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Abstract: In the last decades, urban climate researchers have highlighted the need for a reliable
provision of meteorological data in the local urban context. Several efforts have been made in
this direction using Artificial Neural Networks (ANN), demonstrating that they are an accurate
alternative to numerical approaches when modelling large time series. However, existing approaches
are varied, and it is unclear how much data are needed to train them. This study explores whether
the need for training data can be reduced without overly compromising model accuracy, and if model
reliability can be increased by selecting the UHI intensity as the main model output instead of air
temperature. These two approaches were compared using a common ANN configuration and under
different data availability scenarios. Results show that reducing the training dataset from 12 to 9
or even 6 months would still produce reliable results, particularly if the UHI intensity is used. The
latter proved to be more effective than the temperature approach under most training scenarios, with
an average RMSE improvement of 16.4% when using only 3 months of data. These findings have
important implications for urban climate research as they can potentially reduce the duration and
cost of field measurement campaigns.

Keywords: urban heat island; microclimate; feed-forward neural networks; air temperature measure-
ments; in-situ measurements; urban models; urban environment; climate change

1. Introduction

In the context of raising awareness on climate change, a good understanding of urban
climate phenomena is a key milestone in order to mitigate and adapt to thermal extremes
within urban environments [1,2]. Cities are not only one of the main contributors to the
greenhouse effect [3], but also places where many inequalities and therefore potential vul-
nerabilities accumulate [4–6]. Moreover, recent studies, such as those developed by Grimm
et al. [7] and Youngsteadt [8], suggest that cities could provide important insights into the
socio-ecological dynamics of our near future at a global scale, thus increasing the interest
for reliable urban climatic data and expanding its applications to many other disciplines.

However, obtaining reliable climatic data within urban areas is still a challenging
task due to the complexity of the urban climate. Nowadays, some of the most important
advances concentrate on the modelling field [9]. Examples can be found evaluating the
inter-relation between some parameters and the urban climate, such as the presence of
water-bodies [10] or the emission of anthropogenic heat [11,12]. Regarding the accuracy
of these numerical models, recent advances coupling urban canopy models with meso-
climatic ones have also proved their overall reliability [13,14]. However, there are still some
barriers that limit their applications in other fields. For example, Computational Fluid
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Dynamics (CFD) has proved to be reliable for both building-scale models and relatively
small urban areas (i.e., within a few hundred meters, [15,16]) but too computing intensive
for larger domains [17,18]. Other authors, such as a Lauzet et al. [19], have highlighted that
the high computational needs of high-resolution urban climate models pose a significant
challenge in obtaining long-term datasets, therefore hindering their more widespread use
of urban models within building energy simulations.

Conducting on-site measurement campaigns is also one of the most widespread
practices towards improving urban climate knowledge [20,21]. They are still an essential
component of numerical model validation processes [22]. Regarding meteorological param-
eters, experimental data is primarily derived from urban networks consisting of multiple
sensors distributed across the city [23]. Several examples can be found in the literature for
cities all around the globe, such as in Athens [24], London [25,26], Sendai [27], Szeged [28],
Guangzhou [29], Kaohsiung [30], Guwahati [31], Augsburg [32], Nanjing [33,34], Rotter-
dam [35] or Berlin [36]. However, these urban networks are expensive to deploy and
maintain, thus their use is usually constrained in time and space, limiting their suitability
in long-term studies.

Other sources of experimental data might also present important drawbacks. Citizen
Weather Stations (CWS) have grown exponentially in recent years [37,38] and are being
used in a variety of ways, from studying the intra-urban temperature patterns [39] to com-
plementing weather forecasts [40]. However, they require sophisticated filtering techniques
and quality control procedures to manage their calibration bias, instrument errors and
representativeness issues [41,42]. Mobile measurements, another widely adopted practice
to study the spatial distribution of the UHI in detail, has expanded in recent years from
the traditional approach of car transects [43–45] to bicycle transects [46–49] or even drone
transects [50]. Despite their versatility, mobile measurements are very demanding in terms
of human resources and can hardly be used to obtain time series at a fine scale (i.e., hourly).
The latter is also one of the main drawbacks of remote sensing techniques, which depend
on the timing of the satellite overpass, and require post-processing to address the presence
of clouds and limited view angles [51].

1.1. Data-Driven Approaches for Modelling Outdoor Urban Temperatures

A widespread alternative technique for obtaining reliable and affordable long-term
datasets of urban air temperatures is the development of empirical models. These models
use pre-existing statistical correlations among available data to generate accurate projec-
tions without compromising their computational efficiency. Consequently, these data-
driven approaches represent bespoke alternatives to more complex numerical models.

