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Abstract: The purpose of this work was to identify the gene defect underlying a relatively mild
rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited
retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the
best candidate. The DNA of the female patient originating from a consanguineous family revealed no
large duplication or deletion, but several large homozygous regions. In one of these, a homozygous
frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein,
was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing
51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for
the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments
of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously
been implicated in IRD, although usually in association with syndromic disease, unlike our present
case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD,
whose pathogenic mechanism in the retina needs to be further elucidated.

Keywords: rod-cone dystrophy; retinitis pigmentosa; candidate gene; CCDC51; MITOK; mitochon-
drial protein; inner segments; retina
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1. Introduction

Non-syndromic rod-cone dystrophy (RCD), also reported as retinitis pigmentosa, is
a progressive retinal disease characterized by night blindness, progressive visual field
constriction, and, in severe cases, total blindness with central vision loss, with a worldwide
prevalence of 1 in 4000 [1]. This heterogeneous disease is inherited as an autosomal
recessive, autosomal dominant, or X-linked trait [2]. Mutations in eighty different genes
have been reported in non-syndromic RCDs (https://sph.uth.edu/retnet/sum-dis.htm,
accessed on 9 April 2021). Recent studies performing targeted next generation sequencing
(NGS), whole exome sequencing (WES), and whole genome sequencing (WGS) report a
mutation detection rate in RCD or in general in inherited retinal disorder (IRD) cohorts
between ~50 and 85% [3–7]. The remaining unsolved cases may harbor mutations in
intronic or regulatory sequences, may initially be undetected due to poorly covered DNA
regions, or represent copy number variants (CNVs) missed by the chosen sequencing
method. In addition, novel gene defects accounting for the remaining patient population
are most likely ultra-rare, most of the major defects being already identified and may
therefore lack population replication [8–10]. As previously shown, initial targeted NGS
and subsequent WES on patients lacking mutations in known genes underlying IRD is an
efficient strategy to identify novel gene defects [10–17]. The purpose of the work herein
was to identify a disease-associated gene involved in a sporadic RCD case, previously
excluded for a known gene defect by targeted NGS.

2. Results
2.1. A Sporadic Case with Mild arRCD

A 25-year-old affected woman from a consanguineous union from Morocco was
diagnosed with mild RCD (Figure 1). She had no relevant medical history. She maintained
relatively good central vision with a best corrected visual acuity (BCVA) of 20/20 with−0.5
correction for the right and 20/13 with no correction for the left eye. Kinetic visual fields
showed an annular scotoma on both eyes with relatively well preserved peripheral isopters
(Figure 1a). Full-field electroretinogram (ff-ERG) revealed only residual photopic responses
in keeping with generalized rod-cone dysfunction. Fundus color examination revealed
normal optic discs and retinal vessels with pigmentary changes in the periphery (Figure 1a).
Short- and near infrared wavelength fundus autofluorescence revealed a perifoveal ring
of increased autofluorescence which corresponded to preserved outer retina on spectral
domain optical coherence tomography (SD-OCT) (Figure 1b).

2.2. Identification of a Novel Candidate Gene, CCDC51 Underlying Mild arRCD

After exclusion by targeted NGS of disease-causing variants in 123 genes previously
associated with RCD [11], array comparative genomic hybridization (CGH) the index pa-
tient (CIC00834, III.1, Figure 1) revealed no large putative disease-causing CNVs. However,
this approach identified fifteen relatively large (>2 Mb) homozygous regions of particular
interest since previous studies have shown that large homozygous regions often harbor
recessive disease-causing variants in families of consanguineous origin [18].

