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The simulation of statistically accurate time-integrated
dynamic speckle patterns using a physics-based model
that accounts for spatially varying sample properties is
yet to be presented in biomedical optics. In this let-
ter we propose a solution to this important problem
based on the Karhunen-Loève expansion of the electric
field, and apply our method to the formalisms of both
laser speckle contrast imaging and diffuse correlation
spectroscopy. We validate our technique against solu-
tions for speckle contrast for different forms of homo-
geneous field, and also show that our method can read-
ily be extended to cases with spatially varying sample
properties. © 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

The measurement of wide-field two-dimensional time-
integrated dynamic speckle patterns (2D-TIDSPs) for the pur-
pose of blood flow measurement using inexpensive, low frame
rate cameras, is a task that is performed in a variety of modal-
ities in biomedical optics. The oldest example of this is laser
speckle contrast imaging (LSCI), which was developed in the
1980s [1]. LSCI infers blood flow index (BFI) as 1/K2, where
K is the speckle contrast of a 2D-TIDSP that has been backscat-
tered from the sample [2]. A related technique, multi-exposure
speckle imaging (MESI), is based on the acquisition of a series
of 2D-TIDSPs using multiple camera exposure times [3].

Diffuse correlation spectroscopy (DCS) is a modality that
is able to measure blood flow at greater imaging depths than
LSCI and MESI through the recovery of the field autocorrelation
function, g1(τ). This technique is traditionally limited to single
mode photon counting detection [4]; however, one group has
recently demonstrated the feasibility of recovering equivalent
information from multi-exposure 2D-TIDSPs through the use
of the multi-step Volterra integral method (MVIM) [5]. Addi-
tionally, our group has presented a system which makes use of
low frame rate camera-based detection in the Fourier domain
to acquire DCS data using a heterodyne holographic detection
technique [6, 7].

Diffuse speckle pulsatile flowmetry (DSPF) has recently been
presented and is a technique that extends diffuse speckle contrast
analysis (DSCA) from single mode to multimode detection, with
a subsequent improvement in the measurement rate of deep

tissue blood flow that is equal to the camera frame rate [8].
Speckle contrast optical tomography (SCOT) reconstructs 3D
maps of deep tissue blood flow by utilising information from
all the source-detector pairs that are detected by an array of
detectors, such as that present within a camera [9].

The motivation to simulate speckle patterns has previously
been put forward by Song et al. [10], who explained that sim-
ulation techniques are a useful complement to experimental
investigation with regard to understanding speckle phenom-
ena and their practical application [11–13]. Simulation is also
a useful tool for evaluating data processing methods [14, 15]
and for investigating the feasibility of novel applications of laser
speckle.

Two techniques have been described in the literature to model
the evolution of a speckle pattern between two statistically inde-
pendent fully-developed speckle patterns, based on the expected
properties of g1(τ). The first of these is the copula method [16],
an empirical approach that was used [12, 14, 15] to simulate
2D-TIDSPs; however, the solutions offered by this technique
do not model static scatterers and are restricted to only a few
prescribed forms of g1(τ). The second technique is a first prin-
ciples approach [10] that allows for the generation of a series
of fully developed speckle patterns with corresponding spatial
variations in g1(τ). This technique does not restrict the form of
g1(τ) that is used, and it is also able to model static scatterers.
However, we have found that integrating over time in such an
evolution does not simulate a 2D-TIDSP with statistically accu-
rate speckle contrast, the property from which sample motion
may be inferred. This is because this approach does not take
into account the number of statistically independent degrees of
freedom (or temporal coherence lengths),M, that influence a
time-integrated speckle measurement [17].

