
Decentralised Tracking Control for a Class of Nonlinear Interconnected
Systems Using Sliding Mode Techniques*

Yueheng Ding1, Xinggang Yan1, Zehui Mao2 and Sarah K. Spurgeon3

Abstract— This paper proposes a decentralised tracking con-
trol scheme for a class of nonlinear interconnected systems using
sliding mode techniques. The desired output signals are time-
varying. Both matched uncertainty and mismatched unknown
interconnections are considered. Using geometric transforma-
tion, the considered system is transferred to a system with a
unique structure to facilitate both the design of the sliding
surface and the decentralised controllers. The sliding surface
is designed based on the tracking error. A set of conditions
are proposed to guarantee that when sliding motion occurs, the
tracking errors converge to zero asymptotically while the system
states are bounded. Decentralised controllers are then designed
so that the interconnected systems’ states can be driven to
the designed sliding surface. Finally, simulation of a coupled
inverted pendulum system demonstrates the results.

I. INTRODUCTION

With the advancement of technology comes a need to deal
with more complex systems, which may be large-scale, to
meet practical engineering requirements. Large-scale systems
are usually composed of a set of dynamical subsystems
which may be distributed over space. The communications
between different subsystems may become difficult or ex-
pensive due to the transfer of data over large distances. In
particular, when the data transformation paths connecting
various subsystems are broken or blocked, some data may be
lost or, in the worst case, no data from the other systems may
be available at all. Centralised control will not work in this
case. Conversely, decentralised control needs local informa-
tion only, and it does not require any of the other subsystems’
state information. Thus it provides a practical approach for
the control of large-scale interconnected systems.

During the past few decades, many results have been
obtained for interconnected systems. A fuzzy controller
based on a reduced observer is designed for interconnected
descriptor systems using integral sliding mode control in
[7]. Mahmoud proposed a decentralised control strategy
for interconnected time-delay systems in [10] where the
considered system is linear. The finite-time control problem
is investigated for nonlinear interconnected systems with
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dead-zone input in [4], and robust controllers are designed
for an interconnected multimachine power system using
output feedback sliding mode control in [17]. A decentralised
control scheme is proposed for fully nonlinear interconnected
system with time delay in [16]. It should be noted that
most of these results are focused on stabilisation using
either state feedback or output feedback. Compared with
the stabilisation problem, the results for tracking control are
limited, particularly for the case of large scale nonlinear
interconnected systems.

The tracking problem is an important topic in control
engineering. Most work related to tracking control is focused
on centralised control (see, e.g. [8], [1], [15]). Tracking
control for interconnected systems has been studied in [12],
[13] where the isolated subsystems are assumed to be lin-
ear. Narendra and Zhang studied a class of interconnected
systems in [11] where the considered systems are linear,
and model reference tracking control is considered. Tracking
control for interconnected systems is considered in [9] using
integral reinforcement learning. However, it is required that
the interconnection terms are matched. Also, Han and Yan
propose an observer-based adaptive tracking control of large-
scale stochastic nonlinear systems in [2] which increases
the dimension of the closed-loop system and thus will
increase the computational load required for implementation.
This wrk considers both matched and mismatched terms.
In most of the existing results considering tracking control
for interconnected systems, the developed results are not
decentralised and hence not convenient for parctical imple-
mentation. Sliding mode control is a popular method due to
its high robustness and this has been widely applied to deal
with tracking problems (see, e.g. [18], [3], [19]). However,
the results on decentralised tracking control using sliding
mode techniques for nonlinear interconnected systems are
not available when the desired signal is time-varying. Fur-
thermore, compared with adaptive control approaches, there
are fewer restrictions on the uncertainty bound when using
sliding mode control which means the bound is allowed to
be an arbitrary function and not only a constant.

In this paper, a class of nonlinear interconnected systems
is considered where both the matched uncertainty in the iso-
lated subsystem and the mismatched unknown interconnec-
tions are considered. A nonlinear coordinate transformation
is introduced to transfer the nominal isolated subsystem to
the required form, facilitating the system analysis and control
design. The sliding surface is designed based on the tracking
errors, and sliding mode stability is achieved. A decentralised
sliding mode control is designed to drive the nonlinear



interconnected system to the designed sliding surface in finite
time. Finally, the results obtained are applied to a coupled
inverted pendulum system, and simulation shows that the
method proposed in this paper is effective.