Among these homozygous regions, the four largest had sizes of 25, 18, 20, and
13 Mb and mapped to chromosomes 2, 3, 12, and 15, respectively. Subsequently, WES,
applied on the genomic DNA of the affected girl (CIC00834, III.1, Figure 1), her un-
affected father (CIC04840, II-1, Figure 1), and her unaffected brother (CIC04408, III-2,
Figure 1c) identified 37,452 single nucleotide variants (SNVs) and 2979 insertions or dele-
tions (InDels). Stringent filtering was applied to identify the disease-causing variants
as described in the Materials and Methods section. Due to the reported consanguin-
ity, we prioritized homozygous variants present in the affected girl, but heterozygous
in the unaffected father and heterozygous or absent in the unaffected brother. In addi-
tion, compound heterozygous variants present in the affected girl, heterozygous in the
unaffected father and heterozygous or absent in the unaffected brother were also con-
sidered [19]. Applying this stringent filtering, only the homozygous c.244_246delins17
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p.(Trp82Valfs*4) InDel in exon 2 of CCDC51 (NM_001256964.2) (will be submitted to
https://databases.lovd.nl/shared/genes/CCDC51, accessed on 9 April 2021) remained
on the list (Figures 1c and 2, Table 1). The 3 nucleotides 5′-TGG-3′ at positions 244 to 246
were deleted and replaced by 17 nucleotides 5′-GTGGAGATATGAAGATA-3′ in exon 2.
This is predicted to lead to a shift in the coding frame and a shorter form of the protein
or nonsense-mediated mRNA decay. The variant was validated in the index patient as
well as in all available family members by Sanger sequencing and co-segregated with
the phenotype in the three-generation family following an autosomal recessive mode of
inheritance (Figure 1c).
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Figure 1. Clinical data and pedigree of a patient from a consanguineous family with rod-cone dystrophy. (a) Kinetic visual 
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show normal optic discs and retinal vessels with pigmentary changes in the periphery. Short- and near infrared wave-
length fundus autofluorescence show a perifoveal ring of increased autofluorescence. (b) Spectral domain optical coher-
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periphery. (c) The affected girl (III.1) is homozygous for c.244_246delins17 p.(Trp82Valfs*4) [M] in CCDC51. The unaf-
fected brother (III.2), the unaffected father (II.1), the unaffected paternal grandfather (I.1), and the unaffected maternal 
grandmother (I.4) are heterozygous for this variant, while the unaffected paternal grandmother (I.2) has no variant [=]. 
Circles represent female, squares represent male. Empty symbols indicate unaffected individuals, and the filled symbol 
affected individuals. 
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Figure 1. Clinical data and pedigree of a patient from a consanguineous family with rod-cone dystrophy. (a) Kinetic visual
field show an annular scotoma for both eyes with relatively conserved peripheral isopters. Fundus color photographs show
normal optic discs and retinal vessels with pigmentary changes in the periphery. Short- and near infrared wavelength
fundus autofluorescence show a perifoveal ring of increased autofluorescence. (b) Spectral domain optical coherence
tomography (SD-OCT) reveals well preserved outer retinal bands at the macula with outer retinal thinning in the periphery.
(c) The affected girl (III.1) is homozygous for c.244_246delins17 p.(Trp82Valfs*4) [M] in CCDC51. The unaffected brother
(III.2), the unaffected father (II.1), the unaffected paternal grandfather (I.1), and the unaffected maternal grandmother (I.4)
are heterozygous for this variant, while the unaffected paternal grandmother (I.2) has no variant [=]. Circles represent
female, squares represent male. Empty symbols indicate unaffected individuals, and the filled symbol affected individuals.
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Figure 2. Schematic drawing of the genomic structure and expression of CCDC51. (a) CCDC51 is
located on chromosome 3 and exons 2–4 code for a 411 amino acid protein. Unfilled and filled boxes
represent untranslated and translated regions, respectively. The arrow depicts the translation start.
M represents the identified mutation. (b) The four exons of CCDC51 are expressed in normal human
retina (red) [20]. (c) CCDC51 RT-PCR encompassing exons 2–4 revealed the presence of the transcript
in all tested tissues and cells including human retina, human universal tissues control cDNA, human
fibroblasts, human blood, COS-1, and HeLa cells shown on an agarose gel with an expected size of
~660 bp.

Table 1. Variants found to be homozygous in the affected girl CIC00843 co-segregates with the phenotype.

Chromosome Gene Name Refseq and MIM# Variant Minor Allele
Frequency

Retinal
Expression [20]

3 CCDC51 NM_001256964.1
No MIM#

c.244_246delinsGTGGAGATATGAAGATA
p.(Trp82Valfs*4) none reported Yes

According to the American College of Medical Genetics and Genomics standards,
the variant was classified as pathogenic (1a) (PVS1, PVS4, PM2, and PM3) [21,22]. This
probably disease-causing variant is rare and is not reported in current variant databases
including gnomAD. CCDC51, mapping to chromosome 3 (48,473,580–48,481,529 bps on
GRCh37/hg19) contains 4 exons of which exons 2–4 are coding (Figure 2a). Interestingly,
the 18 Mb homozygous region on chromosome 3 (chr3:31,849 818–50,174,572) identified in
the index patient by array CGH contains this CCDC51 variant, reinforcing this gene defect
as a candidate to be implicated in autosomal recessive RCD in this consanguineous family.
Neither one of >1.000 other cases from our French RCD cohort investigated using Sanger
sequencing nor >2.000 other cases from cohorts of our worldwide collaborators revealed
other convincing biallelic disease-causing variants in CCDC51. In the studied cohort, three
cases harbored a monoallelic putative pathogenic variant in CCDC51 (Table S1). However,
quantitative PCR experiments using primers covering all exons (Table S2) did not reveal
CNVs in the four coding exons of CCDC51. The genomic region of these patients needs
to be investigated to evaluate if variants in introns or in regulatory regions contribute to
the disease. Together, screening results of CCDC51 revealed that this gene defect is an
ultra-rare cause of autosomal recessive RCD as it has been previously found for other novel
gene defects underlying IRD [8–10]. Similarly, rare loss-of-function mutations in another
mitochondrial gene, IDH3B, led to non-syndromic RCD in three families [23,24] and was
mentioned to be mutated in a patient with an unspecified syndrome [25].
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2.3. Function and Pathogenic Mechanism of the Mitochondrial Protein MITOK Encoded
by CCDC51