Goodman employed the concept of independent degrees of
freedom to generate an approximate solution for the probability
density function (PDF) of a 2D-TIDSP, and also described an
approach to obtain an exact solution for this problem that makes
use of the Karhunen-Loève expansion of the electric field [17].
In this letter we extend this latter approach and propose new
insights to simulate 2D-TIDSP images in biomedical optics. By
doing so we build a robust forward model for the simulation
of 2D-TIDSPs that accounts for spatial variation in g1(τ) (with
known scatterer motion and decorrelation time), camera integra-
tion time, contributions from dynamic and static scatterers, and
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the coherent transfer function (CTF) of the instrument.
We wish to evaluate the measured intensity of a 2D-TIDSP as

W =
∫ T

0
U(t)U∗(t) dt, (1)

where U(t), the complex valued field, is a random process that
has autocorrelation function g1 (τ), where τ is the delay time
t2 − t1, g1 (τ) measures the statistical similarity of U(t1) and
U(t2) over a measured spatial ensemble, and we use bold nota-
tion to indicate a 2D xy dependency.

We note that g1 (τ) has contributions from both dynamic and
static scatterers [18]

g1(τ) = α|g1d(τ)|+ (1− α), (2)

where α is the fraction of the dynamic scattering component,
and in this letter we consider

g1d(τ) = exp
(
−
(

τ

τc

)p)
, (3)

for values of p = [0.5, 1, 2], where τc is the decorrelation time
of the sample [2]. These three forms of g1d(τ) can be used to
model sample motion in LSCI experiments according to scatter-
ing regime (i.e., single or multiple), particle motion type (i.e.,
ordered or unordered) and approximate vessel size [2, 19, 20].
Values of p = 1 and p = 2 can also be used to model Brownian
and convective motion in DCS experiments, respectively, under
certain conditions [21].

With a view to calculating 2D-TIDSP PDFs, Goodman
showed that U(t) can be expanded into an infinite series of
statistically independent and uncorrelated modes [17]. Here we
extend this approach to the simulation of 2D-TIDSP images for
fully polarised light, by firstly considering the inverse Karhunen-
Loève expansion of U(t) on the interval (0, T) into a weighted
sum of basis vectors

U(t) =
∞

∑
n=1

φn(t)Ûn, (4)

where φn(t) is a set of orthonormal and complete functions, such
that ∫ T

0
φn(t)φ∗m(t) dt =

{
1 n = m
0 n 6= m,

(5)

and the expansion coefficients Ûn are uncorrelated modes given
by Ûn =

∫ T
0 φ∗n(t)U(t) dt. By design, the Karhunen-Loève ex-

pansion maximally decorrelates the expansion coefficients Ûn,
and thus for a zero mean process we require that

E[ÛnÛ∗m] =

{
λn n = m
0 n 6= m,

(6)

which can be achieved when the set {φn(t)} satisfies the integral
equation

∫ T
0 g1 (t2 − t1) φn(t1) dt1 = λnφn(t2), i.e., φn(t) and λn

are the set of eigenfunctions and eigenvalues, respectively, of
the integral equation that has g1 (τ) as its kernel [22].

Substituting Eq. 4 into Eq. 1, we have

W =
∞

∑
n=1

∞

∑
m=1

ÛnÛ∗m
∫ T

0
φn(t)φ∗m(t) dt, (7)

which, using Eq. 5, simplifies to

W =
∞

∑
n=1

ÛnÛ∗n, (8)

and W has been expressed as the sum of an infinite number of
uncorrelated and statistically independent modes. Each ÛnÛ∗n
represents a statistically independent instantiation of the instan-
taneous intensity of fully polarised light, which adheres to nega-
tive exponential statistics and is statistically equivalent to a fully
developed speckle pattern [17]. We therefore propose that the
time integrated signal as a function of space (i.e., one 2D-TIDSP)
may be simulated as the weighted sum of N uncorrelated and
statistically independent fully developed 2D speckle patterns,
each of which has a corresponding mean value of E[ÛnÛ∗n] = λn.
We consider first the case of homogeneous fields (i.e., spatially
invariant λn); however, we relax this assumption later in the
letter when considering spatially heterogeneous fields.