II. SYSTEM DESCRIPTION AND BASIC
ASSUMPTIONS

Consider a nonlinear large-scale system formed by N
interconnected subsystems as follows:

ẋi = fi(xi)+gi(xi)(ui +ϕi(xi))+ pi(xi)ψi(x)

yi = hi(xi) i = 1,2, ...,N
(1)

where x = col(x1,x2, ...,xN) ∈ Π, xi ∈ Πi ⊂ Rni , ui ∈ R and
yi ∈ R are the states, input and output of the ith subsystem
respectively, Πi are neighbourhoods of the origin and Π :=
Π1× ...×ΠN ∈ R∑

N
i=1 ni . The terms ϕi(xi) ∈ R are matched

uncertainties and pi(xi)ψi(x) ∈ Rni represent unknown inter-
connections of the ith subsystem for i = 1,2, . . . ,N. All of
the nonlinear functions are assumed to be continuous in their
arguments to guarantee the existence and uniqueness of the
system solutions.

In this paper, the local case will be considered, and the
considered domain may not be specified unless necessary.

The objective of this paper is, for a given ideal output
signal yid(t), to design a decentralised control such that the
output yi(t) of the controlled system (1) can track the ideal
signal yid(t), i.e.

lim
t→∞
|yi(t)− yid(t)|= 0; i = 1,2, ...,N (2)

while all the state variables of system (1) are bounded. To
deal with the tracking problem stated above, some assump-
tions on the considered system (1) are required.
Assumption 1. There exist known continuous functions
ρi(xi) defined in domain Πi and positive constants Mi such
that for xi ∈Πi with i = 1,2, ...,N.

(i). |ϕi(xi)| ≤ ρi(xi). (ii). |ψi(x)| ≤Mi.
Remark 1. Assumption 1 implies that all of the uncertainties
in the system (1) are required to be bounded, and the bounds
are known. The bounds on the uncertainties will be used to
design a decentralised control to cancel the effects of the
corresponding uncertainties.
Assumption 2. For system (1), the triple ( fi,gi,hi) has
an uniform relative degree ra

i in the domain Πi, the triple
( fi, pi,hi) has an uniform relative degree rb

i in the domain Πi,
and ra

i = rb
i for i= 1,2, . . . ,N. Furthermore, both distributions

generated by the column vectors of function matrices gi(xi)
and pi(xi) respectively, are involutive in the domain Πi for
i = 1,2, . . . ,n.
Remark 2. The definition of a uniform relative degree above
is available in [5]. The uniform relative degree implies that,
for any point xi ∈Πi, the system has the same relative degree,
which means the relative degree is independent of xi ∈ Πi.
For further discussion about the relative degree, see [5].
Assumption 3. The desired output signals yid(t) and their
time derivatives up to the ra

i -th order are smooth, known
and bounded for all t ∈ [0,∞).

Remark 3. Assumption 3 requires that the ideal output
signals yid(t) are differentiable for a sufficient number of
times. This assumption is quite standard and can be satisfied
in most cases in reality.

III. SYSTEM STRUCTURE ANALYSIS

Consider the nonlinear interconnected system in (1).
Under Assumption 2, it follows from [5] that there ex-
ist diffeomorphisms zi = Ti(xi) defined in Πi with z :=
col(z1,z2, · · · ,zN), described by

xi,1
· · ·

xi,ra
i
· · ·
xi,ni

 zi=Ti(xi)−−−−−→


zi,1
· · ·
zi,ra

i
· · ·
zi,ni

=:


ξi,1
· · ·

ξi,ra
i
· · ·

ηi,ni

 (3)

and the feedback transformation

ui = ϖ
−1
i (xi)(−ςi(xi)+ vi(t)) (4)

where vi(t) is the new controller to be designed later. The
ςi(xi) and ϖi(xi) are defined by

