1, d2) ∈ Σ1 × Σ2 | t1(d1) = s2(d2)}
t2◦π2−−−→ N.

Since the above is a Set-pullback, the action on arrows is inducted by the231

universal property. Note that, up to iso, (·) ; (·) : Sig2 → Sig is associative232

with unit N : Sig → Sig.233

• (·) ⊕ (·) : Sig2 → Sig is parallel composition for signatures, with Σ1 ⊕ Σ2

given by:

N +◦(s1×s2)←−−−−−−− Σ1 × Σ2
+◦(t1×t2)−−−−−−→ N

where +: N × N → N is usual N-addition. Again (·) ⊕ (·) : Sig2 → Sig234

associates up to iso.235

• For the remaining functors, we use the fact that Sig ∼= SetN×N, which guar-236

antees (co)completeness, with limits and colimits constructed pointwise in237

Set. Thus, for spans Σ1 and Σ2, their coproduct is N
[s1,s2]←−−−− Σ1+Σ2

[t1,t2]−−−−→238

N and the carrier of the product is {(d1, d2) | s1(d1) = s2(d2) and t1(d1) =239

t2(d2)}, with the two obvious morphisms to N.240

• The isomorphism Sig ∼= SetN×N also yields the extension of an arbitrary241

endofunctor G : Set → Set to a functor Ḡ : Sig → Sig defined by post-242

composition with G, that is Ḡ(Σ) = G ◦ Σ for all Σ : N × N → Set. In243

particular, we shall often use the functor Pκ obtained by post-composition244

with the κ-bounded powerset functor Pκ : Set → Set.1245

Next we use these endofunctors to construct monads that capture the two-246

dimensional algebraic structure of string diagrams. In § ?? we construct the247

monad encoding the symmetric monoidal structure of props and in § ?? we con-248

struct the monad for the Frobenius structure of Carboni-Walters props. Later,249

in § ??, we shall use these monads to define compositional bialgebraic semantics250

for string diagrams of each of these categorical structures.251

1Boundedness is needed to ensure the existence of a final coalgebra, see § ??. In our leading
example CircR, κ can be taken to be the cardinality of the semiring R.

10

4.3. The Prop Monad252

Here we define a monad on Sig with algebras precisely props: symmetric
strict monoidal categories with objects the natural numbers, where the monoidal
product on objects is addition. Together with identity-on-objects symmetric
monoidal functors they form a category PROP. The first step is to encapsulate
the operations of props as a Sig-endofunctor.

SSM := (Id ; Id) + ι+ (Id⊕ Id) + + σ : Sig → Sig. (11)

In the type of SSM, Id ; Id : Sig → Sig is sequential composition and ι the identity253

arrow on object 1, i.e. the constant functor to N h←− {id1}
h−→ N, with h : id1 → 1.254

Similarly, Id⊕ Id is the monoidal product with unit , i.e. the constant functor255

to N q←− {0} q−→ N, with q : 0 → 0. Finally, σ is the basic symmetry: the constant256

functor to N f←− {σ1,1}
f−→ N, with f : σ1,1 → 2.257

The free monad S†
SM on SSM is the functor mapping a span Σ to the span of258

Σ-terms obtained by sequential and parallel composition, together with symme-259

tries and identities —with the identity idn defined by parallel composition of n260

copies of id1.261

Algebras for this monad are spans Σ together with span morphisms identity : ι →
Σ, composition : Σ ; Σ → Σ, parallel : Σ⊕Σ → Σ, unit : → Σ, and swap : σ →
Σ. This information almost defines a prop CΣ: the carrier Σ of the span is the
set of arrows of CΣ, containing special arrows idn and σn,m for identities and
symmetries, compose assigns to every pairs of composable arrows their com-
position, and ⊕ assigns to every pair of arrows their monoidal product. The
missing data is the usual equations (??)-(??) of symmetric monoidal categories.

Thus, in order to obtain props as algebras, we quotient the monad S†
SM by those

equation, expressed abstractly as a triple ESM = (A, l, r), as described in § ??.
The functor A : Sig → Sig, defined below, has summands following the order
(??)-(??):

(Id⊕ Id⊕ Id) + Id+ Id+ σ + ((Id ; Id)⊕ (Id ; Id))

+(Id ; Id ; Id) + Id+ Id+ Id+1 + Id+1
(12)

Here, Id+1 is the functor adding 1 to the arity/coarity of each element of a262

given span N a←− Σ
c−→ N. We also need natural transformations l, r : A → S†

SM263

that define the left- and right-hand side of each equation. For instance, for fixed264

Σ ∈ Sig and (n,m) ∈ N× N:265

• an element of Σ ; Σ ; Σ (sixth summand of (??)) is a tuple (f, g, h) of Σ-266

elements, where f is of type (n,w), g of type (w, v), and h of type (v,m),267

for arbitrary w, v ∈ N. We let lΣ map (f, g, h) to the term (f ; g) ; h of268

type (n,m) in S†
SM(Σ), and rΣ to the term f ; (g ; h). Thus this component269

gives the second equation in (??) (associativity).270

• the seventh summand Id in (??) yields a Σ-term f , which lΣ : Σ → S†
SM(Σ)271

maps to f ; idm and rσ : Σ → S†
SM(Σ) maps to f , thus yielding the final272

equation in (??).273

11

• an element in Σ+1 (last summand of (??)) of type (n + 1,m + 1) is a274

Σ-term g of type (n,m), which is mapped by lΣ to (σn,1 ; (id1 ⊕ g)) and275

by rσ to (g ⊕ id1) ; σm,1, both elements of S†
SM(Σ) of type (n + 1,m + 1),276

thus giving the final equation in (??).277

The remainder of the definition of l, r : A → S†
SM, handles the remaining equa-278

tions in (??)-(??), and should be clear from the above. Now, using Proposi-279

tion ??, we quotient the monad S†
SM by (A, l, r), obtaining a monad that we call280

SPROP. We can then conclude by construction that the Eilenberg-Moore category281

EM(SPROP) for the monad SPROP (with objects the SPROP-algebras, and arrows the282

SPROP-algebra homomorphisms) is precisely PROP.283

Proposition 5. EM(SPROP) ∼= PROP.284

Example 6. The monad SPROP takes Σ to the prop freely generated by Σ. Taking285

Σ as in Example ??, one obtains SPROP(Σ) with arrows n → m string diagrams286

of CircR of sort (n, m).287

4.4. The Carboni-Walters Monad288

The treatment we gave to props may be applied to other categorical struc-289

tures. For space reasons, we only consider one additional such structure: Carboni-290

Walters (CW) props, also called ‘hypergraph categories’ [?]. Here each ob-291

ject n carries a distinguished special Frobenius bimonoid compatible with the292

monoidal product: it can be defined recursively using parallel compositions of293

the Frobenius structure on the generating object 1.294

Definition 7. A CW prop is a prop with morphisms : 1 → 2, : 1 → 0,295

: 2 → 1, : 0 → 1 satisfying the equations of special Frobenius bimonoids296

(Fig. ??).297

CW props with prop morphisms preserving the Frobenius bimonoid form a298

subcategory CW of PROP. We can now extend the prop monad of § ?? to299

obtain a monad with algebras CW props. The signature is that of a prop with300

the additional Frobenius structure. Let : Sig → Sig be the functor constant301

at N s←− { } t−→ N with s() = 1 and t() = 2. Similarly, we introduce302

the constant functors : Sig → Sig, : Sig → Sig and : Sig → Sig for303

the other generators. Let SFR := SPROP + + + + .304

We now need to quotient SFR by the defining equations of special Frobenius305

bimonoids (Fig. ??). We omit the detailed encoding of these equations as a306

triple ECW = (ACW, lCW, rCW) since it presents no conceptual difficulty. Let SCW be307

the quotient of SFR by these equations. As for props, we obtain EM(SCW) ∼= CW308

by construction.309

5. Bialgebraic Semantics for String Diagrams310

Now that we have established monads for our categorical structures of in-
terest, we study coalgebras that capture behaviour for string diagrams in these