Several algorithms can be used for this purpose. A widely used technique for mod-
elling urban temperatures is using Multiple Linear Regression (MLR), which has been
tested for both temporal [52–55] and spatial predictions [56–60]. However, the increasing
availability of machine learning and big data solutions is boosting the widespread use of
other algorithms which, although potentially harder to interpret, are likely to improve their
accuracy. Popular machine learning techniques include Support Vector Machines [61–64],
Random Forest [58,60,62,65,66], or Artificial Neural Networks (ANN).

ANN seem to stand as the most popular approach for modelling the hourly evolution
of outdoor urban temperatures. To the authors’ knowledge, Mihalakakou et al. [67] pre-
sented the first attempt to model the outdoor temperature at an urban site using ANNs.
They used the dry-bulb temperature data available from two existing meteorological sta-
tions in Athens: one located within the city (the target), and one at the outskirts (the
reference site). In a follow-up study, the model was adapted for other urban sites in the
same city, where they deployed a network of 23 temperature sensors across the city for
2 years [68,69].

In these early attempts to model urban temperatures using ANNs, the authors only
used the air temperature from the reference site as the input. However, other researchers
have explored the inclusion of additional predictors to increase model performance. The
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most common ones are meteorological parameters linked with the UHI formation. Kim
and Baik [70], for example, used the maximum UHI intensity of the previous day in Seoul
together with wind speed, cloud cover, and relative humidity. In London, Kolokotroni
et al. [71–73] used hourly air temperature, relative humidity, wind speed, cloud cover
and global solar radiation. More recently, in Ontario, Demirezen et al. [74,75] used the air
temperature, humidity, solar radiation, wind speed and wind direction. Other researchers
have also included a time reference as an input to better capture the hourly evolution of
urban temperatures. For example, Gobakis et al. [24] and Papantoniou and Kolokotsa [76]
used the date in conjunction with air temperature and global solar radiation. Similarly,
Heijden et al. [35] and Erdemir and Ayata [77] used the hour of the day together with other
meteorological parameters. Table 1 summarizes these and other ANN studies that focused
on outdoor urban temperatures and their modelling characteristics, such as the length of
their datasets.

Table 1. Previous studies using ANN to model the outdoor air temperature in urban areas, in chronological order.

Reference City, Country a Training and Testing Dataset
ANN Target b ANN Type

Initial Date Final Date Duration

Mihalakakou et al. [67] Athens, GR 1986 1995 10 years Temperature FNN

Santamouris et al. [69] Athens, GR Jun 1996
Jun 1997

Sep 1996
Sep 1997 8 months Temperature FNN

Kim and Baik [70] Seoul, KR 1973 1996 24 years UHI intensity FNN

Mihalakakou et al. [68,78] Athens, GR Jan 1996 Dec 1998 2 years UHI intensity FNN

Jang et al. [79] Québec 1, CA Jun 2000 Sep 2000 4 months Temperature FNN

Kolokotroni et al. [71–73] London, GB Jul 1999
2007

Sep 2000
2007 15 months Temperature FNN, CNN,

ENN

Zhao [80] Quinling 1, CN - - - Temperature FNN

Beccali et al. [81];
Cellura et al. [82] Palermo, IT - - - Temperature NNARX,

NNARMAX

Gobakis et al. [24] Athens, GR Apr 2009 May 2010 13 months Temperature FNN, CNN,
ENN

Shao et al. [83] Hangzhou, CN Jan 1995 Dec 1996 2 years Temperature FNN

Heijden et al. [35] Rotterdam, NL Apr 2011 Oct 2012 19 months UHI intensity FNN

Lee et al. [84] Seoul, KR Jan 2012 Dec 2012 1 year UHI intensity FNN

Papantoniou and
Kolokotsa [76]

Ancona, IT
Chania, GR
Granada, ES
Mollet, ES

Jan 3 Dec 3 1 year Temperature FNN, CNN,
ENN

Erdemir and Ayata [77] Istanbul 2, TR May 3 Sept 3 5 months Temperature FNN

Schuch et al. [85] Abu Dhabi, AE Mar 2016 Dec 2016 10 months Temperature FNN

Demirezen et al. [74,75] Ontario, CA Feb 2018 Nov 2018 9 months Temperature FNN

Han et al. [86] Cambridge, US Jan, 2019 Jun, 2019 6 months Temperature FNN, RNN
a ISO Country codes [87]. b Output of the ANN model, as declared or shown by the authors. 1 Extends further from the limits of the city,
covering the surrounding regional areas. 2 Includes other cities of the same country. 3 Year not specified.

In most of these studies, the modelling of outdoor urban air temperature time series
is addressed from a common perspective: using the temperatures collected during a
monitoring campaign at the urban level to train a Feed-forward Neural Network (FNN, a
relatively simple type of ANN). This modelling is usually performed using data from one
or several reference points, in many cases well-established meteorological observatories
providing detailed and robust information on a wide range of parameters. Although this
process is quite extended, it could be discussed whether other ANN topologies might
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be more suitable for this purpose. Cascade Neural Networks (CNN) or Elman Neural
Networks (ENN) have also been widely applied [24,72,76], the latter being simplified
versions of Recurrent Neural Networks (RNN). RNNs have proved to be very effective
when it comes to make forecasts, especially when Long Short-Term Memory (LSTM) is
used [88]. In that sense, the work of Han et al. [86] has recently demonstrated the superiority
of RNNs over FNNs for predicting outdoor urban temperatures.