ςi(xi) = Lra
i
fi

hi(xi), ϖi(xi) = LgiL
ra
i −1
fi

hi(xi) (5)

and after a coordinate transformation zi = Ti(xi):
αi(zi) = ςi(xi)|xi=T−1

i (zi)
, βi(zi) = ϖi(xi)|xi=T−1

i (zi)

Here, the notation LgiL
ra
i −1
fi

hi(xi) denotes the Lie derivative
defined in [5]. The new variables ξi := col(ξi,1,ξi,2, · · · ,ξi,ra

i
)

and ηi := col(ηi,(ra
i +1), · · · ,ηi,ni) are introduced for ease of

exposition.
Under the diffeomorphism (3) and the feedback transfor-

mation (4), it follows from [5] that in the new coordinates,
the system (1) can be described by

ξ̇i,1 = ξi,2

...

ξ̇i,(ra
i −1) = ξi,ra

i

ξ̇i,ra
i
= vi(t)+βi(zi)τi(zi)+ γi(zi)δi(z)

η̇i,(ra
i +1) = qi,(ra

i +1)(zi)+Γi,(ra
i +1)δi(z)

...

η̇i,ni = qi,ni(zi)+Γi,niδi(z)

(6)

where zi := col(ξi,ηi), and z = col(z1,z2, · · · ,zN), and

τi(zi) = [ϕi(xi)]|xi=T−1
i (zi)

(7)

γi(zi) = LpiL
rb
i −1
fi

hi(T−1
i (zi)) (8)

δi(z) = [ψi(x)]|x=T−1(z) (9)

The system can be expressed in a compact form as

ξ̇i = Aiξi +Bi[vi +βi(zi)τi(zi)+ γi(zi)δi(z)]

η̇i = qi(ξi,ηi)+Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN)

yi =Ciξi i = 1,2, ...,N

(10)



where zi = col(ξi,ηi) with ξi ∈ Rra
i and ηi ∈ R(ni−ra

i ), the
triple (Ai,Bi,Ci) with appropriate dimensions has a standard
Brunovsky form as follows:

Ai =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 , Bi =


0
0
...
0
1

 (11)

Ci =
[

1 0 0 . . . 0
]

(12)

qi(ξi,ηi) and Γi(ξi,ηi) are the last ni−ra
i rows of the vectors[

∂Ti

∂xi
fi(xi)

]
xi=T−1

i (zi)

and
[

∂Ti

∂xi
pi(xi)

]
xi=T−1

i (zi)

respectively.
From (10), it is clear to see that in this paper it is

not required that the nominal subsystem of system (1) is
feedback linearizable.
Remark 4. If the relative degree ra

i = ni, then the system (10)
will become

ξ̇i,1 = ξi,2

...

ξ̇i,(ni−1) = ξi,ni

ξ̇i,ni = vi(t)+βi(zi)τi(zi)+ γi(zi)δi(z)

yi = ξi,1

(13)

In this case the nominal isolated subsystem of the intercon-
nected system (10) is completely feedback linearizable and
thus the nonlinear part relating to the dynamics of variables
ηi in system (10) disappears.

IV. SLIDING MODE BASED OUTPUT TRACKING
CONTROL DESIGN

The main results are now presented.

A. Sliding Surface Design

Consider the desired output signal yid(t) satisfying As-
sumption 3. Then for system (10), the output tracking error
ei is defined by:

ei = yi(t)− yid(t) i = 1,2, ...,N (14)

The following sliding function is considered:

Si(·) = e(r
a
i −1)

i +ai,1e(r
a
i −2)

i + ...+ai,(ra
i −2)e

(1)
i +ai,(ra

i −1)e
(0)
i

(15)

where ai,1,ai,2, ...,ai,(ra
i −1) are a set of design parameters

which is chosen such that the polynomials

λ
ra
i −1 +ai,1λ

ra
i −2 + ...+ai,(ra

i −2)λ +ai,(ra
i −1) (16)

are Hurwitz stable for i = 1,2, . . . ,N. The corresponding
sliding surface can be described by