12

categories, and distributive laws that yield the desired bialgebraic semantics.
We fix our ‘behaviour’ functor to

F := Pκ(L ; Id ; L) : Sig → Sig

where L : Sig → Sig is the label functor constant at the span N |·|←− A∗ |·|−→ N,311

with A∗ the set of words on some set of labels A. The map | · | : A∗ → N312

takes w ∈ A∗ to its length |w| ∈ N. An F-coalgebra is a span morphism313

Σ → Pκ(L ; Σ ; L); a function that takes f ∈ Σ(n,m) to a set of transitions314

(v, g, w) with the appropriate sorts, i.e. g ∈ Σ(n,m), |v| = n and |w| = m.315

The data of an F-coalgebra β : Σ → Pκ(L ; Σ ; L) is that of a transition
relation. For instance, fix labels A = {a, b} and let x, y ∈ Σ(1, 2) and z ∈
Σ(1, 1); suppose also that β maps x to {(b ; y ; ab), (a ; x ; aa)}, y to ∅ and z to
{(b ; z ; a)}. Then β can be written:

x
b−→
a b

y x
a−−→
a a

x z
b−→
a

z (13)

Example 8. In our main example, Fig. ?? defines a coalgebra β : Σ → Pκ(L ; Σ ; L)316

where Σ is the signature from Example ?? and the set of labels is R. For in-317

stance β() = {(k, , ε) | k ∈ R}. Note the κ bounding Pκ is the cardinality318

of R.319

In the sequel we shall construct distributive laws between the above be-320

haviour functor and monads encoding the various categorical structures defined321

in the previous section.322

5.1. Existence of Final Coalgebras323

First, we prove the existence of the final coalgebra associated to each be-324

haviour functor.325

Proposition 9. There exists a final coalgebra Ω → F(Ω).326

Proof. Being isomorphic to a presheaf category, Sig is accessible. Then one may327

construct Ω via a so-called terminal sequence [?], provided that (i) F preserves328

monomorphisms and (ii) is accessible. Because functor composition preserve329

these properties, it suffices to check them componentwise on F = Pκ(L ; Id ; L).330

First, (− ; −) is defined by pullbacks, which preserve monomorphisms and (fil-331

tered) colimits; it follows that (− ; −) satisfies (i) and (ii). Next, the functor332

Pκ satisfies (i) for the same reason as the arbitrary powerset functor, and it333

satisfies (ii) because it is a κ-bounded functor. Finally, satisfaction of (i) and334

(ii) is completely obvious for Id and the constant functor L.335

Note that the proof of Proposition ?? is constructive: following [?], for a336

fixed (n,m) ∈ N × N, we can visualise the elements of Ω as κ-branching trees337

with edges labelled with pairs of labels (l1, l2) ∈ L × L with |l1| = n, |l2| = m.338

The unique F-coalgebra map [[·]]β : SPROP(Σ) → Ω sends a Σ-term t to the tree339

whose branching describes all the executions from t according to the transition340

rules defined by β.341

13

5.2. Bialgebraic Semantics for Props342

The modularity of SPROP can be exploited to define a distributive law of343

the SPROP over F . Recall from § ?? that SPROP is a quotient of S†
SM. We start344

by letting F = Pκ(L ; Id ; L) interact with the individual summands of SSM (see345

(??)), corresponding to the operations of props. This amounts to defining GSOS346

specifications:347

• sequential composition

λsq : Pκ(L ; Id ; L) ; Pκ(L ; Id ; L) ⇒ Pκ(L ; (Id ; Id)† ; L)

• identity
λid : ι ⇒ Pκ(L ; ι† ; L)

• monoidal product

λmp : Pκ(L ; Id ; L)⊕ Pκ(L ; Id ; L) ⇒ Pκ(L ; (Id⊕ Id)† ; L)

• monoidal unit
λ : ⇒ Pκ(L ; † ; L)

• symmetry
λsy : σ ⇒ Pκ(L ; σ† ; L)

Definitions of these maps are succinctly given via derivation rules, in Fig. ??.348

We explain this in detail for λsq, the others are similar. Given Σ ∈ Sig,
an element of type (n,m) in the domain Pκ(L ; Σ ; L) ; Pκ(L ; Σ ; L) is a pair
(A,B), where, for some z ∈ N,

A is a set of triples (a, c′, b) ∈ L(n, n)× Σ(n, z)× L(z, z), and

B is a set of triples (b, d′, c) ∈ L(z, z)× Σ(z,m)× L(m,m).

Then λsq
Σ (A,B) := {(a, c′ ; d′, c) | (a, c′, b) ∈ A, (b, d′, c) ∈ B}. Following349

the convention (??), we can write this data as:
a−→
c

c′ ; d′ ∈ λsq
Σ (A,B) if350

a−→
b

c′ ∈ A and
b−→
c

d′ ∈ B. This leads us to the more compact version of351

λsq as the transition rule in Fig.??.352

Next, take the coproduct of GSOS specifications λsq, λid, λmp, λ and λsy
353

(see [?] for the details) to obtain λ : SSMF ⇒ FS†
SM. By Proposition ??, this354

yields distributive law λ† : S†
SMF ⇒ FS†

SM.355

The last step is to upgrade λ† to a distributive law λ†
/SMC over the quo-

tient SPROP of S†
SM by the equations (??)-(??) of SMCs. By Proposition ??, this

is well-defined if λ† preserves ESM. We show compatibility with associativity
of sequential composition—the other equations can be verified similarly. This

14

amounts to checking that if λ† allows the derivation for s1 ; (s2 ; s3) as below
left, then there exists a derivation for (s1 ; s2) ; s3 as on the right, and vice-versa.

s1
u−→
v

s′1

s2
v−→
w

s′2 s3
w−→
x

s′3

s2 ; s3
v−→
x

s′2 ; s
′
3

s1 ; (s2 ; s3)
u−→
x

s′1 ; (s
′
2 ; s

′
3)

s1
u−→
v

s′1 s2
v−→
w

s′2

s1 ; s2
u−→
w

s′1 ; s
′
2 s3

w−→
x

s′3

(s1 ; s2) ; s3
u−→
x

(s′1 ; s
′
2) ; s

′
3

(14)

By Proposition ??, we can therefore upgrade λ† to a distributive law λ†
/SM : SPROPF ⇒356

FSPROP.357

Remark 10. The above distributive law is not unique: one can devise alterna-358

tive distributive laws of type SPROPF ⇒ FSPROP. Indeed, any structure of prop359

defined over pairs of labels (as morphisms) would work. We sketch below how360

to define another distributive law SCATF ⇒ FSCAT, as this is sufficient to make361

the point.362

First, we can always assume that we have some monoid structure (·, e) for
any non-empty finite set of labels A, say by ordering the labels and computing
modulo |A|. We now show how we can extend this to a monoid (and thus, a
category with one object) on elements of A∗. We treat words over A as functions
w : N → A ∪ {⊥} for which there exists some integer |w| (called the length of
the word w) such that w(i) ∕= ⊥ for i ≤ |w| and w(i) = ⊥ for i > |w|. Then
we can extend the binary operation · naturally to A ∪ {⊥} by a ·⊥ = ⊥ · a = a.
Finally, we extend this further to an associative binary operation on words by
computing · pointwise and truncating to the length of the first word:

(v · w)(i) =

v(i) · w(i) if i ≤ |v|,
⊥ otherwise.