However, it should be noted that the aim of most of these studies is not to make time
predictions or forecasts, but to model an urban time series from a preexisting one. In other
words, the purpose is to obtain an adapted version of a reference time series that already
exists, being this new time series representative of a certain urban area and covering the
exact same period as the data used as a reference. This simplifies the process by eliminating
the time dependence of the outputs, and which justifies working with simpler neural
networks, such as FNNs. In fact, and under this modelling scenario, Kolokotroni et al. [72]
did not find any improvement when comparing ENNs and CNNs with FNNs.

Although empirical models are site-specific (predictions are always made for a partic-
ular urban location), they can be used to extend the temporal coverage of urban monitoring
campaigns, thus potentially increasing their utility among other disciplines. And despite
FNN-based models are not suitable for future projections, they are certainly useful to adapt
historical records obtained outside the city to the reality of urban areas. However, there
is currently a knowledge gap with regard to the amount of input data potentially needed
to accurately model urban temperature time series using FNNs. Collecting experimental
data is very time-consuming and resource-intensive and, while it seems a common practice
to rely on one whole year of data for the training, there is no evidence that this should
be a minimum requirement. This study, therefore, aims to quantify the degree to which
the amount of input data needed to train FNNs can be reduced without sacrificing their
accuracy. We also explore the use of the UHI intensity as an alternative output of the FNN
models, instead of directly targeting the air temperature, to test the hypothesis that its
lower seasonality and direct association with the input variables might help reduce the
amount of required data for the training phase.

The present research is structured in three phases: first, we compared the perfor-
mance of more than 5000 different FNN configurations for modelling the outdoor urban
temperature (TEMP approach) and the UHI intensity (UHII approach) when trained with
12 months of data in the city of Madrid. An optimal configuration was then selected
and analysed further in-depth for both approaches, including their sensitivity to input
parameters. Finally, the amount of data provided during the training phase was reduced
from the initial 12 months to 9, 6 and 3 months to evaluate the capacity of these models to
continue producing accurate results with fewer input data.

2. Materials and Methods
2.1. Study Area: The City of Madrid

The present study focuses on the city of Madrid. Due to its size, location and climatic
conditions, Madrid is characterised by a strong UHI, with nighttime UHI intensities up
to 10 ◦C during calm and clear nights. During the last decades, this phenomenon has
been intensively studied in the city by means of on-site measurements [89–92], remote
sensing [93,94] and numerical models [95,96].

Between 2016 and 2019, a continuous monitoring campaign was carried out at 20
fixed urban sites with the aim to study the temporal patterns of the UHI in Madrid [97].
In the present study, we use part of that experimental data to define the outputs of our
ANN models. More specifically, we use the hourly, dry-bulb temperature gathered at the
city centre (Embajadores, see Figure 1), classified as compact midrise (LCZ 2) according to
the Local Climate Zones (LCZ) scheme [98], and which registered the highest mean and
nighttime UHI intensity. The data available for this study cover the period from July 2016
to September 2018 on an hourly basis (800 days or 19,200 h, in total).
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All sensors used in this monitoring campaign were protected from the rain and solar
radiation using a custom-made, mechanically ventilated radiation shield. They were
installed in the Urban Canopy Layer (UCL) at 5–6 m above the ground, following the
guidelines of the World Meteorological Organization (WMO) for urban sites [99,100]. The
location of each sensor was also studied in terms of its thermal source area [101]. In that
sense, the representativeness of each sensor was appraised in terms of its surroundings’
homogeneity [102,103].

Quality Control (QC) procedures were also applied, consisting of a plausible value
check, a time consistency check, and an internal-consistency check [104]. This analysis was
complemented by a spatial consistency check [105], which analysed whether the difference
between a measurement and its surroundings was too large compared to the average. For
the City Centre sensor, 126 records were flagged as suspect and just three as erroneous.
72 missing values were identified due to a recording failure between the 17th and the 20th
of October 2017. Both erroneous and missing values were left blank in the analysed dataset.
Further details about the monitoring campaign and QC procedures can be found in [97].

In addition to the experimental data collected at the city centre, records from the
nearby meteorological stations of Barajas Airport (LCZ D) and Ciudad Universitaria (LCZ
9) were used. Hourly values of dry bulb temperature, relative humidity, wind speed, wind
direction and precipitation were extracted from the former, while global solar radiation
was obtained from the latter. The data covered the same time period (July 2016–September
2018). Both stations are managed by the Spanish Meteorological Agency (AEMET), which
complies with the requirements established by the WMO Integrated Global Observing
System (WIGOS, [106,107]) regarding QC and sensor installation.