∑
i

: {S = col(S1,S2, · · · ,SN) | Si = 0, i = 1,2, ...,N} (17)

where Si is defined in (15) above. From the design above, it
is clear to see that

lim
t→∞

ei(t) = 0

when Si = 0. This implies that when sliding motion occurs,

lim
t→∞
|yi(t)− yid(t)|= lim

t→∞
ei(t) = 0 (18)

i.e. the output yi(t) of system (1) tracks the ideal signal yid(t)
asymptotically for i= 1,2, . . . ,N. The following result is now
ready to be presented:

Theorem 1: Consider the interconnected system (10). Un-
der Assumption 3, when the system(10) is limited to moving
on the sliding surface (17),

i) lim
t→∞
|yi(t)− yid(t)|= lim

t→∞
|ei(t)|= 0,

ii) the states ξi in system (10) are bounded
for i = 1,2, ...,N.

Proof: i). This result has been shown above in (18). It
remains to show that the result ii) holds.

ii). When the system (10) is constrained to the sliding
surface, it follows that: Si = 0, i.e.

Si = e(r
a
i −1)

i +ai,1e(r
a
i −2)

i + ...+ai,(ra
i −2)e

(1)
i +ai,(ra

i −1)e
(0)
i = 0

e(r
a
i −1)

i =−ai,1e(r
a
i −2)

i − ...−ai,(ra
i −2)e

(1)
i −ai,(ra

i −1)e
(0)
i

Consider the error system as follows and let: ei,1 , e(0)i . Then,

ėi,1 = e(1)i , ei,2

...

ėi,(ra
i −2) = e(r

a
i −2)

i , ei,(ra
i −1)

ėi,(ra
i −1) =−ai,1ei,(ra

i −1)− ...−ai,(ra
i −2)ei,2−ai,(ra

i −1)ei,1

The system above can be rewritten in the following compact
form:

ėi =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1

−ai,(ra
i −1) −ai,(ra

i −2) −ai,(ra
i −3) . . . −ai,1


︸ ︷︷ ︸

Ei

ei

where the error system matrix Ei is in the controllable
canonical form and its last row ai,1,ai,2, ...,ai,(ra

i −1) forms
a Hurwitz polynomial. Therefore, the error system is stable
and, lim

t→∞
ei(t) = 0 which implies that

lim
t→∞

∥∥∥∥∥∥∥∥∥
ξi,1− y(0)id
· · ·

ξi,(ra
i −1)− y(r

a
i −2)

id

ξi,ra
i
− y(r

a
i −1)

id

∥∥∥∥∥∥∥∥∥= 0

Further, from Assumption 3, the desired output signal yid(t)
and its derivative: y(1)id ,y(2)id , ...,y(r

a
i )

id are bounded for all t ∈
[0,∞]. It follows that the state variables ξi in system (10) are
bounded when limited to moving on the sliding surface (17).
Hence the result follows.



B. Decentralised Sliding Mode Controller Design

For system (10), the following control law is proposed:

vi =−Ṡi + y(r
a
i )

i −K(zi)sgn(Si), i = 1,2, ...,N (19)

where the function K(zi) is the feedback gain to be designed
later, Si(·) is given in (15) and sgn(·) is the sign function.
The closed-loop system obtained by applying the control law
(19) into system (10) can be described by:

ξ̇i = Aiξi +Bi[−Ṡi + y(r
a
i )

i −K(zi)sgn(Si)

+βi(zi)τi(zi)+ γi(zi)δi(z)] (20)
η̇i = qi(ξi,ηi)+Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN) (21)
yi = Ciξi i = 1,2, ...,N (22)

With the special structure of the triple (Ai,Bi,Ci) in (10), it
follows that

yi = ξi,1

...

y(r
a
i −1)

i = ξi,ra
i

y(r
a
i )

i = ˙ξi,ra
i
=−Ṡi + y(r

a
i )

i −K(zi)sgn(Si)

+βi(zi)τi(zi)+ γi(zi)δi(z)

(23)

Since z = T (x) is a diffeomorphism, from Assumption 1 and
the definition of τi(zi) and δi(z) in (7) and (9) respectively,
it follows that there is a neighbourhood of the origin such
that

|τi(zi)| ≤ ρ
′
i (zi), |δi(z)| ≤M′i (24)