By definition, notice that |v · w| = |v|.363

Now, let the sequential composition component of the distributive law be given
by

s1
v1−−→
w2

s′1 s2
v2−−→
w2

s′2

s1 ; s2
v1·v2−−−−→
w2·w1

s′1 ; s
′
2

Note the inversion for w2 ·w1, which is needed because we require |w2 ·w1| = |w2|
for this to be a distributive law. This definition guarantees that we can replicate
the two derivations from (??), where the labels of the last transitions are the
same.

s1
v1−−→
w1

s′1

s2
v2−−→
w2

s′2 s3
v3−−→
w3

s′3

s2 ; s3
v2·v3−−−−→
w3·w2

s′2 ; s
′
3

s1 ; (s2 ; s3)
v1·v2·v3−−−−−→
w3·w2·w1

s′1 ; (s
′
2 ; s

′
3)

s1
v1−−→
w2

s′1 s2
v2−−→
w2

s′2

s1 ; s2
v1·v2−−−−→
w2·w1

s′1 ; s
′
2 s3

v3−−→
w3

s′3

(s1 ; s2) ; s3
v1·v2·v3−−−−−→
w3·w2·w1

(s′1 ; s
′
2) ; s

′
3

The identity component of the distributive law is given by

idn
en−−→
en

idn

15

where the en label is the word of length n containing only e, the unit of the
monoid structure on A, e.g., id3

eee−−→
eee

id3 for the identity on 3 wires. As for
associativity above, we can prove (right) unitality:

s
v−→
w

s′ idn
en−−→
en

idn

s ; idn
v·en−−−→
en·w s′ ; idn

This defines a suitable distributive law SCATF ⇒ FSCAT because, by definition,364

v · en = v and en · w = w since |w| = n.365

We are now ready to construct the compositional semantics as a morphism366

into the final coalgebra. One starts with a coalgebra β : Σ → F(SPROP(Σ)) that367

describes the behaviour of Σ-operations, assigning to each a set of transitions,368

as in (??). The difference with (??) is that, because F is applied to SPROP(Σ)369

instead of just Σ, the right-hand side of each transition contains not just a370

Σ-operation, but a string diagram: a Σ-term modulo the laws of SMCs.371

As recalled in § ??, using the distributive law λ†
/SM we can lift β : Σ →372

F(SPROP(Σ)) to a λ†
/SM-bialgebra, β

 : SPROP(Σ) → F(SPROP(Σ)). Since this is a373

F-coalgebra, the final F-coalgebra Ω (the existence of which is shown in [?])374

yields a semantics [[·]]β as below. The operational semantics of a string diagram375

c is β(c), obtained from (i) transitions for Σ-operations given by β and (ii) the376

derivation rules (Fig. ??) of λ†
/SM. Instead, [[c]]β is the observable behaviour:377

intuitively, its transition systems modulo bisimilarity.378

SPROP(Σ)
[[·]]β

❴❴❴❴❴❴

β

Ω

F(SPROP(Σ)) F([[·]]β)
 F(Ω)

The bialgebraic semantics framework ensures that SPROP(Σ) and Ω are SPROP-379

algebras, which by Proposition ?? are props. This means that the final coalgebra380

Ω is a prop and that [[·]]β is a prop morphism, preserving identities, symmetries381

and guaranteeing compositionality: [[s ; t]]β = [[s]]β ; [[t]]β and [[s⊕ t]]β = [[s]]β ⊕382

[[t]]β .383

Example 11. Coming back to our running example, in Example ?? we showed384

that rules in Fig. ?? induce a coalgebra of type Σ → F(Σ). Since each operation385

in Σ is itself a string diagram (formally, via the unit ηΣ : Σ → SPROP(Σ)), the386

same rules induce a coalgebra β : Σ → FSPROP(Σ), which has the type required for387

the above construction. The resulting coalgebra β : SPROP(Σ) → FSPROP(Σ) as-388

signs to each diagram of SPROP(Σ) the set of transitions specified by the combined389

operational semantics of Figs. ?? and ??. The preceding discussion implies that,390

when e.g. R = N, bisimilarity for the Petri nets of [?] is a congruence.391

16

5.3. Bialgebraic Semantics for Carboni-Walters Props392

In this section we shall see two different ways of extending the GSOS spec-393

ification of § ?? for CW props (see § ??). They correspond to the operational394

semantics of the black and white (co)monoids as given in Fig. ??. In the next395

section, we will see that these two different extensions give rise to two classic396

forms of synchronisation: à la Hoare and à la Milner.397

Black distributive law. The first interprets the operations of the Frobenius398

structure as label synchronisation: from the black node derivations on the left399

of Fig. ?? we get GSOS specifications given by natural transformations ⇒400

F(†), ⇒ F(†), ⇒ F(†), and ⇒ F(†). Recall that,401

here, we use the diagrams to denote their associated functors Sig → Sig. By402

taking the coproduct of these and λ, the GSOS specification for props from § ??,403

we obtain a specification λ• for SFR. It is straightforward to verify that λ†
• :404

S†
FRF ⇒ FS†

FR preserves the equations of special Frobenius bimonoids (Fig. ??),405

yielding a distributive law λ†
•/CW

: S†
CWF ⇒ FS†

CW. As before, with λ†
•/CW

we406

obtain a bialgebra β
• : SCW(Σ) → FSCW(Σ) from any coalgebra β : Σ → FSCW(Σ).407

White distributive law. When the set of labels A is an Abelian group, it408

is possible to give a different GSOS specifications for the Frobenius structure,409

capturing the group operation of A: from the white node derivations on the410

right of Fig. ?? we get GSOS specifications ⇒ F(†), ⇒ F(†),411

⇒ F(†), and ⇒ F(†). Using a now familiar procedure we obtain412

a GSOS specifications λ◦ for SFR. The group structure on A guarantees [?]413

that λ†
◦ : S†

FRF ⇒ FS†
FR preserves the equations of special Frobenius bimonoids414

(Fig. ??). Therefore we get a distributive law λ†
◦/CW

: S†
CWF ⇒ FS†

CW.415

5.4. Failure of Compositionality for Lawvere Theories416

Given the results in this section, one could ask if bialgebraic semantics works417

for any categorical structure. A notable case in which it fails is that of Lawvere418

theories [?]. These can be seen as props with a natural comonoid structure on419

each object [?]. One may define a monad for Lawvere theories following the420

same recipe as above. However, it turns out that this monad is incompatible421

with the GSOS specification for the comonoid given in Fig. ??. The problem422

comes from the incompatibility of this structure with the nondeterminism of the423

behaviour functor. We explain this in more detail below.424

The signature of a Lawvere theory is that of a prop with the additional
comonoids. As for the comonoid part of Frobenius bimonoids (Fig.??), we only
need to introduce this comonoid on the generating object 1 since all the others
can be obtained by parallel and sequential composition of these basic morphisms
and the symmetries. Let : Sig → Sig and : Sig → Sig be the constant
functors defined exactly as in § ??. SL is is then obtained as the quotient of
SPROP + + by the defining equations of cocommutative comonoids (first
line of Fig. ??), and the requirement that the comonoids be natural in the sense

