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A B S T R A C T   

Endel Tulving’s episodic memory framework emphasizes the multifaceted re-experiencing of personal events. 
Indeed, decades of research focused on the experiential nature of episodic memories, usually treating recent 
episodic memory as a coherent experiential quality. However, recent insights into the functional architecture of 
the medial temporal lobe show that different types of mnemonic information are segregated into distinct neural 
pathways in brain circuits empirically associated with episodic memory. Moreover, recent memories do not fade 
as a whole under conditions of progressive neurodegeneration in these brain circuits, notably in Alzheimer’s 
disease. Instead, certain memory content seem particularly vulnerable from the moment of their encoding while 
other content can remain memorable consistently across individuals and contexts. We propose that these ob-
servations are related to the content-specific functional architecture of the medial temporal lobe and conse-
quently to a content-specific impairment of memory at different stages of the neurodegeneration. To develop 
Endel Tulving’s inspirational legacy further and to advance our understanding of how memory function is 
affected by neurodegenerative conditions such as Alzheimer’s disease, we postulate that it is compelling to focus 
on the representational content of recent episodic memories.   

“A hundred years ago, memory was a simple and well-understood 
faculty of the brain/mind, and it was easy to talk and write about 
it and its pathology with authority. Thanks to all the research that 
has been done since that time, memory today is no more simple nor is 
it well understood.” 

(Tulving, 1997) 

Endel Tulving’s conceptual distinction of episodic and semantic 
memory marks a major advance in memory research. It has remained 
hugely influential in basic and clinical research aimed to unravel the 
neural processes that allow experiences to be remembered. In his 
insightful and still topical definition, Tulving stated that, “Episodic 
memory receives and stores information about temporally dated epi-
sodes or events, and temporal-spatial relations among these events.” 
(Tulving, 1972). Thereby episodic memory is distinct from semantic 

memory, which he described as “a mental thesaurus [that] organize[s] 
knowledge a person possess[es]” (Tulving, 1972). This definition of 
episodic memory as a faculty that captures rich, multi-modal personal 
events in coherent recollective experiences has stood the test of time. 
Throughout this paper we will show how Tulving’s episodic-semantic 
framework has guided the evaluation of recent memories in research 
and clinical settings. We argue that it is timely to develop the assessment 
of memories based on their experiential nature further towards a focus 
on the explicit content that a memory represents in order to understand 
how memory function is affected by disease. 

Indeed, the coherent experiential nature of episodic memory is an 
important component of Tulving’s theory which he developed further in 
the 1980’s and 1990’s (Düzel et al., 1997; Tulving, 1985; Schacter and 
Tulving, 1994). He posited that episodic memory is governed by a 
particular type of conscious awareness of information about previously 
experienced events: autonoetic awareness (Tulving, 1985; Wheeler 
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et al., 1997). “It is the kind of awareness that characterizes mental 
‘re-living’ of happenings from one’s personal past. It is phenomenolog-
ically known to all healthy people who can ‘travel back in time’ in their 
own minds.” (Düzel et al., 1997). In contrast, noetic awareness 
(knowing) accompanies an individual’s interaction with its environment 
in the present. 

This concept led to a particular form of memory assessment in 
research and clinical diagnostics, namely the Remember/Know para-
digm (Gardiner, 1988; Tulving, 1985). A major support for Tulving’s 
concept came from clinical observations of impaired memory for per-
sonal experiences but preserved memory for learned facts. Notably, 
patients with developmental amnesia showed a striking impairment of 
episodic memory while semantic memory appeared to be intact 
(Gardiner et al., 2008; Vargha-Khadem et al, 1997, 2001). Impaired 
autonoetic awareness of events was reflected in the inability to 
remember, that is mentally ‘re-live’ information, and the rather selective 
impairment of neural signatures reflecting remembering (Düzel et al., 
2001). 

The proposition of a coherent experiential nature underpinning 
episodic memory permeates how scientists and clinicians evaluate its 
impairment. This is illustrated in the fact that the diagnostic assessment 
of episodic memory is performed largely independent of the represen-
tational content of memoranda (Costa et al., 2017). Tests for memory 
function entail a large variety of different types of stimuli, administered 
in many different tasks requiring some form of recollection or recall. 
Faces, words and images, visual and auditory as well as story content can 
be found as memoranda in different standard tests, as for example the 
“Doors and People Test” (Baddeley et al., 1994), the “Verbal Learning 
and Memory Test” (Helmstaedter and Durwen, 1990), the Wechsler 
Memory Scale (Wechsler, 1987), the “Face – Name Associative Memory 
Exam” (Rentz et al., 2011) or the “Free and Cued Selective Reminding 
Test” (Buschke, 1984). In practice, any of these tests are employed to 
evaluate memory function, with the tests being agnostic for the assessed 
content (Costa et al., 2017). In our view, this reflects an overarching 
conception in neuropsychological assessment that when episodic 
memory is impaired, the ability to remember recent events equally fades 
for all types of information due to their convergence in a multimodal 
processing hierarchy (Costa et al., 2017; Mishkin et al., 1998). Memory 
function is thus evaluated so far without careful consideration of the 
to-be-remembered material. Meanwhile, however, another possibility is 
emerging, namely that impaired episodic memory can be associated 
with a discrete loss of specific representations. 

According to this idea, in a progressive neurodegenerative condition 
such as Alzheimer’s disease, the ability to remember certain event 
content could fade before other content is affected. Especially in early 
stages of the disease when the impairment is not yet complete, an 
accumulating body of research suggests that individuals may have 
preserved memory for certain representations. The intriguing possibility 
is that the content type of this selective impairment may be hard-wired 
into the anatomy of episodic memory and therefore constant across in-
dividuals and situations. This alternative conception of episodic memory 
impairment has been barely considered so far. 