Three different types of datasets, the training, validation and the test datasets, were
created. The former were used to fit and evaluate different ANN model configurations.
Several training and validation datasets, which varied in length (12, 9, 6 and 3 months)
and the months that they covered, were created based on almost 15 months of monitoring
(July 2016–September 2017, 10,440 records/hourly measurements). All these datasets were
continuous over time, and they were distributed as 80% training and 20% validation.
These training and validation subsets were created by randomly sampling the data. This
prevented the potential accumulation of specific events in any of these datasets (e.g., certain
meteorological conditions), which could bias either the training or the validation of the
models. Additionally, a test dataset was created based on the second year of recorded data
(October 2017–September 2018, 8688 records/hourly measurements) to independently test
the models and assess their accuracy over an entirely different year.

2.2. Designing the ANNs

Feed-forward Neural Networks (FNN) were used in this study. Although FNNs
are at the baseline of supervised deep neural networks, their utility for modelling urban
temperatures has been widely demonstrated in previous studies (see Section 1.1). Figure 2
outlines the two different approaches, based on two different outputs, that were adopted in
this study to model urban temperatures. The first one consisted of directly targeting the air
temperature at the urban site, validating its outputs with the measurements previously
recorded at that location. This approach is aligned with the majority of similar studies
found in the literature, and it is referred in this study as the temperature approach (TEMP
approach). The second option aims at modelling the urban air temperature indirectly.
In this case, the model targets the UHI intensity instead, computed as the temperature
difference between the urban site (Embajadores) and the reference location (Barajas Airport,
∆TLCZ2, LCZD). The urban temperature is then derived indirectly by adding the airport
temperature to the output of the model. This will be referred to as the UHII approach from
this point onwards.
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The selection of the FNN model inputs of this study were informed by previous
studies in Table 1, which have identified the variables that have a strong correlation with
the formation of heat islands [109,110]. They consist of six meteorological variables: dry
bulb temperature (◦C), relative humidity (%), precipitation (mm), wind direction (degrees),
wind speed (m/s) and global solar radiation (J/m2). The time of the day was added
to these six input parameters, which was expected to reflect the daily variability of the
outputs, either the temperature or the UHI intensity. Cloud cover was not used as an input
parameter because the available frequency (one record every eight hours) was incompatible
with the hourly frequency for the outputs. The wind speed presented strong variations at
an hourly level and introduced strong oscillations in the prediction. Thus, to help avoid
abrupt changes in the output, a moving average (MA) filter was applied. The use of a MA
filter is a common pre-processing technique when it comes to modelling time series from
data with a high variability. Examples can be found in the field of urban traffic (applying a
MA to the car’s acceleration [111]), atmospheric pollution (MA applied to measured PM2.5
concentration [112]) or urban climate modelling [113], the latter using a MA of order 8 (i.e.,
8 h) to reduce the presence of wind gust peaks in the dataset prior feeding their model. In
this study, a MA of order 4 (4 h) was found to be sufficient to reduce the noise of the wind
speed while preserving the time series trend.

All the inputs were standardized prior the FNN feeding, meaning that all variables
were transformed in order to have a mean = 0 and a standard deviation = 1 [114,115]. A
diagram of the FNN structure for both approaches can be seen in Figure 3.
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2.3. Comparing and Evaluating the FNNs

Several FNN structures with different configurations were trained during the first
phase of this research. Hyperparameters, such as the number of neurons per hidden layer,
the activation functions, or the number of epochs, were thoroughly iterated in order to
find a common, optimal configuration for both the TEMP and the UHII approach. Despite
some of the tested activation functions are commonly applied for classification tasks
and were not likely to give the best performance (i.e., sigmoid-like functions), they were
included in the iterative process since preceding similar works made use of them [24,67]. To
streamline the process and reduce the complexity of the iteration, each subsequent hidden
layer adopted half the neurons of the previous one. All models initialized their weights
randomly and were initially trained using 12 months of data. Each configuration was
compared by iterating just one parameter (e.g., the activation functions) and leaving the
others fixed, while increasing the number of neurons per hidden layer. Those parameters
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that reached the best overall accuracy with the lowest number of neurons were selected.
After this iterative process 5478 FNNs were trained. Table 2 summarizes the parameters
used to test these configurations, as well as the ones that were finally selected. The task
outlined above was performed using Python and Keras, a deep-learning library based on
Tensorflow [116,117].