17

that every morphism f : m → n should be a comonoid homomorphism:

fm
n

n

≈
f

f

n

n
m fm ≈ m (15)

The intuitive interpretation is that every morphism can be copied and deleted425

using the comonoid structure.426

To give a GSOS specification for SL it is natural to extend the specification427

for props with specifications for the comonoids. These are entirely analogous428

to the black interpretation of the comonoid part of CW props as copying and429

deleting operations as given in Fig. ??. However, this specification turns out to430

be incompatible with the required naturality of comonoids. To see this, consider431

the following counter-example.432

Let Σ be the signature with a single symbol d : 0 → 1. We specify its
behaviour as the coalgebra β : Σ → FSLΣ given by the two transitions

d
−→
a

d d
−→
b

d

Note the use of nondeterminism here: it is this form of nondeterminism com-
bined with the naturality requirement of (??) that will lead to a contradiction.
The derivation rules of § ?? give us only two possible transitions for d ; :

d
ε−→
a

d
a−→
a a

λsq

d
ε−→
a a

d

and

d
ε−→
b

d
b−→
b b

λsq

d
ε−→
b b

d

whereas f ⊕ f can also perform the following two transitions:

d
ε−→
a

d d
ε−→
b

d
λmp

d

d

ε−→
a b

d

d

and

d
ε−→
b

d d
ε−→
a

d
λmp

d

d

ε−→
b a

d

d

This is in contradiction with the leftmost equation of (??) which requires that

d ≈ d

d

18

. Thus the specification would not be compositional.433

6. Black and White Frobenius as Hoare and Milner Synchronisation434

The role of this section is twofold: on the one hand we demonstrate how435

classical process calculus syntax benefits from a string diagrammatic treatment;436

on the other we draw attention towards a surprising observation, namely that437

the black and white Frobenius structures discussed previously provide the syn-438

chronisation mechanism of, respectively, CSP and CCS.439

6.1. Syntax440

We consider a minimal process calculus for simplicity. Assume a countable441

set N of names, a1, a2, . . . and a set V of process variables, f, g, . . . , equipped442

with a function ar : V → N that assigns the set of names that the process may443

use: ar(f) = n means that the process f uses only names {a1, . . . , an}. This is444

Hoare’s [?] notion of alphabet for process variables.445

Roughly speaking, in a string diagram, dangling wires perform the job of446

variables. To ease the translation of terms to diagrams, we include permutations447

of names in the syntax, hereafter denoted by σ. For a permutation σ : N → N ,448

its support is the set supp(σ) = {ai | ai ∕= σ(ai)}; σ is finitely supported if449

supp(σ) is finite. For each finitely supported permutation σ its degree is defined450

as the greatest i ∈ N such that ai ∈ supp(σ).451

The set of processes is defined recursively as follows

P := P |P, νai(P), f, Pσ

where ai ∈ N , f ∈ V and σ is a finitely supported permutation of names.
The symbol | stands for the parallel composition of processes. The symbol νai
stands for the restriction, or hiding, of the name ai. Observe that there are no
primitives for prefixes, non-deterministic choice or recursion: these will appear
in the declaration of process variables which we will describe in § ??. The
idea here is to separate the behaviour, specified in the declaration of process
variables, and the communication topology of the network, given by the syntax
above. The notion of alphabet can be defined for all processes as follows:

al(P |Q) = al(P) ∪ al(Q)

al(νai(P)) = al(P) \ {ai}
al(f) = {a1, . . . , aar(f)}

al(Pσ) = σ[al(P)]

From one-dimensional to two-dimensional syntax. We use a typing dis-

19

cipline to guide the translation of terms to string diagrams:

n ⊢ P n ⊢ Q

n ⊢ P |Q
n+ 1 ⊢ P

n ⊢ νan+1(P)

ar(f) = n

n ⊢ f

n ⊢ P degree(σ) ≤ n

n ⊢ Pσ

n ⊢ P

n+ 1 ⊢ P

(16)

The meaning of the types is explained by the following lemma, easily proven452

by induction.453

Lemma 12. If n ⊢ P then al(P) ⊆ {a1, . . . an}.454

We will translate processes to the CW prop freely generated from Σ =
{f : (n, 0) | f ∈ V and ar(f) = n}; in particular a typed process n ⊢ P results
in a string diagram of SCW(Σ)(n, 0). The translation 〈〈·〉〉 is defined recursively
on typed terms as follows:

〈〈n ⊢ P |Q〉〉 =
〈〈P 〉〉

〈〈Q〉〉
n 〈〈n ⊢ νan+1(P)〉〉 =

n
〈〈P 〉〉

〈〈n ⊢ f〉〉 = f
n 〈〈n ⊢ Pσ〉〉 = 〈〈P 〉〉n

σ
n

〈〈n+ 1 ⊢ P 〉〉 = 〈〈P 〉〉
n

where for σ with degree(σ) < n, σ : n → n is the obvious corresponding arrow455

in SCW(Σ).456

Example 13. Let V = {f, g} with ar(f) = 1 and ar(g) = 2. Let [a2/a1] : N →
N be the permutation swapping a1 and a2. One can easily check that 1 ⊢
νa2(f[a2/a1] | g). Then 〈〈1 ⊢ νa2(f[a2/a1] | g)〉〉 is as below.

f

g
≡

f

g

6.2. Semantics457

In order to give semantics to the calculus, we assume a set A of actions, α,458

β, Since, we will consider different sets of actions (for Hoare and Milner459

synchronisation), we assume them to be functions of type N → M for some460

monoid (M,+, 0). The support of an action α is the set {ai | α(ai) ∕= 0}. The461

alphabet of α, written al(α) is identified with its support.462

For Hoare synchronisation, the monoid M is (2,∪, 0), while for Milner it is463

(Z,+, 0). In both cases, we will write ai for the function mapping the name464

20

ai to 1 and all the others to 0. For Milner synchronisation, write ai for the465

function mapping ai to −1.466

To give semantics to processes, we need a process declaration for each f ∈ V.
That is, an expression f:=

i∈I αi.Pi, for some finite set I, αi ∈ A and processes

Pi such that

{a1, . . . aar(f)} ⊆

i∈I

al(αi) ∪

i∈I

al(Pi) (17)

The basic behaviour of process declarations is captured by the three rules below.

f
0−→ f

f:=

i∈I

αi.Pi

f
αi−→ Pi

P
α−→ P ′

Pσ
α◦σ−−→ P ′σ

(18)

Example 14. Recall f and g from Example ??. Assume the following declara-
tions:

f:=a1.νa2(f[a2/a1] | g) and g:=a1.g+ a2.g.