Before we develop our view, we want to explicitly point out that our 
proposal refers to recent episodic memories, thus memories before sys-
tems consolidation takes place. We focus on a phenomenon that takes 
place during encoding and presumably early molecular synaptic 
consolidation (Lisman et al., 2011), thus in the early hours of a memory 
trace. As such, our current opinion paper does not address autobio-
graphical memories that define a person’s biography and the memory 
profile a person with Alzheimer’s dementia still experiences about the 
personal past. These autobiographical memories are amalgamates of 
episodic, semantic and personal semantic information that have been 
acquired in the past (Kopelman et al., 1989). Research on autobio-
graphical memories has had a long-standing focus on content-specific 
aspects of memory (cf. Kopelman et al., 1989; Levine et al., 2002). 
The contents of autobiographical memory traces are shaped by 

hippocampal-neocortical or neocortical-neocortical interactions and 
re-consolidation, ensuing content-specific vulnerability and stability 
(Moscovitch et al., 2005; Nadel et al., 2000; Nadel and Moscovitch, 
1997; Winocur and Moscovitch, 2011). While we acknowledge that 
these systems consolidation processes may well be influenced by the 
initial shape of a memory trace, they are not the focus of our current 
proposal. Here, we aim to increase awareness for the phenomenon of 
content-specific vulnerability of episodic memories apparent shortly 
after encoding and prior to systems-level consolidation processes. 

In that light, we discuss the possibility that fading memories may 
affect certain representations more strongly than others, creating 
“islands of relatively intact recollection” (note, this term has been used 
in relation to remote memory impairment in transient epileptic amnesia 
e.g. by Butler and Zeman, 2008) whose representational building bricks 
are consistently reproducible across individuals. In the following, we 
first highlight aspects of the functional architecture of episodic memory 
that show how specific memory content is processed in the brain. We 
will illustrate the vulnerability of episodic memories as the leading 
symptom in acute hippocampal injuries causing amnesia and progres-
sive conditions such as Alzheimer’s disease. We continue to review the 
recent attempts in advancing the classical investigation and description 
of episodic memory in terms of experiential nature and processes 
focusing on the content of episodic memories. We present recent insights 
into a high level of consistency across episodic memories in their like-
lihood to be remembered—regardless of the observer and the situation, 
certain memories are intrinsically more memorable than others. We will 
show how the functional architecture of episodic memory and memo-
rability may relate to each other and conclude by discussing the impli-
cations for future research and our understanding of impaired memory. 

1. Recent insights into the functional architecture of episodic 
memory 

For decades, researchers aimed to identify the processes that un-
derlie the formation and experiential nature of episodic memory and 
unravel which brain structures give rise to our awareness of past expe-
riences. In the hippocampus, multiple information processing streams 
converge, rendering it essential to create and relive a coherent memory 
of rich multimodal events (Mishkin et al., 1998). The holistic experience 
of episodic memory is however not only accomplished by medial tem-
poral lobe structures but by a widespread network of interacting brain 
regions that also spans frontal and parietal cortices (Cabeza et al., 1997; 
Nyberg et al., 1996a,b; Nyberg et al., 1996a,b; Nyberg et al., 2001, 2000; 
Simons and Spiers, 2003; Wagner et al., 2005). 

One major recent achievement in understanding the functional ar-
chitecture of episodic memory is the refinement of the structure- 
function mapping within the hippocampus. The hypothesis that 
anatomical features of subfields within the hippocampal circuitry map 
onto different memory processes (Marr, 1971) had already been 
formulated at around the same time that Tulving introduced the episodic 
memory concept. However, only recently have advances in high reso-
lution neuroimaging allowed the field to study hippocampal subregions 
functionally in humans. 

When a new episodic memory is to be formed, information that be-
longs to the current event needs to be associated and integrated into a 
coherent memory representation while at the same time being kept 
separate from representations of other past experiences. Access to these 
multi-element memories must be triggerable by cues that represent only 
a fraction of the original event. To assure both the separation and the 
integration of mnemonic information, a recurrent information flow be-
tween hippocampus and cortex has been proposed (Koster et al., 2018; 
Kumaran and McClelland, 2012). Within the hippocampus, the sub-
regions dentate gyrus (DG), CA3 and CA1 act via distinct mechanisms on 
incoming information. In DG, a pattern separation mechanism distin-
guishes similar inputs into distinct representations (Berron et al., 2016; 
Leutgeb et al., 2007; Neunuebel and Knierim, 2014). In CA3, however, a 
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pattern completion mechanism completes a partial memory cue to 
previously stored full representations (Grande et al., 2019; Nakazawa 
et al., 2002; Neunuebel and Knierim, 2014). The completed represen-
tation is then transferred to CA1 where it can interact with incoming 
information. This interaction may be akin to a comparator (e.g. Has-
selmo et al., 1996; Lisman et al., 2011) determining whether the 
incoming information is novel or old and thus gets stored in a new, 
distinct representation, or gets reinstated in cortical areas for a full 
recollective experience (Bartsch et al., 2011; Chen et al., 2011; Dims-
dale-Zucker et al., 2018; Duncan et al., 2012; Maass et al., 2014; 
Schlichting et al., 2014). The anatomical organization of cortical rein-
statement, in turn, seems to depend on the sensory domain or content of 
information (Cabeza et al., 1997; Horner et al., 2015; Nyberg et al., 
1996a,b; Nyberg et al., 2000). The perspective of structure-process 
mapping thus revealed how multifaceted memory representations 
become differentiated from one another and how the experiential nature 
of episodic memory may relate to cortical reinstatement. 