CCDC51 encodes the coiled-coil domain-containing protein 51. Exons 2–4 of CCDC51
code for a mitochondrial protein CCDC51 [26], also called MITOK [27] with 411 amino acids
(aa) with a predicted N-terminal mitochondrial targeting sequence, a coiled-coil domain
(aa 111–173), and two transmembrane helical domains (aa TM1 202–222 and TM2 387–407).
Recent findings have shown that CCDC51 is an inner membrane mitochondrial 45 kDa
protein, of which both the N- and C-termini are exposed toward the internal matrix, while
the region between the two transmembrane domains (aa 223–386) is in the intermembrane
space of the mitochondria. CCDC51, alias MITOK, presents the pore-forming subunit of a
mitoK (ATP) channel [24], while MITOSUR represents the ATP-binding subunit. Genetic
ablation of MITOK causes instability in the mitochondrial membrane potential, widening
the intracristae space and decreasing oxidative phosphorylation in vitro [27]. Since the ho-
mozygous variant, c.244_246delins17 p.(Trp82Valfs*4) InDel in exon 2 of CCDC51 identified
herein causes a frameshift at the N-terminus of CCDC51 and a shorter form of the protein,
with only 82 amino acids lacking mitochondrial and transmembrane domains or leading
to nonsense-mediated mRNA decay, the mutated protein of the patient is also predicted
to be nonfunctional leading to a mitochondrial defect in the retina. This, together with
decreased oxidative phosphorylation in the retina, may be associated with photoreceptor
degeneration and RCD. A mouse model lacking CCDC51 showed suppression of cardio-
protection [27]. Similarly, other studies strengthen the role of CCDC51 in cardioprotection
(e.g. [28–31]). We are not aware of any cardiac abnormalities in our patient. Detailed ocular
phenotyping in mice lacking CCDC51 was not performed.

2.4. Expression Results of CCDC51, a Novel Candidate Gene Defect Underlying Mild arRCD

To further investigate the potential role of CCDC51, alias MITOK, in the retina, never
described before, expression studies were performed. Transcriptomic analysis in public
database revealed that CCDC51 is ubiquitously expressed e.g., in the adrenal gland, blood,
bone, brain, intestine, kidney, muscle, ovary, pancreas, skin, testis, but also eye (Hs.187657,
found in former available UniGene database). This agrees with studies from others showing
the presence of RNA and protein of MITOK in all tissues in humans and mice [27,32–34].

In addition, here, retinal expression was investigated using available human and
mouse transcriptomic databases. Indeed, the human transcript of CCDC51 and more
specifically the four exons of CCDC51 were found to be expressed in human retina [20]
(Figure 2b). Expression of CCDC51 was experimentally validated in human retina, in
human universal tissues control cDNA, human fibroblasts, human blood, COS-1, and HeLa
cells. A transcript for all tested tissues could be visualized by agarose gel electrophoresis at
the expected size of ~660 bp (Figure 2c). The sequences of the human CCDC51 transcripts
were identical to the reference cDNA sequence of CCDC51 (NM_001256964.1) with only
one heterozygous synonymous variant present in universal tissues and fibroblasts com-
pared to the reference sequence (Table S3). The CCDC51 transcript of COS-1 cells showed
thirteen homozygous nucleotide exchanges when compared to the human reference cDNA
(Table S4). However, the respective sequences are present in the Chlorocebus sabaeus green
monkey genome, which represents the origin of COS-1 cells.

Interestingly, in mice, Ccdc51 showed high expression in rod and possibly cone pho-
toreceptors of the retinal-cell-type comparative transcriptome atlas [35,36] (Figure 3a). Due
to high variability of the experiments for this gene in this database, it is unclear if Ccdc51 is
also expressed in horizontal, bipolar, amacrine, ganglion, and microglial cells (Figure 3a).
Indirectly, expression of Ccdc51 was also suggested in photoreceptors in the mouse model,
rd1, where its relative expression decreases with age-dependent rod photoreceptor degen-
eration (Figure 3b) and in the rod-less mouse, Nrl−/− at postnatal day 21, where the Ccdc51
transcript is less abundant compared to wild-type mice (Figure 3c).
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mice during retinal degeneration [37]. With photoreceptor degeneration from postnatal day (PN) 12 onwards, the Ccdc51 
expression decreases in the rd1 mouse, which indirectly supports rod photoreceptor expression of Ccdc51. (c) Ccdc51 ex-
pression in the rod-less mouse Nrl−/−. At PN day 21, Ccdc51 transcript is less abundant in Nrl−/− [38–41] compared to wild-
type mice indicating indirectly Ccdc51 expression in both rods and cones. 
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human fibroblast and HeLa cells (Figure 4, green) using fluorescent secondary antibodies. 
This staining partially overlapped (Figure 4, yellow) with the one obtained for a mito-
chondrial marker, using the anti-ATP synthase subunit beta monoclonal antibody (Figure 
4 red) and a mitochondrion-selective probe (Figure 4 red), confirming that CCDC51/MI-
TOK is a mitochondrial protein, as previously shown [27]. In addition, endogenous 
CCDC51 also locates in the nucleus, a finding which was previously described for U-2 OS 
cells (Human Bone Osteosarcoma Epithelial Cells) (https://www.proteinatlas.org/human-
cell/mitochondria, accessed on 9 April 2021). 

Figure 3. CCDC51 analyses in mouse transcriptomic databases. (a) Ccdc51 transcripts in six different cell types from mouse
adult retina. The graph presents Ccdc51 normalized expression values [36]. (b) Ccdc51 expression in rd1 and wild-type
mice during retinal degeneration [37]. With photoreceptor degeneration from postnatal day (PN) 12 onwards, the Ccdc51
expression decreases in the rd1 mouse, which indirectly supports rod photoreceptor expression of Ccdc51. (c) Ccdc51
expression in the rod-less mouse Nrl−/−. At PN day 21, Ccdc51 transcript is less abundant in Nrl−/− [38–41] compared to
wild-type mice indicating indirectly Ccdc51 expression in both rods and cones.