From the last equation in (23),

Ṡi =−K(zi)sgn(Si)+βi(zi)τi(zi)+ γi(zi)δi(z) (25)

Then, from (24) and (25),

S>Ṡ =
N

∑
i=1

SiṠi

=
N

∑
i=1

(
−K(zi)|Si|+βi(zi)τi(zi)Si + γi(zi)δi(z)Si

)
≤

N

∑
i=1

(
−K(zi)|Si|+ ‖ βi(zi) ‖ ρ

′
i (zi)|Si|+ ‖ γi(zi) ‖M′i · |Si|

)
=

N

∑
i=1

(
−K(zi)+ ‖ βi(zi) ‖ ρ

′
i (zi)+ ‖ γi(zi) ‖M′i

)
|Si|

(26)

Therefore, choosing a suitable gain:

K(zi)>‖ βi(zi) ‖ ρ
′
i (zi)+ ‖ γi(zi) ‖M′i +σi (27)

where σi is a positive constant, it follows from (26) and (27)
that

S>Ṡ <−σ

N

∑
i=1
|Si| ≤ −σN−1/2‖S‖ (28)

where σ := mini{σi} > 0. This means that the reachability
condition holds for the closed-loop interconnected system
(20)-(21). Hence the following result is obtained immedi-
ately.

Theorem 2: The interconnected system (10) is driven to
the sliding surface (15) in finite time by the controller (19)
if the control gain K(zi) in (19) satisfies (27).

Remark 6. Based on the analysis above and from the
feedback transformation (19), it follows that the decentralised
controller

ui = ϖ
−1
i (xi)(−ςi(xi)− Ṡi + y(r

a
i )

i −K′(xi)sgn(Si)) (29)

where K′(xi) = K(zi)|zi=Ti(xi), can drive the system (1) to the
corresponding sliding surface in finite time.

C. The Boundedness of System States

In this subsection, the boundedness of the closed-loop
system (20)-(21) is considered. The following assumption
is first introduced:
Assumption 4. The functions qi(ξi,ηi) in system
(20)-(21) satisfy the Lipschitz condition with the
Lipschitz constants Lqi uniformly for ηi in the considered
domain. Moreover, there exists a Lyapunov function Vi0(ηi)
such that:

χi1 ‖ ηi ‖2≤Vi0(ηi)≤ χi2 ‖ ηi ‖2

∂Vi0

∂ηi
qi(0,ηi)≤−χi3 ‖ ηi ‖2;

∥∥∥∥∂Vi0

∂ηi

∥∥∥∥≤ χi4 ‖ ηi ‖
(30)

where χi1,χi2,χi3 and χi4 are positive constants for i =
1,2, · · · ,N.
Assumption 5. There exist constants κ1 j and κ2 j such that:

‖Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN) ‖≤
N

∑
j=1

(κ1 j ‖ ξ j ‖+κ2 j ‖η j ‖)

(31)
Theorem 3: Under Assumptions 3-5, the states of the

closed-loop system (20)-(21) are bounded if the matrix
W T +W is positive definite where the matrix W is defined
by

W :=


χ13−χ14κ21 −χ14κ22 . . . −χ14κ2N
−χ24κ21 χ23−χ24κ22 . . . −χ24κ2N

...
...

. . .
−χN4κ21 −χN4κ22 . . . χN3−χN4κ2N


(32)

where χi j and κl j satisfy the Assumptions 4 and 5.
Proof: From Theorem 1, it follows that the variables

ξi = col(ξi1,ξi2, ...,ξira
i
) with i = 1,2, . . . ,N are bounded

when sliding motion occurs if Assumption 3 holds. Theorem
2 shows that the interconnected system can be driven to
the sliding surface in finite time. From Theorems 1 and
2, it follows that the variables ξi = col(ξi1,ξi2, ...,ξira

i
) with

i = 1,2, . . . ,N are bounded. Therefore, there exist constants
Ci > 0 such that in the considered domain,

‖ ξi ‖ ≤Ci, i = 1,2, ...,N (33)

It remains to prove that ηi is bounded in the closed-loop
system (20)-(21).