However, besides the content-specificity in cortical reinstatement, 
the process-oriented perspective on memory makes no structural 
distinction for various types of information. This view is challenged by 
representation-based models, in which mnemonic content co- 
determines the anatomical anchoring in the brain. Thus, one recent 
achievement in understanding the functional architecture of episodic 
memory is the consideration of a structure-content mapping. It originates 
in the debate about mapping mnemonic experiences, i.e. familiarity 
versus recollection (related to Remember/Know but also see Gardiner, 
2001 for a more differentiated view) to structures in the medial temporal 
lobe. Initially, dual-process accounts interpreted reports about patients 
with hippocampal lesions but preserved recognition ability as evidence 
for a functional dissociation between the perirhinal cortex and hippo-
campus in underpinning familiarity versus recollection experiences 
(Yonelinas et al., 2005). Familiarity, in this context, described retrieval 
based on a general sense of knowing whereas retrieval via recollection 
entailed remembrance of the context in which the memory was ac-
quired. A fundamentally different perspective on functional dissocia-
tions within the medial temporal lobe was however taken by 
Eichenbaum and later by Graham, Ranganath and colleagues (Eichen-
baum, 2000; Graham et al., 2010; Ranganath and Ritchey, 2012). Their 
interpretation of clinical data considered the represented informational 
content, where the perirhinal and parahippocampal cortices are asso-
ciated with item versus contextual content while the hippocampus is 
thought to bring both streams together. The posterior medial-anterior 
temporal framework (Ranganath and Ritchey, 2012; Ritchey et al., 
2015) expanded the initial idea to a larger network perspective that 
segregates the whole brain into two different information processing 
pathways. Context information is processed via the posterior medial 
system (connecting the retrosplenial cortex, the angular gyrus, pre-
cuneus, posterior cingulate and the parahippocampal cortex) while item 
information is processed mainly via the anterior temporal system 
(connecting the perirhinal cortex and the amygdala, the anterior ventral 
temporal cortex and lateral orbitofrontal cortex; for evidence see for 
example Reagh and Yassa, 2014; Berron et al., 2018). Irrespective of the 
task at hand being rather perceptual or mnemonic, item stimuli like 
objects and faces were thus considered to be preferentially processed in 
the perirhinal cortex (and connected structures of the anterior temporal 
system) whereas context stimuli like scenes were considered to be 
preferentially processed in the parahippocampal cortex (Lee et al., 2005; 
Liang et al., 2013; Litman et al., 2009; Ross et al., 2016; Staresina et al., 
2011). This representational segregation is indicated also within the 
entorhinal cortex and the hippocampal transversal and longitudinal axis 
with the anterior-lateral and posterior-medial entorhinal cortex 
continuing the anterior temporal system and posterior medial system, 
respectively (Knierim et al., 2014; Maass et al., 2015; Navarro Schröder 
et al., 2015) and in turn building representational streams with the 
proximal and distal subiculum, distal and proximal CA1 and presumably 
transversal sections of CA3 (Beer et al., 2018; Flasbeck et al., 2018; 

Henriksen et al., 2010; Nakamura et al., 2013; Nakazawa et al., 2016; Ng 
et al., 2018; Sun et al., 2017, 2018). Along the longitudinal axis of the 
hippocampus, a gradient from coarser anterior representations towards 
finer posterior representations has been reported (Small, 2002; Poppenk 
et al., 2013; Strange et al., 2014; Brunec et al., 2018). Note, however, 
that representational content is not completely dissociable into two 
different types (i.e. context versus item, global versus local or spatial 
versus non-spatial) between the anterior temporal and the posterior 
medial system. Ample projections between subregions exist and only 
recently it has been shown that the parahippocampal cortex projects to 
both subregions of the rodent entorhinal cortex and not as initially 
thought, to the medial entorhinal cortex exclusively (Doan et al., 2019; 
Nilssen et al., 2019). Nevertheless, a bias to process certain types of 
information within specific structures is evident across species, even if 
the informational content may merge at various locations throughout 
the processing hierarchy in the medial temporal lobe 

To briefly summarize, the understanding of how memories emerge in 
the brain is currently advancing by a more fine-grained structure-pro-
cess mapping in the medial temporal lobe and a focus on the interplay of 
functionally heterogeneous subregions. In addition, recent in-
vestigations acknowledge that content may be inherent to the specific 
functional architecture that gives rise to memory. New accounts 
consider interactions between these process- and content-oriented ap-
proaches to understand episodic memory function and acknowledge 
that systems storing specific types of representations may be shaped by 
computational operations that are executed in certain subregions (e.g. 
Bastin et al., 2019; Cowell et al., 2019; see also Ekstrom and Yonelinas, 
2020). Future research may show how certain computations require and 
shape specific representations (e.g. pattern separation operations on 
conjunctive representations) and thereby reveal whether and how pro-
cess- and content-oriented accounts are intrinsically related. 

The new insights into the functional architecture from which 
episodic memory emerges are particularly exciting when we aim to 
understand impairment of episodic memory in disease conditions. 
Notably, it changes the traditional way of assessing the vulnerability of 
recent episodic memories as we illustrate in the following paragraphs. 

2. Episodic memory impairment after acute brain injury 

Clinical research into the nature of impaired episodic memory after 
acute brain injury has focused on the question of whether its impairment 
can be selective and dissociated from relatively intact semantic memory. 
This research utilized direct assessments of semantic and episodic details 
in memory functions and also indirect approaches using autonoetic and 
noetic awareness as proxies for episodic and semantic memory. We will 
briefly refer to this literature before moving on to impaired episodic 
memory in progressive neurodegenerative conditions, such as Alz-
heimer’s disease and then to memorability and content-specific 
impairment patterns within episodic memory. 

While patient H.M. provided the first prominent evidence for the role 
of the medial temporal lobe and hippocampus in explicit memory, K.C. 
provided evidence for the semantic-episodic memory distinction. The 
profile of memory impairment in patient K.C. was striking. His episodic 
memory was severely impaired while as in H.M., his general intellectual 
capacity was normal and he was unimpaired in tasks that required a 
mere knowledge-based usage of memories (Milner et al., 1968; Rose-
nbaum et al, 2005, 2012). In K.C., new learning of semantic information 
was explicitly tested and while it was slow, it was found to be possible 
(Rosenbaum et al., 2005). Both, K.C. and H.M., developed medial tem-
poral lobe lesions later in life caused by traumatic brain injury and 
surgical brain damage, respectively. A groundbreaking study with three 
cases of developmental amnesia, however, confirmed that episodic 
memory can be profoundly impaired while semantic memories can be 
acquired, even giving amnesic individuals the possibility to attend 
school with an average range of success (Vargha-Khadem et al., 1997; 
but see Squire and Zola, 1998 for another interpretation). A main focus 
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of investigations thus became the experiential nature of memories in 
these and other amnesic patients. Clear evidence for a specific impair-
ment in autonoetic consciousness upon retrieval was provided with the 
developmental amnesia patient Jon, who showed electrophysiological 
and behavioral responses compatible with a sense of knowing despite a 
lack in the experience of recollection and associated electrophysiolog-
ical signatures (Düzel et al, 1997, 2001). Also more recently, a lack of 
autonoetic consciousness was shown in a study with 16 patients that 
suffered from lesions in hippocampal subregion CA1 and transient 
global amnesia (Bartsch et al., 2011). 