2.5. Detection of Endogenous CCDC51 in Human Cell Lines

Immunolocalization studies detected endogenous CCDC51, alias MITOK, protein in
human fibroblast and HeLa cells (Figure 4, green) using fluorescent secondary antibodies.
This staining partially overlapped (Figure 4, yellow) with the one obtained for a mitochon-
drial marker, using the anti-ATP synthase subunit beta monoclonal antibody (Figure 4
red) and a mitochondrion-selective probe (Figure 4 red), confirming that CCDC51/MITOK
is a mitochondrial protein, as previously shown [27]. In addition, endogenous CCDC51
also locates in the nucleus, a finding which was previously described for U-2 OS cells
(Human Bone Osteosarcoma Epithelial Cells) (https://www.proteinatlas.org/humancell/
mitochondria, accessed on 9 April 2021).

https://www.proteinatlas.org/humancell/mitochondria
https://www.proteinatlas.org/humancell/mitochondria
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Figure 4. Detection of endogenous CCDC51/MITOK in human cell lines. Endogenous CCDC51/MITOK was detected with
the rabbit anti-CCDC51 antibody in HeLa cells (upper two rows) and fibroblast cells (lower two rows) (green and yellow).
A similar staining was obtained with the mitochondrial mouse anti-ATP synthase subunit beta antibody and a MitoTracker
(red and yellow). Nuclei were stained with DAPI (blue) (bar = 20 µm).

2.6. Detection of CCDC51/MITOK in Non-Human Primate, Human, and Mouse Retina

A non-human primate, a human, and a mouse retinal1 section revealed CCDC51, alias
MITOK, immunolocalization by fluorescent staining in distinct retinal layers (Figures 5 and 6
top, green, and overlay). A similar staining with the mitochondrial mouse anti-ATP synthase
subunit beta antibody (Figures 5 and 6 top, red, and overlay) was obtained. More specifically
the CCDC51 and ATP synthase subunit beta staining was found in close vicinity and some
colocalization in the inner segments of both rod and cone photoreceptor cells (Figures 5 and 6
top, zoom, green and red and yellow, respectively, and overlay). Similarly, CCDC51 showed
strong immunolocalization in the inner segments of photoreceptors in the human retina using
immunohistochemical methods using horseradish peroxidase (Supplementary Figure S1).
While a single band presumably representing endogenous and overexpressing CCDC51 in
COS-1 and human fibroblast cells at the expected size of 46 kDa was visualized upon Western
blot analyses, two bands with slightly distinct molecular weights were found in mouse and
human retina (Supplementary Figure S2). The second band might be to a second isoform of
CCDC51 present in the retina but not in other mammalian cells. The existence of a novel longer
isoform of CCDC51 coding for a protein with a molecular weight of ~47 kDa is predicted
(XP_011532415), which could be present in the upper band seen in the Western blot. Based on
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this, the mutation identified in the patient described herein could lead either to a truncated
protein (c.303_305delinsGTGGAGATATGAAGATA p.(Trp103Argfs*25)) or to the absence of
it secondary to nonsense-mediated mRNA decay.
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Figure 5. Detection of CCDC51 in the retina of non-human primate and human. Top: A non-human primate retinal
section showed CCDC51 immunolocalization with the anti-CCDC51 antibody in different retinal cell layers (green and
yellow). A similar staining with the mitochondrial mouse anti-ATP synthase subunit beta antibody (red and overlay) was
obtained (bar = 20 µm). The enlarged image showed that the CCDC51 and ATP synthase subunit beta staining was found in
close proximity, with some overlap in the inner segment of both rod and cone photoreceptor cells (zoom, green, and red
and yellow, respectively). Nuclei were stained with DAPI (blue) (bar = 5 µm). Middle: A human retinal section showed
CCDC51 immunolocalization with the validated rabbit anti-CCDC51 antibody in different retinal layers (green and yellow).
A similar staining with the mitochondrial mouse anti-ATP synthase subunit beta antibody (red and overlay) was obtained
(bar = 20 µm). The enlarged images showed that the CCDC51 and ATP synthase subunit beta staining was found in close
proximity, with some overlap in the inner segment of both rod and cone photoreceptor cells (zoom, green, red, and yellow,
respectively). Nuclei were stained with DAPI (blue) (bar = 5 µm). OS = outer segment, IS = inner segment, CIS = cone
inner segment, RIS = rod inner segment, ONL = outer nuclear layer, OPL = outer plexiform layer, INL = inner nuclear layer,
IPL = inner plexiform layer, GCL = ganglion cell layer.
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Figure 6. Detection of CCDC51 in mouse retina. Top: A mouse retinal section showed CCDC51
immunolocalization with the anti-CCDC51 antibody in different retinal cell layers (green and yellow).
A similar staining with the mitochondrial mouse anti-ATP synthase subunit beta antibody (red
and yellow) was obtained (bar = 20 µm). The enlarged images showed that the CCDC51 and ATP
synthase subunit beta staining was found in close proximity, with some overlap in the inner segment
of both rod and cone photoreceptor cells (zoom, green and red, respectively, and yellow). Nuclei
were stained with DAPI (blue) (bar = 3 µm).

Together these findings confirmed that CCDC51, alias MITOK, also localizes in the
mitochondria within the retina and that a defect of mitochondrial function due to mutations
in CCDC51 is a possible cause of RCD observed in the investigated family.