The intensity of an instantiation of a fully developed speckle
pattern follows negative exponential statistics, the weighted
spatial sampling of which can be modelled by [10, 23]

In =
∣∣Ûn

∣∣2 , (9)

where
Ûn = F [exp (−iΩn)]

√
λn (10)

is the corresponding field, where F denotes the 2D discrete
Fourier transform and each Ωn is an independent instantiation
of uniformly distributed random variables in a 2D matrix on the
interval (−π, π). Incorporating the CTF of a coherent imaging
system, Eq. 9 becomes [10, 16, 23]

In =
∣∣∣F−1 [ÛnH

]∣∣∣2 , (11)

where H is the CTF. In this letter, we model 600 x 600 pixel
images and all simulations model H as a central circle function
of diameter 200 pixels [10]; we therefore expect each modelled
speckle to occupy a square region with a width of three pixels.

To compute the values of λn we adapt the routine de-
scribed by Goodman [17, 23]. g1 (τ) (Eq. 2) is linearly dis-
cretised over the camera exposure period, T, by sampling the
function g1 (|t2 − t1|) over a 2D N x N matrix, for values of
t1 = (0, T/(N − 1), . . . , T) on one matrix axis, and for values
of t2 = (0, T/(N − 1), . . . , T) on the other matrix axis. λn are
then the N eigenvalues of this g1 (τ) square sampling matrix,
and in this letter we use a value of N = 500 for homogeneous
field simulations. An example of this process is shown in Fig. 1
(whilst Fig. S1 of Supplement 1 demonstrates how the individ-
ual λn values vary as a function of T/τc). The exact nature of
this solution becomes approximate due to this discretisation;
however, we have found that using this value of N provides a
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Fig. 1. (a) Sampling of g1 (|t2 − t1|) for T = 0.37 ms, τc = 0.37
ms, α = 0.9, p = 1 and N = 500. (b) The N eigenvalues, λn, of
the square matrix (a).
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Fig. 2. Simulated 2D-TIDSPs and their corresponding image histograms for p = 1, α = 0.9, τc = 0.37 ms, (a-b) T/τc = 0.1, (c-d)
T/τc = 1.0, (e-f) T/τc = 5.0 and (g-h) T/τc = 25.0. The top row shows a 150 x 150 pixel region of interest (ROI) of each 2D-TIDSP.
Exact and approximate expected PDFs [17] are superimposed on the image histograms.

sufficient level of accuracy for the range of T/τc ratios used in
our homogeneous field simulations. The impact of the choice of
N on the computational performance of this algorithm, together
with considerations on how to optimise performance, are given
in Section S2 of Supplement 1.

For homogeneous field simulations we use a value of τc =
0.37 ms [10], and simulated 2D-TIDSPs for such fields are shown
in the top row of Fig. 2 for p = 1, α = 0.9 and various camera
integration times. The bottom row of this figure shows the corre-
sponding image histograms of the mean normalised 2D-TIDSPs.
In each case there is excellent agreement with Goodman’s ex-
act PDF solution [17], which serves to validate our simulation
in terms of intra-image statistics. In this figure we also show
Goodman’s approximate PDF solution, which deviates from the
simulated data, especially at intermediate values of T/τc.

We then sought to validate our simulation technique against
analytical solutions for speckle contrast, which is defined as the
ratio of standard deviation, σ, to mean intensity, µ, of a sample
of speckles and can be related to g1(τ) through [8, 19]

K =
σ

µ
=

[
2β

T

∫ T

0

(
1− τ

T

)
[g1(τ)]

2 dτ

]1/2
, (12)

where β is the coherence factor. For the form of g1d(τ) given by
Eq. 3, the specific solutions to Eq. 12 (i.e., Kp for p = [0.5, 1, 2])
have recently been published [20]. We note that our simulation
framework does not parameterise β, and considerations on the
feasibility of this are included in Section S3 of Supplement 1.