Observe that they respect (??). We have that g
a1−→ g and g

a2−→ g while f
a1−→467

νa2(f[a2/a1] | g). Similarly f[a2/a1]
a2−→ (νa2(f[a2/a1] | g))[a2/a1].468

To define the semantics of parallel and restriction, we need to distinguish469

between the Hoare and Milner synchronisation patterns.470

Hoare synchronisation. Here actions are functions α : N → 2, which can
equivalently be thought of as subsets of N . The synchronisation mechanism
presented below is analogous to the one used in CSP [?]. The main difference
is the level of concurrency: the classical semantics [?] is purely interleaving,
while for us it is a step semantics. Essentially, in P |Q, the processes P and Q
may evolve independently on the non-shared names, i.e. the evolution of two
or more processes may happen at the same time. It is for this reason that our
actions are sets of names. The operational semantics of parallel and restriction
is given by rules

P
α−→ P ′ Q

β−→ Q′ α ∩ al(Q) = β ∩ al(P)

P |Q α∪β−−−→ P ′|Q′

P
α−→ P ′

νai(P)
α\{ai}−−−−→ νai(P

′)

(19)

We write
α−→H for the transition systems generated by the rules (??), (??). By a471

simple inductive argument, using (??) as base case, we see that for all processes472

P , if P
α−→ P ′ then α ⊆ al(P). The rule for parallel, therefore, ensures that P473

and Q synchronise over all of their shared names. The rule for restriction hides474

ai from the environment. For instance, if α = {ai}, then νai(P)
∅−→ νai(P

′). If475

α = {aj} with aj ∕= ai, then νai(P)
{aj}−−−→ νai(P

′).476

21

Example 15. Recall f and g from Example ??. We have that f
a1−→H νa2(f[a2/a1] | g).477

From νa2(f[a2/a1] | g), there are two possibilities: either f[a2/a1] and g synchro-478

nise on a2, and in this case we have νa2(f[a2/a1] | g)
∅−→, or g proceeds without479

synchronising on a1, therefore νa2(f[a2/a1] | g)
{a1}−−−→H since a1 belongs to al(g)480

and not to al(f[a2/a1]).481

Milner synchronisation. We take A = ZN . Sum of functions, denoted by +,
is defined pointwise and we write 0 for its unit, the constant 0 function.

P
α−→ P ′ Q

β−→ Q′

P |Q α+β−−−→ P ′|Q′

P
α−→ P ′

α(ai) = 0
νai(P)

α−→ νai(P
′)

(20)

We write
α−→M for the transition system generated by the rules (??), (??).482

Functions in ZN to represent concurrent occurrences of CCS send and receive483

actions. A single CCS action a is the function mapping a to 1 and all other484

names to 0. Similarly, the action ā maps a to −1 and the other names to485

0. The silent action τ is the function 0. With this in mind, it is easy to see486

that, similarly to CCS, the rightmost rule forbids νai(P)
α−→ νai(P

′) whenever487

α = ai or α = āi. CCS-like synchronisation is obtained by the leftmost rule:488

when α = ai and β = āi, one has that P |Q 0−→ P ′|Q′.489

A simple inductive argument confirms that P
0−→ P for any process P . Then,490

by the leftmost rule again, one has that whenever Q
β−→ Q′, then P |Q β−→491

P |Q′. Note, however, that as in § ??, while our synchronisation mechanism is492

essentially Milner’s CSS handshake, our semantics is not interleaving and allows493

for step concurrency. It is worth remarking that the operational rules in (??)494

have already been studied by Milner in its work on SCCS [?].495

Semantic correspondence. For an action α : N → M with al(α) ⊆ {a1, . . . an},
we write n ⊢ α for the restriction {a1, . . . , an} → M . Define coalgebras
βb,βw : Σ → Pκ(L ; SCW(Σ) ; L) for each f ∈ Σn,0 where f:=

i∈I αi.Pi as

βb(f) = βw(f) =

n ⊢ αi, 〈〈Pi〉〉, •

| i ∈ I} ∪ {

n ⊢ 0, f, •

.

For both βb and βw, L is the span N |·|←− A∗ |·|−→ N, but A = 2 for βb and A = Z496

for βw.497

Via the distributive law (§ ??) for the black Frobenius, we obtain the coal-498

gebra β
b : SCW(Σ) → Pκ(L ; SCW(Σ) ; L). Via the white Frobenius, we obtain499

β
w : SCW(Σ) → Pκ(L ; SCW(Σ) ; L). We write c

β−→
α bd for (α,β, d) ∈ β

b(c) and500

c
β−→
α wd for (α,β, d) ∈ β

w(c). The correspondence can now be stated formally.501

Theorem 16. Let n ⊢ P and n ⊢ α such that al(α) ⊆ al(P).502

• Hoare is black. If P
α−→H P ′ then 〈〈P〉〉

n n⊢α−−−→• b
〈〈P ′〉〉

n . Vice503

versa, if 〈〈P〉〉
n n⊢α−−−→• b d

n then there is n ⊢ P ′ s.t. P
α−→H P ′ and504

〈〈P ′〉〉
n = d

n .505

22

• Milner is white. If P
α−→M P ′ then 〈〈P〉〉

n n⊢α−−−→• w
〈〈P ′〉〉

n . Vice506

versa, if 〈〈P〉〉
n n⊢α−−−→• w d

n then there is n ⊢ P ′ s.t. P
α−→M P ′

507

and 〈〈P ′〉〉
n = d

n .508

Example 17. We illustrate the semantic correspondence by returning to Ex-
ample ??. Diagrammatically, it yields the following transitions:

f

g
1−→• b

f

g

f

g
0−→• b

f

gg
0−→• b

. . .

6.3. Proof of Theorem ??509

We split Theorem ?? into two propositions: Proposition ??, containing the510

first part of each statement and Proposition ??, the converse correspondence.511

We prove each of these separately below.512

Proposition 18. Let n ⊢ P .513

1. If P
α−→H P ′ then 〈〈P〉〉

n n⊢α−−−→• b
〈〈P ′〉〉

n
514

2. If P
α−→M P ′ then 〈〈P〉〉

n n⊢α−−−→• w
〈〈P ′〉〉

n
515

Proof. We prove 1; the proof for 2 is analogous. Hereafter, given n ⊢ α, we516

write n+n ⊢ α⊕α for the function mapping ai to α(ai) if i ≤ n and to α(ai−n)517

if i > n.518

Suppose that P
α−→H P ′. We prove by induction on the rules of (??) that

〈〈P〉〉
n n⊢α−−−→• b

〈〈P ′〉〉
n .

• For the rule
n ⊢ P n ⊢ Q

n ⊢ P |Q

we observe that by the leftmost rule in (??), (P |Q)
γ−→H R iff R = P ′|Q′,

P
α−→H P ′ and Q

β−→H Q′ with γ = α ∪ β and α ∩ al(Q) = β ∩ al(P). By

the induction hypothesis we have that 〈〈P〉〉
n n⊢α−−−→• b

〈〈P ′〉〉
n and

〈〈Q〉〉
n n⊢β−−−→• b

〈〈Q′〉〉
n . Since α∩ al(Q) = β ∩ al(P) then (β \α)∩

al(P) = ∅: by Lemma ??, we have that 〈〈P〉〉
n n⊢γ−−−→• b

〈〈P ′〉〉
n . By

23

a symmetric argument, 〈〈Q〉〉
n n⊢γ−−−→• b

〈〈Q′〉〉
n . Now, 〈〈n ⊢ P |Q〉〉

is equal by definition to
〈〈P 〉〉

〈〈Q〉〉
n . Since n

n
n n⊢γ−−−→

n+n⊢γ⊕γ b
n

n
n , then

〈〈P 〉〉

〈〈Q〉〉
n n⊢γ−−−→• b

〈〈P ′〉〉

〈〈Q′〉〉
n .