These amnesia cases show that a decline in awareness may be present 
but other aspects of a memory may still be preserved (see also Düzel 
et al., 2001). It is essential to note, however, that the location of lesions 
is very heterogeneous from patient to patient and so is the profile of the 
memory impairment. When the hippocampus is spared, for example, 
recollection seems to be intact while semantic memories are affected (e. 
g. Bowles et al., 2007). 

3. Episodic memory impairment in progressive 
neurodegeneration: Alzheimer’s disease 

Unlike acute brain injury, Alzheimer’s disease is associated with a 
progressive and relatively stereotypic memory decline across in-
dividuals. The most prominent risk factor for Alzheimer’s disease is old 
age and, indeed, the aging brain is already subject to widespread neural 
changes (Buckner, 2004) including frontal (Andrews-Hanna et al., 2007; 
Daselaar and Cabeza, 2008; Davis et al., 2008) and medial temporal lobe 
(Leal and Yassa, 2015; Raz et al., 2005) regions. Countless studies have 
investigated which aspects of memory change with age and which 
specific processes deteriorate. Besides a prominent impairment in ex-
ecutive components of memory (Shing et al., 2008; Daselaar and 
Cabeza, 2008), aging generally affects the richness of remembered in-
formation and also the ability to bind multiple elements in memory 
(Levine et al., 2009; Old and Naveh-Benjamin, 2008; St. Jacques et al., 
2012; Yonelinas et al., 2007; Piolino et al., 2006; St. Jacques and Levine, 
2007). A difficulty to separate memory representations from each other 
(Reagh et al, 2015, 2018; Yassa et al, 2011a, 2011b) may go hand in 
hand with a bias to pattern complete memory cues (Vieweg et al., 2015), 
resulting in false “memories” (Devitt and Schacter, 2016; Fandakova 
et al., 2015). While episodic memory is strongly susceptible to decline 
with age, semantic memory is less affected (Zacks et al., 2000). This 
leads to a profile of fragmented autobiographical memories, still pre-
serving semantic details and personal semantics while lacking episodic 
content like personal thoughts (e.g. Levine et al., 2002; Piolino et al., 
2002). 

The two hallmark pathologies underlying Alzheimer’s disease are 
neurofibrillary tangles and beta-amyloid plaques (Braak and Braak, 
1991, 1995, 1991; Braak and Del Trecidi, 2015; Hyman et al., 1989; 
McKhann et al., 2011). Both are anatomically progressive pathologies 
with stereotypic spreading patterns in the brain. In human imaging 
studies, amyloid pathology frequently begins in medial parietal struc-
tures, including retrosplenial cortex, posterior cingulate and precuneus 
as well as medial frontal areas (Grothe et al., 2017; Mattsson et al., 2019; 
Palmqvist et al., 2017; Villeneuve et al., 2015). Cortical tau pathology, 
in contrast, frequently begins in the transentorhinal area before 
spreading to the entorhinal cortex, parts of the hippocampus, then the 
perirhinal cortex, the lateral temporal lobe and finally cortical frontal 
and parietal regions (Braak et al., 2006; Braak and Braak, 1991). 

The pathology, ultimately concomitant of cell loss in the respective 
brain regions, affects brain regions that are crucial for successful 
episodic memory (Jagust, 2018; Jagust et al., 2006). Accumulating ev-
idence shows that tau pathology in the medial temporal lobe best pre-
dicts episodic memory decline (e.g. Maass et al., 2017; Lowe et al., 2018; 
Sperling et al., 2019; Hanseeuw et al., 2019) while amyloid-burden 
alone shows only weak associations to episodic memory performance. 
However, more rapidly progressive memory decline is most likely when 

both types of pathology converge (Betthauser et al., 2019). Whether 
indeed only the synergistic effect of both pathologies leads to progres-
sive memory decline is still under investigation (Jessen et al., 2014; 
Lowe et al., 2018; Maass et al., 2017; Schöll and Maass, 2020; Sperling 
et al., 2018). 

The early stages of Alzheimer’s disease are associated with episodic 
memory impairments while semantic processing has been found intact 
(Morris and Kopelman, 1986). Research points towards increasing reli-
ance on semantic details and gist memory in these stages (El Haj et al., 
2017 for an overview). A temporal gradient has been frequently re-
ported with preserved remote memories but impaired formation and 
retrieval of new memories (Irish et al., 2011a,b; Irish et al., 2011a,b; 
Kopelman et al., 1989; McKhann et al., 2011; Addis and Tippett, 2004). 
Content-specific assessment of autobiographical memories however in-
dicates that the temporal gradient could be more pronounced for (per-
sonal) semantics while episodic components are impaired throughout 
(Irish et al., 2011a,b; Piolino et al., 2003), a finding that may depend on 
the specifics of the assessment method (Barnabe et al., 2012). Moreover, 
recent preliminary findings show particular impairment on everyday 
memory under conditions of delayed recall and for associative memories 
in mild cognitive impairment (MCI, Irish et al., 2011a,b). Interestingly, 
however, certain rich cues, for instance music, odors or pictures (e.g. El 
Haj et al., 2020, 2012; El Haj et al., 2018) may still evoke fragmented 
autobiographical memories and memories may be enhanced by a focus 
on self-referential aspects (e.g. Carson et al., 2019; El Haj and Antoine, 
2017a; Kalenzaga et al., 2013) as well as with emotional cues in early 
disease stages (e.g. Hamann et al., 2000; Kensinger et al., 2004; Kumfor 
et al., 2013; Sava et al., 2015). Overall, emotional components of a 
memory seem preserved despite a general diminished sense of reliving 
and visual imagery in Alzheimer’s dementia (El Haj et al., 2016; El Haj 
and Antoine, 2017a; Rauchs et al., 2007). Indeed, extensive in-
vestigations of autobiographical memories (Levine et al., 2002) carved 
out a specific profile and revealed that within a single remembered 
autobiographical episode, Alzheimer’s dementia is related to specific 
impairment of the event-related and personal thought related details, 
and a bias to report more semantic details (Barnabe et al., 2012; Irish 
et al., 2011a,b; Murphy et al., 2008). 