We validated our simulation technique for different types of
scatterer motion by simulating 2D-TIDSPs with homogeneous
fields for p = [0.5, 1, 2] and α = 0.9 for the range of T/τc ratios
shown in Fig. 3. The global speckle contrast of each 2D-TIDSP

was calculated, and (for each value of p) the resulting values
of Kp were fit to the respective analytical solution to Eq. 12 by
minimisation of the least squares objective function

argmin
(τc ,β,α)

x

∑
i=1

[
Kp(Ti)simulated − Kp(Ti)model

]2 (13)

over x values of T. The resulting model fits and extracted pa-
rameter values shown in Fig. 3 are in excellent agreement with
our simulation parameters and simulated data. We note that
although we expect each speckle to occupy nine image pixels
for this fully polarised model, this is not a perfect mapping and
some pixels will have contributions from more than one speckle.
The fitted values of β shown in Fig. 3 are therefore slightly less
than 1.

We now consider the case of spatial variations in g1(τ), which
we treat by allowing λn to have a spatial dependence. This is
done by partitioning the sample into labelled sub-domains, each
having uniform g1(τ) and, therefore, λn. We then evaluate
Eq. 10 for each sub-domain, where the support of each Ûn is
given by the corresponding sub-domain. We can model the
smooth transition between adjacent tissue types by increasing
the number of labels; however, the incorporation of the CTF into
our simulation will also perform this smoothing function. Please
see Section S2 of Supplement 1 for further details. To demon-
strate this approach for a realistic yet arbitrary in vivo sample,
we adapted with permission the in vivo optical-resolution pho-
toacoustic microscopy (OR-PAM) image from Fig. 5(a) of [24],
which shows an 8 mm x 8 mm field of view of the microvascula-
ture of a mouse ear. Using an approach similar to that demon-
strated by Song et al. [10], we partitioned the image into five
greyscale labels, as shown in Fig. 4(a), and assigned arbitrary
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Fig. 3. Global speckle contrast values of simulated 2D-TIDSPs
for p = [0.5, 1, 2], α = 0.9, τc = 0.37 ms and variable ratios of
T/τc. Model fits to analytical solutions to Eq. 12 and extracted
parameter values are also shown.
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Fig. 4. (a) Partitioned OR-PAM image of mouse ear vascula-
ture. (b) Example of one simulated 2D-TIDSP. A magnified
view of the ROI within the white dashed square is shown in
Fig. S2 of Supplement 1. (c) Temporal speckle contrast image
computed from 30 simulated 2D-TIDSPs.

yet realistic values of τc in the range 0.05-1.0 ms [20] to each
label. The image was sectioned to a 3.4 mm x 3.4 mm region of
interest, and we assumed that areas of higher optical absorption
in the OR-PAM image correspond to areas of higher flow. Thus
values of τc = [0.05, 0.10, 0.20, 0.50, 1.00] ms were used, which
corresponded to labels [1,2,3,4,5], respectively. Modelling values
of p = [1, 1, 1, 1, 0.5] and α = [1, 1, 1, 1, 0.8] for each label, we sim-
ulated 30 2D-TIDSPs using an exposure time of 20 ms [14]. By
running the validation presented in Fig. 3, we find that a value
of N = 1000 is necessary to ensure statistical accuracy for these
simulation parameters. An example of a simulated 2D-TIDSP
generated using the spatially varying λn for these specified sim-
ulation parameters is shown in Fig. 4(b). A temporal speckle
contrast image was computed from this stack of 30 simulated
2D-TIDSPs, and this is shown in Fig. 4(c), where the speckle
contrast values correspond well with the spatial distribution
of τc. Considerations for the addition of measurement noise
to simulated 2D-TIDSPs, as well as further validation of our
algorithm using experimental techniques, are given in Section
S4 of Supplement 1.

To the best of our knowledge, this letter represents the first
time that a statistically robust algorithm for the simulation of
2D-TIDSPs, with specified temporal and spatial correlations, has
been presented in the field of biomedical optics. Our proposed
simulation technique is efficient and adaptable, and can readily
be extended to include more complicated forms of g1(τ) (such as
that used to model the correlation diffusion equation in a semi-
infinite geometry in DCS experiments [25], for example, which
would also allow for the parameterisation of sample optical
properties) and to accommodate mixed motion models, includ-
ing those where the edges between different types of motion

are not sharp [2]. We therefore expect the technique presented
here to be a powerful and useful simulation tool for the biomed-
ical optics community for the purposes of understanding the
practical application of speckle phenomena, evaluating data pro-
cessing methods of speckle images, and assessing the feasibility
of novel applications of laser speckle.