• For the rule
n+ 1 ⊢ P

n ⊢ νan+1(P)

we observe that by the rightmost rule in (??), νan+1(P)
α−→H P ′ iff

P ′ = νan+1(P
′′) and P

β−→H P ′′ with β \ {an+1} = α. By the induction

hypothesis 〈〈P〉〉n + 1 n+1⊢β−−−−−→• b
〈〈P ′′〉〉

n + 1 . Now 〈〈n ⊢ νan+1(P)〉〉 is

equal by definition to
n

〈〈P 〉〉 . Since
n n⊢α−−−→

n+1⊢β b

n
, then

n
〈〈P 〉〉 n⊢α−−−→• b

n
〈〈P ′′〉〉 = 〈〈P ′〉〉

n + 1 .

• For the rule
ar(f) = n

n ⊢ f

the result is immediate by the definition of βb and the two leftmost rules519

in (??).520

• For the rule
n ⊢ P degree(σ) ≤ n

n ⊢ Pσ

we observe that by the rightmost rule in (??), Pσ
α−→H P ′ iff P ′ =

P ′′σ and P ′ α◦σ−1

−−−−→H P ′′. By the induction hypothesis, we have that

〈〈P〉〉
n n⊢α◦σ−1

−−−−−−→• b
〈〈P ′′〉〉

n . Observe that n ⊢ α ◦σ−1, since n ⊢ α

and both σ and σ−1 have degree n. Now, 〈〈n ⊢ Pσ〉〉 is equal by definition

to 〈〈P 〉〉n
σ

n . Since σ
n⊢α−−−→

n⊢α◦σ−1 b
σ, then

〈〈Pσ〉〉
n n⊢α−−−→• b

〈〈P ′′σ〉〉
n = 〈〈P ′〉〉

n .

• For the rule
n ⊢ P

n+ 1 ⊢ P

24

observe that for all processes P , if P
α−→H P ′, then al(α) ⊆ al(P). Since

n ⊢ P , al(P) ⊆ {a1, . . . , an}, then al(α) ⊆ {a1, . . . an}. So n ⊢ α. By the

induction hypothesis 〈〈P〉〉
n n⊢α−−−→• b

〈〈P ′〉〉
n . Now, 〈〈n+1 ⊢ P 〉〉 is

equal by definition to 〈〈P 〉〉
n

. Since
n n+1⊢α−−−−−→

n⊢α b

n
, then

〈〈P 〉〉
n n+1⊢α−−−−−→• b

〈〈P ′〉〉
n

.

521

Proposition 19. Let n ⊢ P , n ⊢ α such that al(α) ⊆ al(P)522

1. If 〈〈P〉〉
n n⊢α−−−→• b d

n , then there exists n ⊢ P ′ such that P
α−→H P ′

523

and 〈〈P ′〉〉
n = d

n .524

2. If 〈〈P〉〉
n n⊢α−−−→• w d

n then there is n ⊢ P ′ such that P
α−→M P ′ and525

〈〈P ′〉〉
n = d

n .526

Proof. We prove 1, the proof for 2 is analogous. As before, given n ⊢ α, we527

write n+n ⊢ α⊕α for the function mapping ai to α(ai) if i ≤ n and to α(ai−n)528

if i > n.529

Suppose that 〈〈P〉〉
n n⊢α−−−→• b d

n . We prove by induction on the rules530

of (??) that there exists n ⊢ P ′ such that P
α−→H P ′ and 〈〈P ′〉〉

n = d
n .531

• For the rule
n ⊢ P n ⊢ Q

n ⊢ P |Q

we observe that by definition 〈〈n ⊢ P |Q〉〉 =
〈〈P 〉〉

〈〈Q〉〉
n . Since

n

n
n n⊢α−−−→

n+n⊢α⊕α b
n

n
n

then
〈〈P 〉〉

〈〈Q〉〉
n α−→• b d

n iff

〈〈P〉〉
n n⊢α−−−→• b

d1
n and 〈〈Q〉〉

n n⊢α−−−→• b
d2

n

25

with d
n =

d1

d2

n . Now take β′ = α∩al(Q) and α′ = α∩al(P).532

We have that β′ ⊆ al(Q) and α′ ⊆ al(P). Moreover, since α ⊆ al(P) ∪533

al(Q) by hypothesis, it holds that α′ ∪ β′ = α and that α′ ∩ al(Q) =534

β′ ∩ al(P).535

By Lemma ?? and 〈〈P〉〉
n n⊢α−−−→• b

d1
n and 〈〈Q〉〉

n n⊢α−−−→• b
d2

n ,

we obtain that 〈〈P〉〉
n n⊢α′

−−−−→• b
d1

n and 〈〈Q〉〉
n n⊢β′

−−−→• b
d2

n

with d
n =

d1

d2

n . We can now use induction hypothesis to get

a P ′ and Q′ such that 〈〈P ′〉〉
n = d1

n , 〈〈Q′〉〉
n = d2

n ,

P
α′

−→ P ′ and Q
β′

−→ Q′. By the leftmost rule in (??), we have that

P |Q α−→ P ′|Q′.

Finally, by definition of 〈〈·〉〉,

〈〈n ⊢ P ′|Q′〉〉 =
〈〈P ′〉〉

〈〈Q′〉〉
n =

d1

d2

n = d
n .

• For the rule
n+ 1 ⊢ P

n ⊢ νan+1(P)

we observe that by definition 〈〈n ⊢ νan+1P 〉〉 =
n

〈〈P 〉〉 . Since

n n⊢α−−−→
n+1⊢β b

n
with α = β\{an+1}, then

n
〈〈P 〉〉 α−→• b d

n

iff
n

〈〈P 〉〉
n+1⊢β−−−−−→• b

n
d′ with d

n =
n

d′ . We can now

use the induction hypothesis to get a P ′ such that
n

〈〈P ′〉〉 =
n

d′

and P
α−→ P ′. By the fact that α = β \ {an+1} and the rightmost rule in

(??), we have that

νan+1(P)
α−→ νan+1(P

′).

By definition of 〈〈·〉〉,

〈〈n ⊢ νan+1(P
′)〉〉 =

n
〈〈P ′〉〉 =

n
d′ = d

n .

• For the rule
ar(f) = n

n ⊢ f

26

the result is immediate by the definition of βb and the two leftmost rules536

in (??).537

• For the rule
n ⊢ P degree(σ) ≤ n

n ⊢ Pσ

we observe that by definition 〈〈n ⊢ Pσ〉〉 = 〈〈P 〉〉n
σ

n . Since σ
n⊢α−−−→

n⊢α◦σ−1 b
σ,

then 〈〈P 〉〉n
σ

n n⊢α−−−→• b d
n iff 〈〈P〉〉

n n⊢α◦σ−1

−−−−−−→• b d′n with

d
n = d′n

σ
n . We can now use the induction hypothesis to get

a P ′ such that 〈〈P ′〉〉
n = d′n and P

α◦σ−1

−−−−→ P ′. By the rightmost

rule in (??), we have that

Pσ
α−→ P ′σ

and, by the definition of 〈〈·〉〉,

〈〈n ⊢ P ′σ〉〉 = 〈〈P ′〉〉n
σ

n = d′n
σ

n = d
n .

• For the rule
n ⊢ P

n+ 1 ⊢ P

we observe that since n ⊢ P , then al(P) ⊆ {a1, . . . , an} and thus an+1 /∈ α.