Regarding recent episodic memory, some studies show particularly 
impacted free and delayed recall (e.g. Bäckman et al., 2005), while a 
meta-analysis finds recognition to be only preserved in preclinical Alz-
heimer’s dementia (MCI) but not with progressed states of the disease 
(Koen and Yonelinas, 2014). Comparable to autobiographical memories, 
it additionally became evident recently that among recent episodic 
memories, certain material shows more vulnerability for memory 
impairment. Hence mnemonic discrimination for item information is 
more impaired than scene information with beginning tau pathology 
(Berron et al., 2019; Maass et al., 2019). This observation sets the stage 
for investigations on the diagnostic value and specific memorability of 
certain content within episodic memory with various levels of pathology 
in the early stages of Alzheimer’s disease (Bainbridge et al., 2019a). 

Note that the pathology is evident more than a decade before the first 
clinical symptoms develop (Braak and Braak, 1991; Ossenkoppele et al., 
2019). About 30 % of seemingly healthy individuals over 65 years of age 
bear “hidden” amyloid pathology, whereas more than 60 % of elderly 
people show tau pathology in the medial temporal lobe (Braak and 
Braak, 1997) and cognitive alterations are not necessarily detectable. At 
which point age-related and pathological Alzheimer’s processes lead to 
differential profiles in episodic memory decline has yet to be determined 
(Jack et al., 2010). 

Irrespective of the debate about the neuropathological distinction 
between normal aging and Alzheimer’s, diagnostic assessments of 
memory function in old age and Alzheimer’s disease consider episodic 
memory as a content-independent clinical symptom. Thus, similarly to 
research on amnesia, the main focus is on the experiential nature of 
fading memories and the processes that are affected. The recent insights 
into the functional architecture of episodic memory, however, also 
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highlight memory content as an important variable in the evaluation of 
episodic memory decline. 

4. The memorability of episodic memories 

Memorability refers to the observation that irrespective of the testing 
situation and consistently across individuals, some stimuli are more 
likely to be remembered than others (Bainbridge et al., 2013; Isola et al., 
2011). This memorability of a stimulus has been shown to account for as 
much as 50 % of the variance in memory performance (Bainbridge et al., 
2013), and is consistent across different tasks, image contexts, presen-
tation and retention times (Broers et al., 2018; Bylinskii et al., 2015; 
Goetschalckx et al., 2018). Independent of attention, priming effects or 
top-down influences, the phenomenon is considered to be “automatic” 
(Bainbridge, 2020), determined already 160 ms after stimulus onset 
(Mohsenzadeh et al., 2019) and related to functional activity in late 
visual regions (inferotemporal cortex), the medial temporal lobe and the 
anterior hippocampus (Bainbridge et al., 2017; Bainbridge and Rissman, 
2018; Jaegle et al., 2019). 

Memorability thus appears to be an inherent feature of episodic 
memory. Current research seeks to identify the qualities and the specific 
content that determines how memorable an episode is likely to be. While 
several attributes for an image have shown correlations with memora-
bility, no singular attribute has been found that can act as a proxy for 
memorability. For example, manmade scenes containing many objects 
tend to be more memorable than outdoor natural scenes (Bainbridge 
et al., 2019a; Isola et al., 2014), however these attributes do not explain 
a high amount of variance in memorability. Low level qualities like color 
coding or brightness and also the eye fixation time during encoding 
seem not to be able to explain an image’s memorability (Bainbridge 
et al., 2013; Bainbridge et al., 2019a; Isola et al., 2011). Other high-level 
qualities of an image such as its aesthetics, emotional content, and even 
observer’s own ratings of how memorable an image appears do not show 
strong correlations with memorability (Bainbridge et al., 2013; Isola 
et al., 2014). Recent work utilizing computational models and neuro-
imaging techniques have suggested that above all, it may be the 
composition of the elements an episode consists of, in particular an 
item’s relationship to other items in the representational space of a 
memory that influences an episode’s memorability. For example, 
research using deep learning methods has found that more sparsely 
distributed items are more memorable (Lukavský and Děchtěrenko, 
2017), and that dissimilarity in low-level visual information may map 
onto memorability (Koch et al., 2020). At the same time, similarity at the 
level of conceptual information may relate to memorability (Koch et al., 
2020). For instance, highly semantically connected words are more 
memorable and are reinstated earlier in the anterior temporal lobe (Xie 
et al., 2020) and memorable images show more similar representational 
patterns in the brain than forgettable images (Bainbridge et al., 2017; 
Bainbridge and Rissman, 2018). An understanding of the principles that 
govern the memorability of an episode could reveal the computations 
performed after perceiving the episode that lead to successful memory 
encoding. 

The memorability feature of episodic memories is especially 
compelling when it comes to the evaluation of memory decline. A recent 
behavioral study investigated memorability of photographic images in 
older adults that were either cognitively normal without memory 
complaints, cognitively normal but with a subjective memory decline 
severe enough to seek medical advice (subjective cognitive decline) or 
with significant (1.5 SDs) memory decline relative to the expected 
performance in old age (MCI) and showing a profile typical of prodromal 
Alzheimer’s disease (Bainbridge et al., 2019a). If episodic memory 
decline from cognitively normal older adults to those with MCI would 
affect episodic memory irrespective of the representational content of 
photographic images, the outcome of this study would have been a 
reduced memory performance proportionally across all images. How-
ever, this study observed an asymmetry across images as related to 

memorability—a specific set of images remained highly memorable to 
cognitively normal adults but became forgettable to those with MCI. 
Looking at memory performance for these images specifically, we could 
significantly predict whether an individual suffers from MCI, better than 
any other set of images. Equally intriguingly, some stimuli remained 
consistently and highly memorable across healthy controls and MCI 
patients, and performance for those images could be predicted by deep 
learning models. Thus, while some stimuli seemed to be memorable 
across everyone (no matter the pathological condition), other stimuli 
seemed to be of diagnostic value as they were highly forgettable by in-
dividuals facing conditions of preclinical dementia but not by healthy 
controls (Bainbridge et al., 2019a). These results indicate that certain 
neural pathways essential for memory processes or for representing 
mnemonic information may be affected earlier in the course of decline 
than others, resulting in a specific pattern of episodic forgetting and 
potential islands of recollection. As we define them, these islands refer to 
certain mnemonic content that remains accessible to episodic memory 
when other types of information cannot be remembered anymore. 
Importantly, deliberate selection of the content to be remembered can 
promise to unveil these differences across neural pathways, and across 
different stages of cognitive decline. 