3. Discussion

CCDC51 encodes the coiled-coil domain-containing protein 51, also called MITOK.
Mutations in this gene have never been described as disease causing. The only report we
found was on a patient with learning difficulties, white matter abnormalities, elevated
serum creatine kinase, oral-motor dyspraxia, facial hypotonia, and little involvement
of other muscles who revealed a heterozygous 2 Mb deletion on chromosome 3, which
encompasses, in addition to DAG1, the CCDC51 locus as well. However, although the
authors could not exclude effects from all genes they speculated that the heterozygous
DAG1 null mutation contributes to the severity of the phenotype [42]. In the family
described herein, only the index patient (CIC00834) with bi-allelic CCDC51 mutations is
affected with RCD. None of the family members with heterozygous variants in CCDC51
showed any clinical phenotype, indicating that mutations in CCDC51 are causing autosomal
recessive RCD.

Reported first in the rat brain [43], CCDC51 is highly conserved across many species,
from human to Caenorhabditis elegans. Exons 2–4 are predicted to code for a mitochondrial
protein [26] of 411 amino acids (aa) with a predicted N-terminal mitochondrial targeting
sequence, a coiled-coil domain (aa 111–173) and two transmembrane helical domains (aa
TM1 202–222 and TM2 387–407). Our immunolocalization studies show that endogenous
CCDC51 localizes in close proximity to mitochondrial markers (ATP synthase subunit
beta and MitoTracker Probe) in human HeLa and fibroblast cells, which agrees with the
predications of protein function. These findings are also in accordance with a recently pub-
lished study that describes CCDC51/MITOK as a mitochondrial protein [27]. In addition,
human and mouse CCDC51 was found in close proximity of the mitochondrial marker
ATP synthase subunit beta in the retina and more specifically in the inner segments of rod
and cone photoreceptors, compartments of the retina well known to harbor mitochondria.

Mitochondria are important intracellular organelles as they provide the major source
of cellular energy through oxidative phosphorylation, thereby delivering most of the
adenosine triphosphate (ATP) requirements of eukaryotic cells [41–43]. They are present
in every tissue, including the retina (specifically described for mitochondria present in
the retina, Figure 7). These organelles have an outer and inner membrane, which form an
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intermembrane and an internal matrix space [42,43]. Mitochondrial oxidative phosphory-
lation resides in the inner mitochondrial membrane, which forms cristae (invaginations)
providing an increased surface to generate ATP. The electron transport chain in the inner
membrane is the site of oxidative phosphorylation and consists of five complexes of which
complexes I–IV oxidize NADH and FADH2 through a controlled series of redox reactions,
while complex V phosphorylates ADP to ATP. Ubiquinone, also known as coenzyme Q
(Co Q), and cytochrome complex (cyt C) are cofactors of the electron transport chain that
act as electron shuttles and importantly contribute to the mitochondrial respiratory chain
function [44]. Defects in these complexes and/or cofactors lead to diminished mitochon-
drial ATP production and leakage, leading to an increased generation of reactive oxygen
species (ROS) [45]. In addition to their function as ATP producers, mitochondria play an
important role in preserving cell integrity and survival, by detoxification of ROS, mito-
chondrial dynamics (fission and fusion), the regulation of calcium homeostasis, nucleotide
metabolism, and the biosynthesis of amino acids, cholesterol, and phospholipids [46,47].
Upon the onset a cellular energy crisis, mitochondrial function tends to decline. This is due
to alternating inner membrane potential, imbalanced transmembrane ion transport, and an
overproduction of free radicals, among other factors [28]. In such a situation, mitochondrial
ATP-sensitive potassium (mitoK(ATP)) channels, which are channels consisting of a pore-
forming subunit and by an ATP-binding subunit (sulphonylurea receptor) [29,30] open and
close to regulate both internal Ca2+ concentration and the degree of membrane swelling.
This helps restore proper membrane potential, allowing further H+ outflow, which con-
tinues to provide the proton gradient necessary for mitochondrial ATP synthesis. More
specifically, K(ATP) channels are important for the electrophoretic transport of potassium
ions (K+) inside the organelle matrix, which is inhibited by the physiological levels of ATP.
Without aid from the potassium channels, the depletion of high energy phosphate would
outpace the rate at which ATP could be created against an unfavorable electrochemical
gradient [31].

Proteins that are important for the respiratory chain in the mitochondria are encoded by
both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), indicating the importance of
both genomes in the structure and function of the mitochondrial respiratory complexes [45].
Cells in highly metabolically active tissues such as the liver, kidney, the cardiac conductive
system, and the eye strongly depend on ATP and have high numbers of mitochondria.
Consequently, these tissues are susceptible to the defective mitochondrial energy output
seen in mitochondrial disease [45]. Concerning the eye, mitochondria are located in the
RPE, inner segments of photoreceptor cells, and Müller glial cells [44] (Figure 1 in [44] and
Figure 7 here). Mutations in mtDNA and nuclear DNA affecting mitochondrial genes have
been implicated in different retinal disorders (https://sph.uth.edu/retnet/disease.htm,
accessed on 9 April 2021) (Table S5). In most cases the reported phenotypes differ from that
seen in our patient. We are only aware of one gene defect in IDH3B, which leads to a similar
non-syndromic RCD in three described families due to loss-of-function mutations [25,26].
However, after its initial description in 2008, it was also mentioned to be mutated in a
patient with an unspecified syndrome [27]. IDH3B codes for the isocitrate dehydrogenase
3, beta subunit which catalyzes the oxidative decarboxylation of isocitrate to produce α-
ketoglutarate, while converting nicotine adenine dinucleotide (NAD+) to NADH in the
mitochondria. Functional analysis of two mutations resulted in substantial reductions in
IDH3B activity and thus presumed mitochondrial dysfunction in the retina [23].