Once a common structure and configuration were defined, a comparative analysis of
these models was carried out. First, the contribution of each input to the model output
was assessed using a sensitivity analysis [114,118,119]. The 5th, 25th, 50th, 75th and 95th
percentiles were used to run the sensitivity analysis for each input, while fixing the rest on
their means. The time of the day was excluded from the sensitivity analysis and fixed at two
different moments: noon and midnight. Next, their overall accuracy was compared for the
TEMP and the UHII approach using several error metrics, such as the root mean squared
error (RMSE), the median absolute deviation (MAD) or the coefficient of determination (R2).
Modelled results were then plotted for three different weeks to visually assess whether
the modelling ability of any of these two approaches could be compromised under certain
scenarios. These corresponded to a week of high atmospheric stability (and thus, strong
UHI intensity), a week of high atmospheric instability (weak UHI intensity), and a week
under both of these conditions.

Table 2. Parameters used to train and evaluate different FNNs configurations. It includes the configuration that was finally
selected for both the temperature and the UHII approach.

Parameters Tested Selected

Number of hidden layers 1–5 2

Number of neurons Input layer 7 7

Hidden layers 1 3–85 18

Output layer 1 1

Activation functions Hidden layers Linear, ELU, SELU, ReLU, Sigmoid, Hard sigmoid, Hyperbolic tangent,
Exponential, Softmax, Softplus, Softsign ELU

Output layers Linear, ELU, SELU, ReLU, Sigmoid, Hard sigmoid, Hyperbolic tangent,
Exponential, Softmax, Softplus, Softsign Linear

Optimizer SGD, Adam, RMSProp, Adagrad, Adadelta, Nadam Adam

Epochs 100, 200, 500 200

Batch size 2, 5, 10 10

Dataset length 12 months 12 months 2

Train/Validation size 80%/20% 80%/20%
1 The value here presented corresponds to the number of neurons contained in the first hidden layer. Each subsequent hidden layer adopts
half of the value of the previous one. 2 Maximum length of the dataset. Results with shorter lengths are also presented (Table 4).

The last step of the evaluation process consisted of modifying the amount of data
provided to the neural networks during the training phase. To this end, FNN models for
both the TEMP and the UHII approach were trained using 12, 9, 6 and 3 months of data,
and were used to model the outdoor air temperatures for one complete year using the
test dataset. The accuracy was estimated, as in the previous cases, using common error
metrics. The loss of accuracy of the models trained with shorter datasets was addressed by
comparing their performance with the models trained on more data, obtaining a percentage
indicating the increase of error for each metric. In the case of models trained with just
3 months of data, the Mean Absolute Error (MAE) was estimated on a monthly basis to
further explore its distribution along one year of modelling.
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3. Results

A comparison between several FNN configurations is first shown in Figure 4. Each
graph represents the overall accuracy of a certain FNN when iterating just one of its
parameters, and while increasing the number of neurons in the hidden layers. From this
iterative process, a common, optimal FNN configuration for both the TEMP and the UHII
approach was established. The optimal structure was defined as a neural network with
seven inputs, two hidden layers of 18 and 9 neurons respectively, and one output. In that
sense, it was found that increasing from one to two hidden layers produced a significant
improvement in the models’ accuracy, while increasing the number of hidden layers further
did not. Similarly, moving from 100 to 200 epochs during the training phase could reduce
the error of the FNN, while the computational expense of using 500 epochs instead of 200
did not seem justified. This was particularly evident when having tens of neurons in the
hidden layers.
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obtained with the models derived from the TEMP and the UHII approach for the site Embajadores.
Three weeks were selected, each one representing a different atmospheric stability scenario. The
timeframe used to train these models extends from July 2016 to September 2017.

In some cases, due to the performance differences between the TEMP and the UHII
approach, a common ground had to be reached in terms of the optimal configuration.
That was the case of the activation functions, where the Stochastic Gradient Descent (SGD)
seemed to produce the best results for those FNNs modelling the UHI intensity, but it led
to exploding gradient problems when modelling the temperature. Thus, the Adaptive
Moment Estimation (Adam) optimiser was used instead, which performed optimally in
both scenarios. For the activation functions, a combination of the Exponential Linear Unit
(ELU) for the hidden layers and the linear function for the output layer was used.

Overall, UHII models presented fewer converging problems than TEMP models,
which seemed to have some difficulties with some activation functions and optimizers.
Furthermore, the UHII approach usually outperformed the TEMP approach. The former
did not only produce models with relatively smaller errors than the latter but required
fewer neurons per hidden layer to reach a similar accuracy. This behaviour might be
indicative of a clearer and more direct relationship between inputs and output, which in
the case of the UHII approach links parameters such as wind speed, precipitation, or solar
radiation with the UHI formation.

Differences between both modelling approaches also arise when looking at the inputs’
relevance. In that sense, the sensitivity analyses presented in Figures 5 and 6 seem to reveal
significant variations among them. The temperature from the reference site shifts from
being the most relevant parameter of the entire FNN (TEMP approach) to being one of
the least important (UHII approach). This is especially visible at night, when inter- and
intra-urban temperature differences are most pronounced. The other parameters, albeit
with different magnitude, seem to condition the outcome of both models in a similar way.
In that sense, wind speed and direction seem to be two highly influential parameters during
the night, while solar radiation and relative humidity seem to be key during the day.