Indeed, as briefly stated above, functional imaging in older adults 
show that the anterior temporal-posterior medial system segregation is 
less clear than in young adults and they recruit the anterior temporal 
system less (Berron et al., 2018). Increased tau pathology is related to a 
specific decrease in memory performance for object content, while scene 
content is preserved (Berron et al., 2019). This content-driven difference 
is also reflected in the observation that manmade scenes with multiple 
objects are the first to show strong differences in memorability between 
healthy adults and those with MCI (Bainbridge et al., 2019a). In general, 
accumulating evidence shows that tau pathology affects anterior tem-
poral regions and possibly isolates the hippocampus from the large-scale 
anterior temporal network while amyloid leads to a deficit in the pos-
terior medial network function (Adams et al., 2019; Harrison et al., 
2019). This may explain content-specific memory impairments in 
accordance with the preferentially processed information in the affected 
network (Maass et al., 2019; Berron et al., 2019; and see Berron et al., 
2020 for effects on respective network connectivity). Thus far, while 
decodable patterns of memorability have been observed in parts of the 
anterior temporal network such as the perirhinal cortex and anterior 
temporal lobe, it is less clear whether posterior medial regions show 
information about the memorability of a stimulus (Bainbridge et al., 
2017; Bainbridge and Rissman, 2018). However, other research has 
shown decodability of other memory content such as the identity or 
representational content of a memory from posterior medial regions like 
the retrosplenial and parahippocampal cortex (Bainbridge et al., 2021; 
Silson et al., 2019). 

Initial findings thus point towards a potential relationship between 
the inherent feature of memorability based on memory content, an un-
derlying functional architecture of biased information-processing in 
certain brain systems and content-specific memory decline in relation to 
pathology within these brain systems. An open question however will be 
how different types of memory content may allow researchers to 
pinpoint representational differences in the respective brain systems, 
and how performance on specific stimuli is associated to brain pathol-
ogies in certain functional networks. 

5. Discussion and future perspectives 

While we are still in the early days of understanding memorability, 
the phenomenon provides an intriguing new way on how we concep-
tualize episodic memory and interpret and investigate fading episodic 
memory. The observations that certain recent memories fade more 
easily than others across people, that the content and composition of 
episodic memories may drive their memorability, and that the content of 
episodic memories determines the specific underlying functional 
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architecture, call for a change of perspective in how we investigate and 
evaluate episodic memory decline. We postulate that, to understand 
episodic memory function, we need to develop Tulving’s legacy further 
and understand how content influences episodic memories and why this 
influence is hard-wired to the human brain so as to render it stable 
across individuals. 

To illustrate these considerations, we refer to memories as “land-
scapes” which are affected by erosion. As much as a landscape is defined 
by the sum of its elements (i.e. mountains and forests), an episodic 
memory is defined by the sum of different types of information defining 
the event. Components of the landscape will have different vulnerabil-
ities to erosion; trees and soil are likely to be affected much earlier than 
mountains composed of granite. Likewise various causes of erosion (e.g. 
continuous wind, rain, tornados or flooding) exert different forces on the 
components of a landscape. Similarly, healthy aging processes cause 
certain memory components to decline while pathological processes 
may excel these and even carve out a unique shape of the memory 
landscape. This analogy may help us to conceptualize how the landscape 
of memories may be affected in disease. The current insights into the 
functional architecture of the medial temporal lobe also suggest that 
different types of information are processed and represented in different 
neural pathways within the episodic memory network. Similarly, we 
think that islands of recollection in the memory landscape of episodic 
memory may prevail until later stages of neurodegeneration. Thus, 
rather than speaking of loss or impairment of episodic memory as a 
whole, it may be more appropriate to consider the possibility of 
impoverished episodic memory with selective loss of specific content. 

The illustration of memory landscapes in episodic memory serves to 
highlight how our understanding of memory is shaped by how we test 
for episodic memory. If clinical research is guided by a model of episodic 
memory as a representationally-independent faculty of reliving past 
events, our discoveries and understanding will remain limited to what 
the model permits. If clinical research embraces the representational 
nature of episodic memory decline and assesses remembrance of recent 
episodic memories for different types of content, we may gain new in-
sights into the episodic memory experience of patients with Alzheimer’s 
disease. 

The potential in investigating progressive impairment of recent 
episodic memories in neurodegenerative conditions is twofold. First, 
islands of recollection could provide a unique window into the organi-
zation of memory. Content-specific cognitive readouts could provide 
insights into which aspects of episodic memory are neuroanatomically 
distinct. In analogy to the early insightful observations on differences in 
systems consolidation for rather semantic versus rather episodic ele-
ments, also the observations on memorability obtained thus far are a 
first proof of concept that motivate further investigation. The second 
potential is of a clinical nature. Islands of recollection could be content- 
specific for certain stages of disease progression thereby enabling 
tailored tests for diagnostic staging. Moreover, specific strategies may 
allow us to harness preserved memory abilities to support activities of 
daily living. 

What happens in the early hours of a memory trace that determines 
its memorability is entirely up to speculation for now. The novelty of 
memorability findings does not allow yet any firm hypotheses on 
mechanisms that drive variations in memorability within the population 
as well as between healthy older adults and older adults with Alz-
heimer’s disease. We observe, however, that several aspects may play a 
role that are related to the way content-information is bound together, 
represented and sorted at encoding. One mechanism that determines 
memorability may be the level of integration within an item’s repre-
sentation. A word’s memorability, for example is determined by its 
centrality in the semantic space (Xie et al., 2020). Highly memorable 
item representations may thus closely incorporate multiple features. 
Likewise, the inherent multimodality of certain content representations 
may drive memorability. For instance, in contrast to scenes, the repre-
sentation of isolated objects is intrinsically multimodal, integrating 

