UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Multi-instance publicly verifiable time-lock puzzle and its applications

Abadi, A; Kiayias, A; (2021) Multi-instance publicly verifiable time-lock puzzle and its applications. In: Proceedings of the 25th Financial Cryptography and Data Security International Conference. Springer (In press). Green open access

[thumbnail of C-TLP.pdf]
Preview
Text
C-TLP.pdf - Accepted Version

Download (498kB) | Preview

Abstract

Time-lock puzzles are elegant protocols that enable a party to lock a message such that no one else can unlock it until a certain time elapses. Nevertheless, existing schemes are not suitable for the case where a server is given multiple instances of a puzzle scheme at once and it must unlock them at different points in time. If the schemes are naively used in this setting, then the server has to start solving all puzzles as soon as it receives them, that ultimately imposes significant computation cost and demands a high level of parallelisation. We put forth and formally define a primitive called “multi-instance time-lock puzzle” which allows composing a puzzle’s instances. We propose a candidate construction: “chained time-lock puzzle” (C-TLP). It allows the server, given instances’ composition, to solve puzzles sequentially, without having to run parallel computations on them. C-TLP makes black-box use of a standard time-lock puzzle scheme and is accompanied by a lightweight publicly verifiable algorithm. It is the first time-lock puzzle that offers a combination of the above features. We use C-TLP to build the first “outsourced proofs of retrievability” that can support real-time detection and fair payment while having lower overhead than the state of the art. As another application of C-TLP, we illustrate in certain cases, one can substitute a “verifiabledelay function” with C-TLP, to gain much better efficiency.

Type: Proceedings paper
Title: Multi-instance publicly verifiable time-lock puzzle and its applications
Event: Financial Cryptography and Data Security 2021
Open access status: An open access version is available from UCL Discovery
Publisher version: https://fc21.ifca.ai/papers/115.pdf
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10132608
Downloads since deposit
766Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item