Although the UHII approach appears to yield more balanced models, this apparent
advantage does not seem to have a significant impact on their outputs when trained with
12 months of data. In this scenario, reasonably good results, and with similar error patterns,
are obtained for both approaches. As it can be noted in Figure 7, modelled temperatures fit
satisfactorily with the measured temperatures at the urban site and under a wide variety of
circumstances, including different UHI scenarios: a rainy and windy week with generalised
low UHI intensities (<2 ◦C); a week with varying meteorological conditions, during which
a sudden weather change from calm to rainy was observed leading to a rapid change in the
UHI intensities; or a calm week with strong UHI intensities (>5 ◦C), probably reinforced
by temperature inversions. The greatest errors seem to accumulate on those nights when
unusual conditions occur, such as when very high UHI intensities, close to 10 ◦C, are
registered; or when the UHI intensity drops and rises abruptly, perhaps coinciding with
occasional and localised weather events, such as rainfalls. Overall, models produced
relatively smooth time series, without spikes or large variations from one hour to the
next one, despite not having a built-in temporal dependence between consecutive outputs.
Using a moving average for the wind speed seems to have contributed to reducing the
noise in the models’ output.
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Models targeting the UHI intensity got a slightly better score in the error metrics,
with a reduction of the error between 6.4 and 11.7% (see Table 3). RMSE was 1.09 ◦C
and 1.02 ◦C for the TEMP and the UHII approach, respectively. These results are in line
with previous studies, such as in Kim and Baik (RMSE = 1.18 ◦C, [70]) or Demirezen et al.
(RMSE = 1.29 ◦C, [75]), both modelling outdoor air temperature. The only exception is the
coefficient of determination, which is extraordinarily high when targeting the temperature
(R2 = 0.99). This is also in line with previous studies (e.g., [75,77]) and it is further addressed
in the discussion section.

Table 3. Metrics of the selected models targeting both the air temperature and the UHI intensity.
Both models were trained using 12 months of data (July 2016–September 2017). The two variables
regressed are modelled and monitored air temperatures.

Metrics
Model Targeting Error

VariationTemperature UHI Intensity

MAD Median Absolute Deviation (◦C) 0.60 0.53 −11.7%
MAE Mean Absolute Error (◦C) 0.81 0.74 −8.6%
RMSE Root Mean Squared Error (◦C) 1.09 1.02 −6.4%

R2 Coefficient of Determination 0.99 0.79 +20.2%

Shortening the Training Dataset

The results presented above correspond to FNN models trained with one year of
hourly data. So far, the TEMP and the UHII approach have proved to yield similar results.
When training models with less data, however, differences started to arise. Results show
that using 9 months instead of 12 months of data slightly increased the RMSE, with 0.9%
and 2.4% for the TEMP and the UHII approach, respectively. When using 6 months of
data the accuracy loss increased more markedly, especially in the case of the TEMP models
(11.7% vs. 6.2%). The error kept growing exponentially when using 3 months of data,
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although the tendency was more accentuated and led to significant differences between
both approaches (63.1% vs. 40.7%). A similar trend was observed for the MAE and MAD
metrics, which can be found in Table 4.

Table 4. Relative accuracy loss when reducing the size of the training dataset for both the TEMP and the UHII approach. The
number of months in each column establish the baseline of accuracy. The accuracy was obtained using the evaluation dataset.

TEMP Approach UHII Approach

RMSE RMSE

12 months 9 months 6 months 3 months 12 months 9 months 6 months 3 months
12 months 0.0% 0.0%
9 months 0.9% 0.0% 2.4% 0.0%
6 months 11.7% 10.6% 0.0% 6.2% 3.8% 0.0%
3 months 63.1% 61.6% 46.1% 0.0% 40.7% 37.5% 32.5% 0.0%

MAE MAE

12 months 9 months 6 months 3 months 12 months 9 months 6 months 3 months
12 months 0.0% 0.0%
9 months 3.2% 0.0% 4.8% 0.0%
6 months 14.0% 10.4% 0.0% 8.9% 4.0% 0.0%
3 months 66.1% 60.9% 45.7% 0.0% 40.0% 33.7% 28.5% 0.0%

MAD MAD

12 months 9 months 6 months 3 months 12 months 9 months 6 months 3 months
12 months 0.0% 0.0%
9 months 7.6% 0.0% 10.6% 0.0%
6 months 17.7% 9.4% 0.0% 14.5% 3.5% 0.0%
3 months 70.7% 58.7% 45.0% 0.0% 42.7% 29.0% 24.6% 0.0%

These results are the average error yielded by several models trained with shortened
datasets and are relative to the accuracy of the models trained with 12 months of data.
Figure 8 presents the models’ accuracy absolute levels, including the accuracy of all models
trained with each shortened dataset. As already noted, differences arise not only when
reducing the training datasets, but also when changing from one approach to another. The
large variability of error between the models trained with 3 months of data is noticeable,
being more accentuated in the case of the TEMP approach. It seems that, depending on
the data used during training, it is possible to obtain models with an acceptable overall
accuracy (RMSE < 1.5 ◦C, in line with previously developed models) to others that it is not
clear that they could be used to make a reasonable modelling (RMSE > 2 ◦C).