https://sph.uth.edu/retnet/disease.htm
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Figure 7. Schematic drawing of mitochondrial proteins in photoreceptor cells. (Left) outer retinal layers with mitochondria
present in Müller glia, inner segment of photoreceptors, and retinal pigment epithelium. (Right) enlarged drawing of
molecules implicated in mitochondrial function in healthy (bottom) and dysfunctional (top) conditions. The latter situation
can be caused by mutations in mitochondrial or nuclear genes. (Figure adapted from [44]).
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As mentioned before, CCDC51, alias MITOK, represents the pore-forming subunit of
mitoK(ATP) channels. Recent findings showed that the absence of the pore subunit MITOK
leads to a mitochondrial defect, namely instability in the mitochondrial membrane potential,
widening the intracristae space and decreasing oxidative phosphorylation in vitro [27].
Similarly, the patient described herein carried a loss-of-function mutation, predicted to
lead to an absence of a functional protein. It would be interesting to study how this
mitochondrial gene defect leads exactly to photoreceptor degeneration in patients. Further
studies using a mouse model may shine light on this [27]. However, often a relatively
mild phenotype in RCD patients is not reproduced in mouse models [48–51]. Studies
on fibroblasts or retinal cells from patient’s derived induced pluripotent stem cells [52]
would be informative to evaluate putative effects of the CCDC51 variant on mitochondrial
function in the retina. Patient derived cells and organoids may display ultrastructural
changes as previously reported in fibroblasts [53] or reveal mitochondrial dysfunction as
altered oxygen consumption rates of live cells which could be measured with a kit (Agilent
Seahorse Analytics, Courtaboeuf, Les Ulis, France).

Taken together, CCDC51 is an excellent novel candidate gene, important for mito-
chondrial function underlying non-progressive RCD. Recent publications and the study
described herein support this notion, despite the fact that variants seem to be ultra-rare
and the causality in the retina needs to be further elucidated. Since gene defects leading to
non-progressive IRD can also be implicated in syndromic forms, including genes important
for mitochondrial function like IDH3B [23,24], future studies may identify disease-causing
variants in syndromic forms of RCD.

4. Materials and Methods
4.1. Clinical Examination

The sporadic case affected with RCD (Figure 1, CIC00834, III.1) was clinically investi-
gated at the national reference center for rare diseases REFERET of the Centre Hospitalier
National d’Ophtalmologie des Quinze-Vingts as previously described [54].

4.2. Genetic Analyses

Blood samples of the index (CIC00834, III.1), the brother (CIC04408, III.2), the father
(CIC04840, II.1), the paternal grandparents (CIC04405, I.1 and CIC04405, I.2), and the
maternal grandmother (CIC04407, I.4) were collected for genetic research and genomic
DNA was extracted as previously reported [55] (Figure 1). Research procedures adhered to
the tenets of the Declaration of Helsinki and were approved by the local Ethics Commit-
tee (CPP, Ile de France V). Prior to genetic testing, informed consent was obtained from
each study participant. Targeted NGS and WES were performed in collaboration with
a company (IntegraGen, Evry, France) [11,13]. A panel of 123 genes known to be asso-
ciated with retinal dystrophies was used for targeted NGS as previously described [11].
Array comparative genomic hybridization (CGH) was performed on the index patient
(Figure 1, CIC00834, III.1), as before [56]. Subsequently, WES was performed in the index
(Figure 1, CIC00834, III.1), in the brother (Figure 1, CIC04408, III.2), and father (Figure 1,
CIC04840, II.1). Exons of DNA samples were captured and investigated as shown before
with in-solution enrichment methodology (SureSelect Clinical Research Exome, Agilent,
Massy, France) and NGS (Illumina HISEQ, Illumina, San Diego, CA, USA) [14]. For all
subjects, overall WES coverage was at least 95% for a 10× and 87% for a 25× depth
of coverage, respectively resulting in a mean sequencing depth of at least 73× per base
(Tables S6–S8). Image analysis and base calling were performed with Real-Time Analy-
sis software (Illumina) [15]. Genetic variation annotations were realized by an in-house
pipeline (IntegraGen), and results were provided per sample or family in tabulated text
files. Stringent filtering criteria were used to select the most likely pathogenic variant(s)
as previously described [13]. Only variants showing a minor allele frequency of ≤0.5%
in Exome Variants Server (EVS, http://evs.gs.washington.edu/EVS, accessed on 9 April
2021), HapMap (http://hapmap.ncbi.nlm.nih.gov, accessed on 9 April 2021), 1000Genomes
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(http://www.1000genomes.org, accessed on 9 April 2021), Exome Aggregation Consortium
(ExAC, http://exac.broadinstitute.org, accessed on 9 April 2021), and genome Aggrega-
tion Database (GnomAD, http://gnomad.broadinstitute.org, accessed on 9 April 2021),
in these databases were kept. The variants had to be nonsense, missense, splice site vari-
ants, or represent a small InDels. Variant pathogenicity was predicted with bioinformatic
tools: Polymorphism Phenotyping v2 (PolyPhen2, http://genetics.bwh.harvard.edu/pph2,
accessed on 9 April 2021), Sorting Intolerant From Tolerant (SIFT, http://sift.jcvi.org, ac-
cessed on 9 April 2021), MutationTaster (http://www.mutationtaster.org, accessed on
9 April 2021), and amino acid conservation across species with UCSC Genome Browser
(http://genome.ucsc.edu/index.html, accessed on 9 April 2021; Human GRCh37/hg19
Assembly). Only variants predicted to be disease causing by at least one of the two pro-
grams, PolyPhen2 or SIFT, were analyzed further. In addition, the pathogenic character
was predicted according to the American College of Medical Genetics and Genomics stan-
dards [21,22]. To validate variants detected by NGS and screen the whole candidate gene,
Sanger sequencing was applied (conditions and oligomers will be provided on request). To
detect putative CNVs in patients with monoallelic variants in the candidate gene, quantita-
tive PCR experiments using primers covering all exons (Table S2) and a kit (SYBR Green
Real-Time PCR Master Mixes, Applied Biosystems, Thermo Fischer, Villebon-sur-Yvette,
France) at 60 ◦C annealing temperature was done. PCR reactions were performed in trip-
licates using two different amounts of genomic DNA (50 ng and 5 ng, in 5 µL) in a final
volume of 20 µL, including 0.4 µL of each primer (0.2 µM final concentration), 4.2 µL of
nuclease free water, and 10 µL of power SYBR Green PCR master mix. Positive and negative
(no DNA template) controls were used in each run. PCR amplification was performed in a
96-well plate format on a 7500 Fast Real-Time PCR machine (Applied Biosystems) using
the following conditions: 2 min at 50 ◦C, 10 min at 95 ◦C, 40 cycles (15 s at 95 ◦C and
1 min at 60 ◦C), 15 s at 95 ◦C, 1 min at 60 ◦C, and 15 s at 95 ◦C. The final dissociation step
was included at the end of the PCR program to generate melting curves and assess primer
specificity. Relative quantification was performed to normalize the number of CCDC51 gene
copies to those of the housekeeping gene GAPDH.