olfactory, gustatory, auditory or tactile information. Note, that also 
among different objects, the level of multimodality changes (consider 
for instance a lamp versus a cup of coffee). Hence the involved func-
tional architecture differs for multimodal objects and scene memories 
due to biased pathways of information processing (cf. Fiorilli et al., 
2021; Lee et al., 2021; but note the described profound overlap as well). 
Under healthy conditions, multimodal representations may enhance 
memorability because a memory can be accessed via multiple ways (e.g. 
the cup of coffee via a scent or a taste). In Alzheimer’s disease particu-
larly multimodal representation areas like the perirhinal cortex (cf. 
Fiorilli et al., 2021; Bussey et al., 2005; Lee et al., 2021) are affected 
early on, presumably leading to an increased vulnerability for certain 
object memories. Another appealing mechanism that may determine 
differential memorability effects in Alzheimer’s disease are attentional 
and perceptual mechanisms. When a stimulus consists of multiple ob-
jects, a condition may appear that potentially resembles simulta-
nagnosia, that is the inability to perceive and bind multiple objects 
together while their single recognition is unaffected (Chechlacz et al., 
2012; Coslett and Saffran, 1991). Whenever there is competition be-
tween multiple objects in complex scenes, attention-based deficits may 
be possible that hinder the binding of mnemonic elements, in particular 
when Alzheimer’s pathology invades key object-processing structures 
along with the visuospatial attention system in posterior brain areas 
(Chechlacz et al., 2012) as one would typically expect in MCI. Conse-
quently, memorability under Alzheimer’s disease may be affected for 
isolated as well as multiple objects, but potentially being even more 
impaired for the processing of multiple objects in those with Alzheimer’s 
disease in comparison to healthy individuals. Note that deliberately 
manipulating overall attention to a stimulus did not change memora-
bility (Bainbridge, 2020), hence we are here referring to attentional 
dynamics driven by the stimulus itself. Overall, we think that memo-
rability may reflect the order in which perceptual inputs are prioritized 
for memory encoding (cf. Xie et al., 2020), but future studies need to 
reveal whether this idea holds and unravel the mechanisms by which 
this prioritization takes place, potentially leading to different levels of 
integration within an item’s representation. 

Indeed, careful inspection of the memorability findings so far reveals 
that the above stated mechanisms may not be the full story and need 
further elaboration. First, our ideas may predict that in particular highly 
multimodal items like objects are memorable across people. However, 
single objects can be among forgettable items as well (Bainbridge et al., 
2019a) and memorability effects have also been observed in abstract 
noise stimuli (Lin et al., 2021). Second, complex images containing 
multiple objects seem to be highly diagnostic, presumably driven by 
deficits in medial temporal lobe structures and attentional deficits 
(Bainbridge et al., 2019a). However, not all diagnostic images are 
cluttered and display a complex assembly of objects (Bainbridge et al., 
2019a). Third, the finding that a lack of memorable qualities (esthetics, 
interest) leads to the forgetting of otherwise highly memorable objects 
under Alzheimer’s dementia may follow from competition between 
items. However, studies on memorability that looked at many singular 
properties for predicting memorability (e.g. the number and size of 
objects, esthetics, interestingness etc., see e.g. Bainbridge et al., 2013; 
Bainbridge et al., 2019a; Isola et al., 2014) were not able to predict large 
variance in memorability (at least for faces as in Bainbridge et al., 2013). 
Presumably, our general representations about the larger visual statis-
tical world (innate or learned) play an essential role. Thus, overall the 
intrinsic, task- and experience-independent nature of memorability is 
not yet fully explainable and still remains a secret of the brain’s func-
tional architecture. 

Note that not only are many aspects of memorability still unresolved, 
but we also lack a full understanding of many aspects concerning the 
functional architecture of the medial temporal lobe and the specificities 
of Alzheimer’s pathology progression. For instance, there have been 
general reports of left hemispheric lateralization in the processing of 
verbalizable, semantic material (Dalton et al., 2016; Golby et al., 2001; 
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Kennepohl et al., 2007). In addition there are recent findings that imply 
more profound effects of Alzheimer’s pathology in the left hemisphere, 
at least for some subtypes (Berron et al., 2020; Ossenkoppele et al., 
2016; Vogel et al., 2021). How these dynamics interact during the for-
mation of memories and how they are reflected in the memorability of 
items is open for further research. 

Besides the multidimensionality of episodic memories, a core quality 
of episodic memory according to Tulving is the autonoetic nature. Some 
even consider autonoetic consciousness an essential prerequisite of 
memory (Klein, 2015; Klein and Markowitsch, 2015). A key question 
that needs to be addressed when considering memorability is to what 
extent preserved memorability is associated with autonoetic awareness. 
It may be possible that, similarly to some preserved sense of familiarity 
in patient Jon (Gardiner et al., 2006), memorable images under condi-
tions of memory decline are associated with diminished autonoetic 
awareness. However, it may well be possible that preserved components 
of the hippocampal cortical circuitry may still allow autonoetic aware-
ness to accompany preserved memorability. This alternative is espe-
cially plausible given that degeneration seems to affect specific 
representations more than others. Indeed, high memorability often but 
not always is related to autonoetic consciousness of the retrieved ma-
terial (Broers and Busch, 2020). In that sense, we see the experiential 
nature of memories and the content of memories as two scales (whether 
orthogonal or closely linked to each other) on which memory function 
needs to be evaluated. 

A thorough understanding of the relationship between memorability 
and autonoetic consciousness allows us to gain insight into the daily 
experience with Alzheimer’s dementia, as has been done within the area 
of autobiographical memory. Accessing sensory and perceptual episodic 
aspects of an event is also related to a sense of self (Conway, 2001; 
Conway and Pleydell-Pearce, 2000; Piolino et al., 2009; Muireann Irish 
et al., 2011). In Alzheimer’s disease the self becomes more abstract as 
highly personal semantic information prevails (Addis and Tippett, 2004; 
Strikwerda-Brown et al., 2019; Caddell and Clare, 2010; Martinelli et al., 
2013). The identification of memorable and autonoetic aspects within a 
memory may serve to boost the subjective sense of self (Prebble et al., 
2013). 

While our paper is focused on the nature of episodic memories, 
related questions could also be raised about semantic memories. In fact, 
as we pointed out above, the interaction between episodic and semantic 
aspects may contribute to variability in memorability and semantic 
features remain among those that need to be explored as rendering an 
image memorable. The research on memorability is still in its infancy, 
and it will be interesting to address the question of whether memora-
bility applies to semantic memories and their impairment patterns in 
neurodegenerative conditions as well. While many mechanisms may 
apply to both episodic and semantic memory and both types of memory 
closely interact (Renoult et al., 2019; Tulving and Markowitsch, 1998), 
we still believe that episodic memory may be special in giving rise to 
autonoetic consciousness (LeDoux and Lau, 2020). Clarifying the rela-
tionship between memorability and autonoetic consciousness will thus 
also contribute to our understanding of the differences between se-
mantic and episodic memory regarding memorability. 