Yet, these results represent the average cumulative error over a year. A more detailed
analysis of the accuracy of the models showed that their error is unevenly distributed over
the months, losing accuracy outside the months for which they were trained. It was also
observed that their results do not suffer excessively within the months for which they were
trained, being comparable with models trained on more data. In that sense, Figure 9 shows
the additional error yielded by models trained with only 3 months of data. For convenience
purposes, these months were made coincident with the seasons of the year, and a model
trained with all 12 months of data was used as a reference.
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The results show that the models systematically tend to minimise their error within
their season, with the RMSE gradually increasing as they move away from it. This is
accentuated for models trained in winter and summer. The reason behind this could lie in
the annual cyclical behaviour of temperatures: between solstices and equinoxes, temper-
atures remain at one extreme of the annual cycle, either at the high end of temperatures
(summer) or at the low end (winter). Between the equinoxes and solstices (spring and
autumn), though, the transition between the two extremes takes place. This could favour
the training of the ANN, as it would extend pattern recognition to practically the entire
annual temperature range, and where only the extremes would be at the expense of the
neural network’s ability to generalise and extrapolate its modelling capacity beyond what
is known during its training.

This dynamic is noticeable in the case of the UHII approach as well, although it seems
to be rather less pronounced. As it was pointed out in the introduction, Madrid’s UHI
does not seem to follow a seasonal pattern, which means it might reach its highest and
lowest UHII intensities at any time during the year (see Figure A1). However, these UHI
peaks depend on the meteorological conditions, thus the loss of accuracy registered by
these UHII models seems to be likely related to the concentration of certain meteorological
conditions during the training phase. In other words, these FNNs would have difficulties
in refining the modelling if, within the three months of data used to train them, there is
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not a sufficiently large record of the different meteorological conditions that favour the
occurrence of UHI.

The performance differences between the TEMP and the UHII approach are now
clearly noticeable when plotting the data. In this respect, Figure 10 shows how the results
of a TEMP model trained from May to August would produce quite precise results for June
of the next year, like the ones obtained by models trained with 12 months of data. However,
when trying to obtain the temperature profile in February, that same model barely captures
the global trend. In that scenario, the UHII model, trained with the same three months of
data, was able to fit to observed values with higher accuracy. It accumulated the error at
the same moment as the models trained with 12 months of data, in many cases amplifying
it. Despite the unusual distribution of temperatures and UHI intensities for that week,
the UHII model was able to capture most of it, which turned to be surprising due to the
relatively low amount of data used for its training.
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4. Discussion

The results of this research point towards the potential reduction of the training
datasets without having a significant loss of accuracy. This could facilitate the work
of urban climate researchers, thus promoting the development of shorter and simpler



Sustainability 2021, 13, 8143 16 of 23

monitoring campaigns. This does not mean that it is preferable to use smaller amounts of
data to train ANN models, but that their accuracy might not be compromised when they
are trained in this manner. Although using large amounts of high-quality data is always
desirable, in some cases it is not possible due to varying circumstances, such as budget
constraints or human resources limitations. In this context, knowing where the accuracy
limits of the models are when trained with fewer data might help researchers explore their
experimental data or design new measurement campaigns in an efficient manner.

In this study we propose the use of empirical, FNN-based models to extend the tempo-
ral coverage of urban monitoring campaigns. These models, although limited for carrying
out temporal predictions into the future, they can be used to adjust long-term records
gathered outside the city to the urban context. This approach, the generation of long-term
datasets by looking backwards, might be potentially useful in many disciplines, including
the generation of site-specific weather files for building energy modelling [120–123], the
downscaling of heat-related epidemiological studies to evaluate the effect of urban tem-
peratures in health [4,124–127], or the identification and characterization of energy poor
households in urban environments [128–132].