4.3. Gene Expression Analyses

Putative candidate genes showing putative disease-causing variants were investigated
for their expression in different transcriptomic databases including UniGene (http://www.
ncbi.nlm.nih.gov/unigene, accessed on 9 April 2021), the retinal gene expression profile
database provided by Farkas and colleagues for human retina [20]; the in-house rd1 mouse
expression database (http://kbass.institut-vision.org/KBaSS/transcriptomics/index.php,
accessed on 9 April 2021) to investigate if the gene is expressed in rod photoreceptors as
these mice undergo early rod photoreceptor degeneration due to mutations in Pde6b [37]; a
database based on transgenic mice, to see in which kind of retinal cells the candidate gene
is expressed (https://www.fmi.ch/roska.data/index.php, accessed on 9 April 2021) [35,36],
and the database of the “rod-less” Nrl−/− mouse (https://retseq.nei.nih.gov, accessed on
9 April 2021) [57] to acquire knowledge if the candidate gene is also expressed in cone
photoreceptors. Expression of the candidate gene has been experimentally validated in
human retina (Clonetech, Palo Alto, California), in human control cDNA (universal, multi-
tissues, Clonetech), in human fibroblast, in blood, in COS-1 and HeLa cells with primers in
exon 2 and 4 of CCDC51 (Ex2cDNAF: 5′-CACAGCATTCAGCAACGAGC-3′ and Ex4aR:
5′-GGACTACCTGCCTGTGACC-3′), and the sequence of the transcripts was validated by
Sanger sequencing with the same primers (detailed conditions will be delivered on request).

4.4. Protein Localization Studies

The following online sites were used to predict the protein domains and protein local-
ization of the candidate protein, MitoMiner 4.0, a database of mammalian mitochondrial
localization evidence, phenotypes, and diseases (http://mitominer.mrc-mbu.cam.ac.uk/
release-4.0/report.do?id=1003774, accessed on 9 April 2021), (https://www.proteinatlas.
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org/humancell/mitochondria, accessed on 9 April 2021) and (http://www.uniprot.org/
uniprot/Q96ER9, accessed on 9 April 2021).