It should be noted that from (33), the variables ξi in the
system (21) are bounded and can be considered as parameters



defined in a compact set. For this system, consider the
candidate Lyapunov function:

V (η1,η2, ...,ηN) =
N

∑
i=1

Vi0(ηi)

where Vi0(ηi) is defined in Assumption 4. Then, the time
derivative of the Lyapunov function V (·) along the trajecto-
ries of system (20)-(21) is given by

V̇ (η1,η2, ...,ηN)

=
N

∑
i=1

∂Vi0(ηi)

∂ηi
[qi(ξi,ηi)+Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN)]

=
N

∑
i=1

[
∂Vi0(ηi)

∂ηi
qi(0,ηi)+

∂Vi0(ηi)

∂ηi
(qi(ξi,ηi)−qi(0,ηi))]

+
N

∑
i=1

∂Vi0(ηi)

∂ηi
[Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN)]

(34)
Further, from (35) and Assumptions 4 and 5,

V̇ (η1,η2, ...,ηN)

≤
N

∑
i=1

(−χi3 ‖ ηi ‖2 + χi4LqiCi ‖ ηi ‖

+ ‖ ∂Vi0(ηi)

∂ηi
‖‖ Γi(ξi,ηi)δi(ξ1,η1, ...,ξN ,ηN) ‖)

≤
N

∑
i=1

(−χi3 ‖ ηi ‖2 + χi4LqiCi ‖ ηi ‖

+χi4 ‖ ηi ‖
N

∑
j=1

(κ1 j ‖ ξ j ‖+κ2 j ‖ η j ‖))

≤
N

∑
i=1

(−χi3 ‖ ηi ‖2 + χi4LqiCi ‖ ηi ‖+
N

∑
j=1

χi4κ1 jCi ‖ ηi ‖

+
N

∑
j=1

χi4κ2 j ‖ ηi ‖‖ η j ‖)

=−(
N

∑
i=1

χi3 ‖ ηi ‖2 −
N

∑
i=1

N

∑
j=1

χi4κ2 j ‖ ηi ‖‖ η j ‖

−
N

∑
i=1

N

∑
j=1

χi4Ci(Lqi +κ1 j) ‖ ηi ‖)

=−1
2
(
‖ η1 ‖, ...,‖ ηN ‖

)
(W +W T )

 ‖ η1 ‖
· · ·
‖ ηN ‖


+

N

∑
i=1

N

∑
j=1

χi4Ci(Lqi +κ1 j) ‖ ηi ‖

≤ −1
2

λmin(W +W T )‖η‖2 +
N

∑
i=1

N

∑
j=1

χi4Ci(Lqi +κ1 j) ‖ ηi ‖

=−1
2

N

∑
i=1

{
λmin(W +W T )‖ηi‖−

N

∑
j=1

χi4Ci(Lqi +κ1 j)
}
‖ηi‖

≤ 0
(35)

where ‖η‖ := ‖(‖ η1 ‖,‖ η2 ‖ , ..., ‖ ηN ‖)T‖, if

‖ηi‖ ≥
∑

N
j=1 χi4Ci(Lqi +κ1 j)

λmin(W )

From Theorem 4.18 in [6], it follows that the variables ηi
are bounded for i = 1,2, . . . ,N. Hence the results follow.

V. SIMULATION EXAMPLE

Consider two inverted pendulums connected by a spring
[14]. Each pendulum is controlled by a torque input ui
applied by a servomotor at its base. It is assumed that
both θi and θ̇i represent the angular position and velocity
respectively which are available for the ith controller for i =
1,2. The model which describes the motion of the pendulums
is given by [14]:

ẋ1,1 = x1,2

ẋ1,2 = (
m1gr

J1
− kr2

4J1
)sin(x1,1)+

kr
2J1

(l−b)

+
u1

J1
+

kr2

4J1
sin(x2,1)

y1 = x1,1

(36)

ẋ2,1 = x2,2

ẋ2,2 = (
m2gr

J2
− kr2

4J2
)sin(x2,1)−

kr
2J2

(l−b)