Funding. EPSRC-funded UCL Centre for Doctoral Training in Med-
ical Imaging (EP/L016478/1); Engineering and Physical Sciences Re-
search Council (EP/N032055/1); Royal Academy of Engineering Fellow-
ship (RF1516\15\33); Royal Society (URF\R\191036, UF130304).

Acknowledgements. We thank James Guggenheim for providing
the OR-PAM image that is used in this letter.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper
are not publicly available at this time but may be obtained from the
authors upon reasonable request.

Supplemental document. See Supplement 1 for supporting con-
tent.

REFERENCES

1. A. F. Fercher and J. D. Briers, Opt. Commun. 37, 326 (1981).
2. D. D. Postnov, J. Tang, S. E. Erdener, K. Kılıç, and D. A. Boas, Sci. Adv.

6, 1 (2020).
3. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn,

Opt. Express 16, 1975 (2008).
4. T. Durduran and A. G. Yodh, NeuroImage 85, 51 (2014).
5. K. Murali, A. K. Nandakumaran, T. Durduran, and H. M. Varma, Biomed.

Opt. Express 10, 5395 (2019).
6. E. James and S. Powell, Biomed. Opt. Express 11, 6755 (2020).
7. E. James and S. Powell, Proc. SPIE 11239, 29 (2020).
8. R. Bi, Y. Du, G. Singh, J.-H. Ho, S. Zhang, A. B. E. Attia, X. Li, and

M. C. Olivo, J. Biomed. Opt. 25, 1 (2020).
9. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Dur-

duran, Biomed. Opt. Express 5, 1275 (2014).
10. L. Song, Z. Zhou, X. Wang, X. Zhao, and D. S. Elson, Biomed. Opt.

Express 7, 798 (2016).
11. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, Opt. Lett. 33,

2886 (2008).
12. O. B. Thompson and M. K. Andrews, J. Biomed. Opt. 15, 1 (2010).
13. I. Fredriksson and M. Larsson, J. Biomed. Opt. 21, 1 (2016).
14. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, J. Biomed. Opt.

15, 1 (2010).
15. H. Zhang, P. Li, N. Feng, J. Qiu, B. Li, W. Luo, and Q. Luo, Opt. Express

20, 508 (2012).
16. D. D. Duncan and S. J. Kirkpatrick, J. Opt. Soc. Am. A 25, 231 (2008).
17. J. Goodman, Statistical Optics (Wiley, Hoboken, New Jersey, 2015),

2nd ed.
18. D. A. Boas and A. G. Yodh, J. Opt. Soc. Am. A 14, 192 (1997).
19. D. A. Boas and A. K. Dunn, J. Biomed. Opt. 15, 1 (2010).
20. C. Liu, K. Kiliç, S. E. Erdener, D. A. Boas, and D. D. Postnov, Biomed.

Opt. Express 12, 3571 (2021).
21. E. J. Sie, H. Chen, E.-F. Saung, R. Catoen, T. Tiecke, M. A. Chevillet,

and F. Marsili, Neurophotonics 7, 1 (2020).
22. W. Davenport and W. Root, Random Signals and Noise (McGraw-Hill

Book Company, New York, 1958).
23. J. Goodman, Speckle Phenomena in Optics - Theory and Applications

(SPIE, Bellingham, Washington, 2020), 2nd ed.
24. J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark,

O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z.
Zhang, and P. C. Beard, Nat. Photonics 11, 714 (2017).

25. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, Reports on Prog.
Phys. 73, 076701 (2010).



Letter Optics Letters 5

FULL REFERENCES

1. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-
exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).

2. D. D. Postnov, J. Tang, S. E. Erdener, K. Kılıç, and D. A. Boas, “Dynamic
light scattering imaging,” Sci. Adv. 6, 1–9 (2020).

3. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn,
“Robust flow measurement with multi-exposure speckle imaging.” Opt.
Express 16, 1975–1989 (2008).

4. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for
non-invasive, micro-vascular cerebral blood flow measurement,” Neu-
roImage 85, 51–63 (2014).

5. K. Murali, A. K. Nandakumaran, T. Durduran, and H. M. Varma, “Re-
covery of the diffuse correlation spectroscopy data-type from speckle
contrast measurements: towards low-cost, deep-tissue blood flow mea-
surements,” Biomed. Opt. Express 10, 5395–5413 (2019).

6. E. James and S. Powell, “Fourier domain diffuse correlation spec-
troscopy with heterodyne holographic detection,” Biomed. Opt. Express
11, 6755–6779 (2020).

7. E. James and S. Powell, “Diffuse correlation spectroscopy in the Fourier
domain with holographic camera-based detection,” Proc. SPIE 11239,
29–35 (2020).

8. R. Bi, Y. Du, G. Singh, J.-H. Ho, S. Zhang, A. B. E. Attia, X. Li, and
M. C. Olivo, “Fast pulsatile blood flow measurement in deep tissue
through a multimode detection fiber,” J. Biomed. Opt. 25, 1–10 (2020).

9. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, and T. Dur-
duran, “Speckle contrast optical tomography: A new method for deep
tissue three-dimensional tomography of blood flow,” Biomed. Opt. Ex-
press 5, 1275–1289 (2014).

10. L. Song, Z. Zhou, X. Wang, X. Zhao, and D. S. Elson, “Simulation of
speckle patterns with pre-defined correlation distributions,” Biomed.
Opt. Express 7, 798–809 (2016).

11. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental
effects of speckle-pixel size matching in laser speckle contrast imaging,”
Opt. Lett. 33, 2886–2888 (2008).

12. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements:
multiple-exposure laser speckle analysis generates laser Doppler-like
spectra,” J. Biomed. Opt. 15, 1–7 (2010).

13. I. Fredriksson and M. Larsson, “On the equivalence and differences
between laser Doppler flowmetry and laser speckle contrast analysis,”
J. Biomed. Opt. 21, 1–11 (2016).

14. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal
laser speckle contrast analysis for blood flow imaging with maximized
speckle contrast,” J. Biomed. Opt. 15, 1 – 5 (2010).

15. H. Zhang, P. Li, N. Feng, J. Qiu, B. Li, W. Luo, and Q. Luo, “Correcting
the detrimental effects of nonuniform intensity distribution on fiber-
transmitting laser speckle imaging of blood flow,” Opt. Express 20,
508–517 (2012).

16. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating
speckle dynamics,” J. Opt. Soc. Am. A 25, 231–237 (2008).

17. J. Goodman, Statistical Optics (Wiley, Hoboken, New Jersey, 2015),
2nd ed.

18. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of
turbid media probed with diffusing temporal light correlation,” J. Opt.
Soc. Am. A 14, 192–215 (1997).

19. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomed-
ical optics,” J. Biomed. Opt. 15, 1–12 (2010).

20. C. Liu, K. Kiliç, S. E. Erdener, D. A. Boas, and D. D. Postnov, “Choosing
a model for laser speckle contrast imaging,” Biomed. Opt. Express 12,
3571–3583 (2021).

21. E. J. Sie, H. Chen, E.-F. Saung, R. Catoen, T. Tiecke, M. A. Chevil-
let, and F. Marsili, “High-sensitivity multispeckle diffuse correlation
spectroscopy,” Neurophotonics 7, 1 – 15 (2020).

22. W. Davenport and W. Root, Random Signals and Noise (McGraw-Hill
Book Company, New York, 1958).

23. J. Goodman, Speckle Phenomena in Optics - Theory and Applications
(SPIE, Bellingham, Washington, 2020), 2nd ed.

24. J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark,
O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z.

Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microres-
onators for ultrasound sensing,” Nat. Photonics 11, 714–719 (2017).

25. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for
tissue monitoring and tomography,” Reports on Prog. Phys. 73, 076701
(2010).