4.5. Specificity of Antibody against CCDC51

To perform functional analysis in mammalian cell lines and retinal tissues a rabbit anti-
CCDC51 (HPA010980, Sigma, Saint Quentin Fallavier, France) antibody, directed against
the human protein, was validated for its ability to detect CCDC51 in COS-1 cells overex-
pressing c-myc-tagged human CCDC51 (GeneCust, Dubelange, Luxembourg) as previously
described for other candidates [58,59] using the rabbit anti-CCDC51 (1:100) and mouse
anti-c-myc (1:500) (11667149001, Roche, Basel, Switzerland) antibodies and with secondary
donkey anti-rabbit conjugated with Alexa Fluor 488 (green, 1:1000) (711-545-152, Jackson
Immuno Research Laboratories, Baltimore, MD, USA) and donkey anti-mouse with Cy3
(red, 1:1000) (715-165-150, Jackson Immuno Research) antibodies. Nuclei were stained with
DAPI (1:1000) and cells were mounted with a mounting medium (Fluoromount-G, South-
ernBiotech, Birmingham, AL, USA) using coverslips. Preparations were visualized with a
fluorescent microscope (DM6000 B, Leica, Wetzlar, Germany) (Supplementary Figure S3).
The signal obtained with anti-CCDC51 and anti-c-myc antibody overlapped showing a
punctuate staining of the transfected cells. These findings indicate that, at least in this
system, the antibody detects human CCDC51. Untransfected cells revealed no staining
when tested with the anti-c-myc antibody and a faint staining when stained with anti-
CCDC51 antibody in CCDC51 overexpressing COS-1 cells. The faint staining is most likely
due to endogenous CCDC51 present in these cells. These findings were confirmed by
Western blot analyses (Supplementary Figure S2). CCDC51 was detected in CCDC51-
c-myc COS-1 transfected cells at the expected size of ~45 kDa. Similarly, endogenous
CCDC51 was also detected in untransfected COS-1 cells. As a control, the same protein
extracts were stained with anti-c-myc antibody revealing a specific band at the same size,
only in transfected cells. Human fibroblast cells also revealed one specific band at the
expected size of ~45 kDa on Western blot analysis. In contrast, mouse and human retina
showed two bands with a slightly different molecular weight. Indeed, during the writ-
ing of the manuscript based on existing ESTs a CCDC51 protein containing 431 amino
acids (XP_011532415) instead of 411 amino acids was predicted. The estimated size of
this protein would be 47 kDa, which could represent a second isoform present in mouse
and human retina (Supplementary Figure S2). Both isoforms differ in the 5′-region. The
human anti-CCDC-51 antibody used for this work is directed against a common peptide
of both isoforms. It represents a polyclonal antibody directed against the following amino
acids: GLNEVREAQGKVTEAEKVFMVARGLVREAREDLEVHQAKLKEVRDRLDRVSRED-
SQYLELATLEHRMLQEEKRLRTAYLRAEDSEREKFSLFSAAVRESHEKERTRAERTKNWSL
IGSVLGALIGVAGS. Indeed, 128 of these 129 amino acids are identical in Chlorocebus sabaeus
green monkey, indicating that if the protein is indeed made in COS-1 cells, the protein
should be detected. During the drafting of this manuscript an article was published describ-
ing CCDC51 (there called MITOK) as a novel mitochondrial protein validating the same
antibody in MITOK-knockout HeLa cell lines [27].

4.6. Immunolocalization Studies in Human Cells and Retinal Tissue Using Fluorescence Imaging

The rabbit anti-CCDC51 antibody (1:100, HPA010980, Sigma) was used to stain HeLa
and human fibroblast cells. Cells were washed with PBS, fixed in 4% formaldehyde for
10 min, rewashed with PBS, and most of the time quenched with 50 mM NH4Cl in PBS
for 10 min. Subsequently cells were permeabilized for 10 min with 0.1% Triton X-100 in
PBS, washed with PBS and blocked in PBS containing 2% BSA for 1 h. Cells were then
incubated with primary antibodies (the rabbit anti-CCDC51 antibody) for 3 h at room
temperature and washed 3 times with 0.1% Triton X-100 in PBS. CCDC51 was detected
with the secondary donkey anti-rabbit conjugated with Alexa Fluor 488 (1:1000 green)
(711-545-152, Jackson Immuno Research Laboratories). Co-staining with the mitochondrial
marker, the ATP synthase subunit beta monoclonal antibody (1:1000 red) (3D5AB, Thermo
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Fisher Scientific, Villebon-sur-Yvette, France) was performed and visualized with the
secondary donkey anti-mouse Cy3 (red, 1:1000) (715-165-150, Jackson Immuno Research)
antibody. In addition, cells were stained alive using a mitochondrion-selective probe
(1:1000 red) (Mitotracker Probe, Molecular Probes, Thermo Fisher Scientific). Subsequently
cells were fixed with 4% formaldehyde and proceeded as described before together with
the rabbit anti-CCDC51 antibody, which was visualized with secondary donkey anti-rabbit
conjugated with Alexa Fluor 488. Nuclei were stained with DAPI (1:1000) and cells were
mounted with a mounting medium (Fluoromount-G, SouthernBiotech, Birmingham, AL,
USA) using coverslips.

Similarly, non-human primate (12 µm sections), human, and mouse (20 µm sec-
tions) retinas postfixed with acetone were stained with the validated rabbit anti-CCDC51
antibody (HPA010980, (1:1000) Sigma) and co-stained with the mitochondrial mouse anti-
ATP-synthase beta antibody (1:1000) or the mitochondrion-selective probe (1:1000 red)
(MitoTracker Probe, Molecular Probes, Thermo Fisher Scientific), using the same secondary
antibodies and conditions as described for the human cell lines. Retinae stained only
with the secondary antibodies or the isotype antibody (Rabbit (DA1E) mAb IgG XP® Iso-
type Control #3900, Cell Signaling, Ozyme, Saint-Cyr-L’École, France) served as negative
controls. Immunostainings were visualized with confocal microscopy (Olympus FV1200,
Rungis, France).

4.7. Immunohistochemistry in Human Retinal Tissue Using Horseradish Peroxidase

Human retinas (50 µm sections) were postfixed with acetone and endogenous peroxi-
dase was inhibited with 0.3% H2O2 (H1009–100mL lot STBH1090, Sigma). Subsequently,
the retina was incubated with the rabbit anti-CCDC51 antibody ((1:1000), HPA010980,
Sigma) and the secondary horseradish peroxidase antibody ((1.500) HTP goat anti-rabbit
IgG(H + L), Jackson Immuno Research). The labeling was performed with a substrate (VIP
peroxidase, SK-4600, Vector Laboratories, Inc., Burlingame, CA, USA) and images taken
with a microscope (Carl Zeiss Microscopy, imager.M1, Jena, Germany).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22157875/s1.
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