+
u2

J2
+

kr2

4J2
sin(x1,1)

y2 = x2,1

(37)

where y1 = x1,1 = θ1, y2 = x2,1 = θ2 and x1,2 = θ̇1, x2,2 = θ̇2.
The parameters m1 =2kg and m2 = 2.5kg represent the

end masses of the pendulum, J1 = 0.5 kg ·m2 and J2 = 0.625
kg ·m2 are the moments of inertia. g = 9.81 m/s2 is the
gravitational acceleration, k = 100 N/m is the spring constant
of the connecting spring, r = 0.5m is the pendulum height
and l = 0.5m is the natural length of the spring. The distance
between the pendulum hinges is b = 0.5m, where b = l.

Considering (13), it follows that

β1 =
m1gr

J1
− kr2

4J1
, β2 =

m2gr
J2
− kr2

4J2

ϕ1(x1) = sin(x1,1),ϕ2(x2) =sin(x2,1); γ1(x1) =
kr2

4J1
,γ2(x2) =

kr2

4J2

ψ1(x) = sin(x2,1), ψ2(x) = sin(x1,1)

By direct calculation,

|ϕ1(x1)|= |sin(x1,1)| ≤ ρ1(x1) = 1
|ϕ2(x2)|= |sin(x2,1)| ≤ ρ2(x2) = 1

|Φ1(x)|= |sin(x2,1)| ≤M1 = 1, |Φ2(x)|= |sin(x1,1)| ≤M2 = 1

Here, both σi for i = 1,2 are designed as 0.1. It can be
verified that the relative degree ra

i = rb
i = 2 for i = 1,2.

The nominal subsystems can be feedback linearized. For
simulation purposes, the initial states are chosen as x1,1(0) =
1 and x2,1(0) = −0.8, and the desired output signals yid(t)
are chosen as y1d = 0.5sin(t), y2d = 5e−t .
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Fig. 1: Time responses of system output and the desired
output (upper) and controller inputs of system (36)-(37).

0 5 10 15

times/s

-1

-0.5

0

0.5

1

1.5

S
ta

te
 V

a
ri
a

b
le

 x
1

x
11

0 5 10 15

times/s

-1

0

1

2

S
ta

te
 V

a
ri
a

b
le

 x
2

x
21

0 5 10 15

times/s

-2

-1

0

1

2

S
ta

te
 V

a
ri
a

b
le

 x
1 x

12

0 5 10 15

times/s

-2

0

2

4

6

S
ta

te
 V

a
ri
a

b
le

 x
2 x

22

Fig. 2: Evolution of state variables of system (36)-(37).

It is clear that Assumption 3 is satisfied. Let

ei = yi− yid ; ėi = ẏi− ˙yid ; Si = ėi +ai · ei, i = 1,2. (38)

where the sliding function parameters are chosen as a1 = 2
and a2 = 3. Then from (19), the control laws can be described
by:

vi =
ui

Ji
=−Ṡi + y(2)i −K(xi)sgn(Si), i = 1,2. (39)

where, based on (27), the control gain K(·) is chosen by
K(·) = 19.72. By direct calculation, Assumptions 4-5 are
satisfied. The tracking results are shown in Fig.1 where it can
be seen that high tracking performance results. Every angular
position yi of the subsystem can track the ideal reference
yid after around 2 seconds with the inputs of the designed
controller, despite the interactions between the subsystems.
The time responses of the states of the system (36)-(37) are
shown in Fig.2. It is seen that the system states are bounded.
Simulation results demonstrate that the results developed in
this paper are effective.

VI. CONCLUSIONS
A sliding mode control scheme for output tracking of a

class of nonlinear interconnected systems has been proposed

in this paper. The developed results can guarantee asymptotic
output tracking while maintaining bounded state variables
across the closed-loop system. The designed controllers are
decentralised while the desired reference signals are time-
varying. It is not required that the isolated subsystems within
the interconnected system are linearisable. The developed
results can be extended to the case where the isolated subsys-
tems have multiple inputs and multiple outputs. Therefore,
the method in this paper is suitable for a wide class of large-
scale interconnected systems.
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