By definition, 〈〈n + 1 ⊢ P 〉〉 = 〈〈P 〉〉
n

. Since
n n+1⊢α−−−−−→

n⊢α b

n
,

then 〈〈P 〉〉
n •−→

n+1⊢α

n
d iff 〈〈P〉〉

n n⊢α−−−→• b d′n with
n

d =

d′
n

. We can now use induction hypothesis to get a P ′ such that

〈〈P ′〉〉
n = d′n and

P
α−→ P ′.

By definition of 〈〈·〉〉,

〈〈n+ 1 ⊢ P ′〉〉 = 〈〈P ′〉〉
n

= d′
n

= d
n .

538

Lemma 20. Let n ⊢ P , n ⊢ α, i ≤ n and ai /∈ al(P).

〈〈n ⊢ P 〉〉 n⊢α−−−→• b
〈〈n ⊢ Q〉〉 iff 〈〈n ⊢ P 〉〉 n⊢α∪{ai}−−−−−−−→• b

〈〈n ⊢ Q〉〉.

27

Proof. First, using Lemma ??, we can find d
n − 1 such that

〈〈P〉〉
n = d

i − 1

n − i

Then, we use a permutation to relocate the : let σ be the transposition (i n).
By definition of 〈〈−〉〉 we have

〈〈Pσ〉〉
n = 〈〈P 〉〉n

σ
n = d

n − 1

From the derivation rules for props (§ ??), we see that any transition out of

〈〈Pσ〉〉
n must come from the derivation rule for ⊕, namely:

d
n − 1 α−→• b

e
n − 1 v−→• b

λ3

d
n − 1 α v−−→• b

e
n − 1

Hence, we must have 〈〈Qσ〉〉
n = e

n − 1
for some e

n . Now, notice

that we have
1−→• b and

0−→• b so that

〈〈Pσ〉〉
n n⊢α−−−→• b

〈〈Qσ〉〉
n iff 〈〈Pσ〉〉

n n⊢α∪{an}−−−−−−−→• b
〈〈Qσ〉〉

n .

Applying the transposition (i n) again we can conclude that

〈〈P〉〉
n n⊢α−−−→• b

〈〈Q〉〉
n iff 〈〈P〉〉

n n⊢α∪{ai}−−−−−−−→• b
〈〈Q〉〉

n .

539

Lemma 21. Let n ⊢ P , i ≤ n and ai /∈ al(P). Then there exists d
n − 1 such

that

〈〈P〉〉
n = d

i − 1

n − i

Proof. We prove this by structural induction on the rules of (??).540

• For the rule
n ⊢ P1 n ⊢ P2

n ⊢ P1|P2

al(P1|P2) = al(P1)∪ al(P2) and therefore ai /∈ al(P) and ai /∈ al(P2). We
can apply the induction hypothesis to obtain d1 and d2 such that

〈〈P1〉〉
n = d1

i − 1

n − i

and 〈〈P2〉〉
n = d2

i − 1

n − i

28

and we can deduce

〈〈P1|P2〉〉
n =

〈〈P1〉〉

〈〈P2〉〉
n =

n − i

d1

i − 1

d2

=

n − i

d1

i − 1

d2

• For the rule
n+ 1 ⊢ P

n ⊢ νan+1(P)

we have al(νan+1(P)) = al(P) \ {an+1} which implies that ai /∈ al(P).
We can therefore apply the induction hypothesis to find d such that

〈〈P〉〉n + 1 = d

i − 1

n + 1 − i

and we can deduce

〈〈νan+1P〉〉n =
n

〈〈P 〉〉 = d

i − 1

n − i

• P cannot be equal to a process variable f since, for n ⊢ f we have al(f) =541

ar(f) = n.542

• For the rule
n ⊢ P degree(σ) ≤ n

n ⊢ Pσ

we have al(Pσ) = σ[al(P)]. Therefore aj /∈ al(P) for j := σ−1(i). By the
induction hypothesis, we can find d such that

〈〈P〉〉
n = d

j − 1

n − j

and conclude that

〈〈Pσ〉〉
n = 〈〈P 〉〉n

σ
n = d

j − 1

n − j

σ

n − i

i − 1

= d

j − 1

n − j

σ′

i − 1

n − i

for some permutation σ′ : n− 1 → n− 1.543

29

• For the rule
n+ 1 ⊢ P

n ⊢ νan+1(P)

we have 〈〈P〉〉
n = 〈〈P 〉〉

n − 1
and, using the induction hypothesis

we can find d such that

〈〈P〉〉n − 1 = d

i − 1

n − 1 − i

The conclusion follows immediately.544

545

7. Related and Future Work546

The terminology Hoare and Milner synchronisation is used in Synchronised547

Hyperedge Replacement (SHR) [? ?]. Our work is closely related to SHR:548

indeed, the prop SCW(Σ) has arrows open hypergraphs, where hyperedges are549

labeled with elements of Σ [?]. To define a coalgebra β : Σ → FSCW(Σ) is to550

specify a transition system for each label in Σ. Then, constructing the coalgebra551

β : SCW(Σ) → FSCW(Σ) from a distributive law amounts to giving a transition552

system to all hypergraphs according to some synchronisation policy (e.g. à la553

Hoare or à la Milner). SHR systems equipped with Hoare and Milner synchro-554

nisation are therefore instances of our approach. A major difference is our focus555

on the algebraic aspects: e.g. since string diagrams can be regarded as syntax as556

well as combinatorial entities, their syntactic nature allows for the bialgebraic557

approach, and simple inductive proofs. The operational rules in Figure ?? are558

also those of tile systems [?]. However, in the context of tiles, transitions are559

arrows of the vertical category : this forces every state to perform at least one560

identity transition. For example, it is not possible to consider empty sets of561

transitions, which can be a useful feature in the string diagrammatic approach,562

see [?].563

Amongst the many other related models, it is worth mentioning bigraphs [?564

]. While also graphical, bigraphs can be nested hierarchically, a capability that565

we have not considered. Moreover, the behaviour functor F in § ?? forces566

the labels and the arriving states to have the same sort as the starting states.567

Therefore, fundamental mobility mechanisms such as scope-extrusion cannot568

immediately be addressed within our framework. We are confident, however,569

that the solid algebraic foundation we have laid here for the operational seman-570

tics of two-dimensional syntax will be needed to shed light on such concepts as571

hierarchical composition and mobility. Some ideas may come from [?].572

30

Appendix A. An Example of Bialgebraic Semantics: Non-Deterministic573

Automata574

In this appendix, we illustrate bialgebraic semantics on a well-known case575

study, namely non-deterministic automata [?]. The intention is to provide in576

full a basic example that may serve as a roadmap for the approach to string577

diagrams proposed in the main text.578

Deterministic automata as coalgebras. Let 2 be the set {0, 1} and A an579

alphabet of symbols. A deterministic automata (DA) is a pair (S, 〈o, t〉) where S580

is a set of state and 〈o, t〉 : S → 2×SA consists of the output function o : S → 2,581

defining whether a state x ∈ S is accepting (o(x) = 1) or not (o(x) = 0), and582

the transition function t : S → SA mapping each state x ∈ S and each a ∈ A583

the successor state t(x)(a).584

DAs are in one to one correspondence with coalgebras for the functor F : Set →585