It is worth noting that the use of UHI intensity instead of outdoor temperature as the
output of the FNN models yielded significantly better results mainly when reducing the
size of the training dataset. The accuracy improvement was limited when using 9 or more
months of data during the training phase. The benefits of targeting the UHI intensity with
the FNN model are, therefore, linked to the potential of using smaller datasets to model
outdoor urban temperatures. However, using the UHI intensity instead of the temperature
as the output, sustained on the lower seasonality of the former, could be arguable. ANN
are universal function approximators [133] and, for that reason, using one parameter or
the other should not produce significant differences. Although this was mathematically
demonstrated, Curry [134] showed that to model the seasonality of a time series with
FNN would require a very large structure. This structure would grow exponentially when
increasing the length of the dataset, since more turning points are likely to appear. In fact,
Zhang and Qi [135] recommended not only to deseasonalize the time series, but also to
remove its trend (if any). Nowadays, pre-processing the dataset to make it stationary
before feeding the ANN is a very extended practice and has demonstrated to be very
effective with RNN as well [88,136]. This approach might be helpful in the future for
other studies such as Han et al. [86], where the UHI intensity could be used instead of
the outdoor air temperature to remove much of the seasonality from their temperature
forecasts. However, it is unclear whether they could be extended to FNNs that use a
reference site for modelling outdoor urban temperatures without any time dependence.
Other reasons, such as the range of temperatures or the concentration of meteorological
stability of the training dataset, might explain the varying accuracy results between the
TEMP and the UHII approach when training these types of models, especially when using
just 3 months of training data.

In line with the latter, it seems that the selection of days with different meteorological
conditions and at different times of the year might be more relevant for the modelling
than the continuity of the monitoring campaign. Thus, it may be more appropriate that
future studies work with shorter, discontinuous monitoring campaigns covering a wider
range of meteorological situations rather than a single, continuous-over-time campaign
that might concentrate in a specific time of the year. Results may also support the use of
data from sources whose long-term continuity may be compromised (i.e., CWS). In these
cases, it would be relevant not only to apply filtering techniques to reduce the risks of
introducing outliers, but also to carry out frequency distribution analyses to ensure that all
meteorological conditions are being included into the modelling.

Some attention should be drawn to the pertinence of using certain error metrics.
Despite being very extended (e.g., [75–77]), the use of R2 as a performance indicator could
be misleading [137,138]. As it can be seen in Equation (1), R2 relies both on the size of the
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residuals (SSres, the actual deviation of the prediction from the observed values) and the
total variance of the dependent variable (SStot):

R2 = 1 − ∑(yi − ŷi)
2

∑(yi − yi)
2 = 1 − SSres

SStot
(1)

Thus, obtaining a higher R2 does not implicitly mean having less error (numerator),
but might be the result of a higher variance of the output (denominator). This was observed
in this study when comparing the two approaches. In the case of the TEMP approach,
the variance of the output temperature (which ranges from −2 to 41 ◦C) is much higher
that the variance of the UHI intensity (ranging from 0 to 8 ◦C). Furthermore, since the
TEMP approach contains an input variable (airport temperature) that explains most of the
variance of the output variable (urban temperature), the R2 tends to be extremely high
(R2 > 0.99). This explains why significantly lower R2 were obtained when using the UHII
approach in spite of yielding better results with the rest of the performance indicators
(RMSE, MAE, MAD).

Taking the above into consideration, it would be worthwhile to investigate whether
the behaviour of the TEMP and the UHII models presented in this paper is only attributable
to the case of Madrid or if, on the contrary, it might be common in other cities at different
latitudes and climatic conditions. Some existing studies have identified strong seasonal
differences in UHI intensities in other cities [139–142], while others have not found such
differences [143–145]. In this respect, a strong annual seasonality of the UHI intensity
would probably limit the capacity of the models to produce accurate results when trained
with small datasets. On the contrary, in cities where air temperatures remain within a
narrow range throughout the year, such as tropical regions, the TEMP approach might
perform better.

5. Conclusions

Feed-forward neural networks were used in this study to model urban temperature
time series from experimental data. The aim was to explore the reliability of these models
in the context of low data availability, as well as the potential benefits from targeting the
UHI intensity with these models. Results showed that, for the case study of Madrid, the
training dataset could be reduced to 9 or even 6 months without compromising too much
the accuracy of the FNN models, particularly when using the UHII approach (2.4% and
6.2% increase in RMSE, respectively).

Results showed that the UHII approach generally outperformed the TEMP approach.
Overall, UHII models converged to lower error ratios with a smaller number of neurons,
proving to be more effective at predicting the urban temperature of a reference site. When
using the exact same configuration and structure, UHII models exhibited a significant
increase in performance. TEMP models appeared to be quite seasonally dependent, thus
facing more problems for modelling temperatures outside the training months. This was
particularly relevant when trained on just 3 months of data, when the accuracy differences
between UHII and TEMP models was at their highest. We argue that this could be related to
the annual cyclical behaviour of temperatures. Targeting the UHI intensity with the FNNs
instead, which in Madrid has shown to be almost stationary, seems to reduce uncertainty
when modelling temperatures from a relatively small dataset.

The potential use of smaller datasets for training FNNs and still obtaining reliable
results might benefit urban climate researchers since field measurements could be reduced
in time and costs. Researchers might also take advantage of the accurate preliminary results
that can be generated with relatively small datasets for speeding up their research, or for
extending their measurements to other urban areas.
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