Note that many studies already investigate conditions that make 
memories stick (under healthy and pathological conditions), whether it 
is the emotional state, a personally meaningful cue or the extent that the 
episodic elements are unitized (e.g. Bastin et al., 2013; Cooper et al., 
2019; Diana et al., 2011; Kwan et al., 2016; Naveh-Benjamin et al., 
2002; El Haj et al., 2020, 2012; El Haj et al., 2018; El Haj and Antoine, 
2017b; Hayes et al., 2007 and see Yonelinas, 2002 for factors that 
enhance recognition). These aspects may only partially explain memo-
rability, as memorability is not only context- and task-independent but 
also experience-independent and similar across people (Bainbridge, 
2020). The memorability of a stimulus for healthy individuals can even 
be predicted by computational algorithms (Needell and Bainbridge, 
2021). We earlier described however that certain esthetic aspects may 

contribute partially as much as the element’s composition, presumably 
affecting possibilities for unitization. Specific memory assessments that 
account for the representational nature (e.g. drawings as in Bainbridge 
et al., 2019b; Morgan et al., 2019 or digital memory rebuilds as in 
Cooper et al., 2019) instead of assessments focused on experimental 
nature (like the Remember/Know paradigm) may help to investigate 
how conditions of memory enhancement relate to intrinsic 
memorability. 

We are not the first to call for a content-specific investigation of 
memory capabilities at a representational level. As indicated already, 
within autobiographical memory research, it is standard to evaluate the 
personal past by treating memories as a conglomeration of different 
types of information that all need to be evaluated separately for a 
comprehensive memory profile (Levine et al., 2002). Certain aspects of 
an autobiographical memory or episode can be preserved while other 
content is impaired and these nuanced memory profiles are consistent 
within disease groups (Irish et al., 2011a,b). Recent proposals leave 
categorical approaches to memory content behind and emphasize that a 
memory is formed and stored in representations of different di-
mensionalities and levels of abstraction within the functional architec-
ture of memory (Andermane et al., 2021; Brunec et al., 2018; Ekstrom 
and Yonelinas, 2020; Irish and Vatansever, 2020; Renoult et al., 2019). 
Different implications of these abstract to specific gradients in memory 
representations are emphasized. For instance, the amount of semantic 
versus episodic aspects in a memory is determined by the position of the 
respective memory representation on a continuum of more or less con-
textualization (Irish and Vatansever, 2020) and by the need to access 
specific details versus gist information (Ekstrom and Yonelinas, 2020; 
Renoult et al., 2019), extending beyond a dichotomy between semantic 
and episodic memories (Renoult et al., 2019). As the coarseness or 
precision of representations is rooted in the functional anatomical ar-
chitecture of memory (Andermane et al., 2021; Brunec et al., 2018; 
Ekstrom and Yonelinas, 2020; Irish and Vatansever, 2020; Yonelinas, 
2013), partial dysfunction of neural substrates does not cause the full 
memory to fade but rather to become fragmented memories that draw 
on remaining representations (Ekstrom and Yonelinas, 2020). Many 
aspects of the above mentioned representational accounts came together 
in a recent proposal postulating that episodic memories may fade in a 
fragmented manner that is compatible to our proposal (Andermane 
et al., 2021). They elaborate on distinct behavioral findings regarding 
the forgetting of episodic representations. While item representations 
seem to fade gradually over time, higher-order episodic representations 
like narratives seem to be forgotten rather holistically. The underlying 
representational architecture of episodic memories that we outlined 
above provides a potential explanation. It will be an exciting avenue for 
future research to investigate memorability in the light of that concept 
and link the findings to clinical observations. 

The unique angle that our current proposal takes is that we refer to 
the intrinsic memorability of memories. The functional underpinnings of 
memorability seem to come into play during encoding and during early 
phases of molecular synaptic consolidation and are not subject to (sys-
tems) consolidation mechanisms (Bainbridge and Rissman, 2018; 
Mohsenzadeh et al., 2019). Notably some items remain memorable or 
forgettable, even when memories fade over time (Isola et al., 2014) and 
memorability is highly specific, even varying within stimulus categories 
(e.g. Bainbridge et al., 2013; Bainbridge, 2017). Thereby our perspective 
is fundamentally different from the previous accounts where memories 
are shaped over time and strongly influenced by task demands (Ander-
mane et al., 2021; Ekstrom and Yonelinas, 2020; Levine et al., 2002; 
Renoult et al., 2019) with effects on general categories of mnemonic 
content (e.g. Irish and Vatansever, 2020; Levine et al., 2002; Strikwer-
da-Brown et al., 2019). That said, however, the memorability of items 
may be influenced by specific retrieval tasks (Bainbridge et al., 2019b; 
Broers and Busch, 2020) – an observation that needs further investiga-
tion. Finally, we emphasize that memorability is related to recent 
episodic memories. As indicated in the beginning, our opinion paper is a 
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specific call to reconsider the assessment of recent episodic memory and 
on mnemonic material that may serve to identify Alzheimer’s disease in 
preclinical and prodromal stages. Likewise, there is also increased in-
terest in the assessment of autobiographical memory towards individual 
daily life memories (Palombo et al., 2018) and it will be important to 
consider how these two approaches can be linked to each other. Our 
observations together with particularly the recent perspective on 
forgetting by Andermane and colleagues (2021) show that it is now 
timely to investigate the fragmented nature and content-centric aspects 
of recent episodic memories and their decline. 

6. CONCLUSION 

Endel Tulving’s episodic memory framework inspired decades of 
research on the experiential nature of memories. The recent findings on 
episodic memory decline and content-specific processing routes of 
mnemonic information support an extension of this framework by the 
concept of memorability. In Alzheimer’s disease, memories may not fade 
unitarily but in a content-specific manner, mirroring affected cortical 
regions and presumably leading to islands of recollection. Together with 
the experiential nature of memory, a new focus on the content of fading 
recent episodic memories may allow us to reveal yet another layer of 
human memory function and get closer to understanding this miracle of 
human nature. 
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