Set defined as F(X) = 2 ×XA. The set of all languages over the alphabet A,586

hereafter denoted by 2A
∗
, carries a final coalgebra. For each deterministic au-587

tomaton (S, 〈o, t〉), there is a unique coalgebra homomorphism [[·]] : S → 2A
∗

588

assigning to each state in x the language that it accepts (defined for all words589

w ∈ A∗ as [[x]]() = o(x) and [[x]](aw) = [[t(x)(a)]](w)).590

Non deterministic automata give rise to bialgebras. A non deterministic591

automata (NDA) is a pair (S, 〈o, t〉) where S and o are like for deterministic592

automata, but the transition function t has now type S → PωS
A, where Pω is593

the finite powerset functor. t maps each state x ∈ S and each a ∈ A to a (finite)594

set of possible successor states t(x)(a).595

Therefore NDA are coalgebras for the functor FPω where F is the functor for
deterministic automata explained above. Traditionally the semantics of NDA
is also defined in terms of languages, but the set 2A

∗
does not carry a final

coalgebra for FPω. The solution is to view NDAs as DAs, by a construction that
in automata theory is usually called determinisation (or powerset construction).
Categorically, this amounts to transform an NDA β : S → 2 × Pω(S)

A into a
DA β : Pω(S) → 2× Pω(S)

A, i.e. an FPω-coalgebra into an F-coalgebra. For
the determinised NDA β, there exists a unique F-coalgebra homomorphism
[[·]] : Pω(S) → 2A

∗
. This yields language semantics S → 2A

∗
for the original

statespace S, by precomposing with the unit for the monad ηS : S → Pω(S), as
in the diagram below.

S
η

β

Pω(S)

β
☎☎
☎☎
☎☎
☎

☎☎
☎☎
☎☎
☎

[[·]]
❴❴❴❴❴❴❴ 2A

∗

FPω(S) F([[·]])
 FPω(2

A∗
)

(A.1)

In automata theory, there is a concrete way of constructing β from β. In the
categorical abstraction, the general principle underpinning this construction is

31

that defining β requires the introduction of a distributive law λ : PωF ⇒ FPω.
For all sets X, λX : Pω(2× SA) → 2×Pω(X)A is defined for any b1, . . . , bn ∈ 2
and for all φ1, . . . ,φn ∈ SA,

λX({〈b1,φ1〉, . . . , 〈bn,φn〉}) = 〈

i∈1...n

bi,

i∈1...n

φi〉 (A.2)

where the leftmost ⊔ is the obvious join in 2 (regarded as the partial order596

0 ⊑ 1), and the rightmost one is defined as the point-wise union: namely for all597

a ∈ A,

i∈1...n φi(a) = {φ1(a), . . . ,φn(a)}. Observe that, in the particular case598

of the empty set ∅, α(∅) = 〈0,φ∅〉 where φ∅(a) = ∅ for all a ∈ A.599

Given λ, β is defined as Pω(S)
Pωβ−−−→ PωFPω(S)

λPω(S)−−−−→ FPωPω(S)
Fµ−−→600

FPω(S). The reader could also check that, with this definition, β is a λ-601

bialgebra, where the algebraic structure on the state space Pω(S) is given by602

the multiplication µS : PωPω(S) → Pω(S).603

Algebraic presentation of Pω. In concrete, determinisation is about obtain-
ing the language semantics of NDAs. The essence of its categorical abstraction
is moving from coalgebras to bialgebras, thus taking into account the algebraic
structure of the statespace Pω(S). Indeed, it is well-known that the monad
Pω is presented by the algebraic theory of join semilattice with bottom: these
consist of a set S equipped with an operation ⊗ : S × S → S and an element
0 : 1 → S such that

(x⊗ y)⊗ z = x⊗ (y ⊗ z) x⊗ y = y ⊗ z x⊗ x = x x⊗ 0 = x (A.3)

for all x, y, z ∈ S. To make formal the link with Pω, let us introduce the604

functor TS which maps every set S to the set TS(S) of terms built with ⊗,605

0 and variables in S. This functor carries the structure of a monad, where606

the unit ηS : S → TS(S)is given by inclusion (each variable is a term) and607

the multiplication µS : TSTS(S) → TS(S) by substitution. The fact that Pω is608

presented by the algebraic theory of join semilattice with bottom means that609

Pω is (isomorphic to) the quotient of the monad TS by equations (??).610

Modular construction of the distributive law. The monad Pω is associ-611

ated with a rather elementary algebraic theory, which allows λ to be defined in a612

rather straightforward way. The monads that we use in the main text to encode613

categorical structures are way more involved. For this reason, it is important614

to modularise the task of finding a distributive law. Again, we are going to use615

λ : PωF ⇒ FPω in (??) as a proof of concept, and show how its definition can616

be divided into different stages.617

By the above discussion, Pω is the quotient of TS by equations (??), but we618

can decompose this even further: TS is the free monad (see § ??) (S1+S2)
† over619

the endofunctor expressing the semilattice signature: here S1 : S → {0} stands620

for the element 0, and S2 : S → S × S encodes the operation ⊗.621

We can now divide the construction of λ in three stages:622

Distributive law on the signature. The first step is to give separate dis-
tributive laws of S1 and S2 over F . The first one is λ1 : S1F ⇒ FS1.

32

Given a set S, we let λ1
S : {0} → 2× {0}A map 0 to the pair 〈0, !〉 where

! is the unique function of type A → {0}. This distributive law can also
be conveniently presented as the following pair of derivation rules. The
first describes the element 0 (= 0 is not a terminating state) of the pair
λ1
S{0}; the second describes the element ! : A → {0} of the pair λ1

S{0}.

0 ∕↓
a ∈ A

0
a−→ 0

(A.4)

The second distributive law is λ1 : S2F → FS2. Given a set S, we let
λ2
S : (2×SA)×(2×SA) → 2×(S×S)A be defined for all 〈b1,φ1〉, 〈b2,φ2〉 ∈

2× SA as λ2(〈b1,φ1〉, 〈b2,φ2〉) = 〈b1 ⊔ b2, 〈φ1,φ2〉〉. The representation in
terms of derivation rules is:

s1 ↓
s1 ⊗ s2 ↓

s2 ↓
s1 ⊗ s2 ↓

s1
a−→ s′1 s2

a−→ s′2

s1 ⊗ s2
a−→ s′1 ⊗ s′2

(A.5)

Distributive law on the free monad. We can now put together λ1 and λ2
623

to obtain a distributive law of type : TSF ⇒ FTS . First, by post-624

composing λ1 and λ2 with the unit of the free monads η : Si ⇒ S†
i625

associated with endofunctors Si, one obtains two GSOS specifications626

λ1 : S1F ⇒ FS†
1 and λ2 : S2F ⇒ FS†

2 . As explained in Section ??, one627

can take the coproduct of GSOS specification, so to obtain λ : SF ⇒ FS†
628

and thus, by Proposition ?? , a distributive law λ
†
: S†F ⇒ FS†. Since629

S† = TS , this distributive law is effectively of the desired type TSF ⇒630

FTS .631

Distributive law on the quotient. As Pω is a quotient of TS by equations632

(??), the last step is quotienting the λ
†
: TSF ⇒ FTS by such equations.633

There is a categorical approach, described in § ??, which allows to turn634

λ
†
into a distributive law λ on the quotient of TS , provided that λ

†
is635

compatible with equations (??). This is indeed the case for λ
†
, which thus636

yields by Proposition ?? a distributive law λ : PωF ⇒ FPω of the desired637

type. The definition (??) of λ given above can be equivalently described638

by the derivation rules (??)-(??), modulo the algebraic representation of639

Pω in terms of join semilattices.640

33

