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Towards Identifying Core Computational Literacy Concepts for Inclusion in a
First-Year General Engineering Course

Abstract

In this paper, we describe an exploratory study to support efforts in revising first-year courses
required for engineering students. It is common to include some form of introductory
programming or spreadsheet computation topics in first-year courses. The inclusions of these
topics is ostensibly to provide foundational computational skills needed in later courses.
However, there are many challenges associated with teaching and learning these skills, the least
of which is selecting which skills to include in the finite time allotted for a first-year introductory
course that may also be tasked with teaching foundational problem solving and professional
skills. This study is the first stage towards identifying a core set of skills for inclusion that would
be relevant for most first-year students.

Introduction and Background

It is well established that most first-year programs have an introductory programming course
(Reid & Reeping, 2014). Design and successful implementation of these courses is challenging
in the context of a general first-year engineering program as students enter with a wide variety of
prior knowledge and experience, and will matriculate into disciplinary majors with varying
expectations regarding programming and data expertise. While several studies have
demonstrated a benefit to teaching these computational literacy concepts grounded in a
disciplinary context (Magana, Falk, Viera & Reese, 2016; Forte & Guzdial, 2005), it is difficult
to do this in a first-year course intended for all engineering disciplines. What computing
concepts are common across all non-computing engineering majors, and which ought to be
included in such a course? Towards establishing a taxonomy, we found cross-cutting core
computational literacy concepts based on data collected from publicly available course catalog
descriptions of disciplinary engineering courses.

Computational Literacy

We use the phrase “computational literacy” to capture the intersection of data literacy and
computing skills necessary to work with data on a computer in a problem solving context. Data
literacy, in its traditional sense, is defined as a competency measure used to gauge individuals’
abilities to access, interpret, critically assess, manage, communicate and ethically use data (Prado
& Marzal, 2013). However, with the recognition of the increasing importance of computational
literacy as a valuable learning outcome within undergraduate courses, a new framework of



data-informed learning i.e., learning that emphasizes the use of data within a specific disciplinary
context, while constructively building on students’ past experiences, is being used progressively
as a tool to promote lifelong learning in higher education (Maybee & Zilinski, 2015).

An empirically motivated case-study by Magana et al. (2016) discusses a similar notion termed
“authentic computational learning” (learning that is meaningful to the learner, contextual to the
discipline and relevant to real-world applications) by assessing the effectiveness of a novel
computational and programming freshman/sophomore-level course introduced within the
Material Science and Engineering department of a large, private US university. The key
conclusions of this study suggest that embedding engineering computational literacy i.e., the use
of computer software and associated modeling and simulation processes within the curriculum,
led to increased student engagement with disciplinary concepts, along with positive effects on
their self-beliefs and academic performance.

Preliminary findings from an analogous project conducted by Valenzuela, Smith, Reece and
Shannon (2010) to evaluate the effect of incorporating programming skills within junior and
senior year Industrial Engineering courses at a large, public US university, also indicated
favorable reception of such curricular refinements from both staff and students. To obtain these
results, the authors adopted a case-studies approach, using data collected through feedback
surveys from students and faculty members, while also analyzing students’ academic
performance in these modules.

A more recent research study by Shoaib, Cardella, Madamanchi, and Umulis (2019) examined
the challenges and aspects of computational thinking (CT) competencies such as data analysis,
algorithm design, simulation, testing and debugging within an analytical problem-solving
classroom activity of a sophomore-level thermodynamics course for biomedical engineering
students at a major public, US university. A combination of classroom observations and
artifact-based interviews revealed that students in fact, found the modeling and derivation
process of developing analytical solutions to be the most demanding, occurring much before the
pseudo-code development stage of the activity.

The wide variety of specific skills and concepts associated with computational literacy motivate
the development of concept inventories for this topic.

Concept Inventories

Courses designed in accordance with the principles of cognitive theory involve deep assimilation
of concepts in order to link in effectively with learners’ pre-existing knowledge. In this regard,
concept inventories possess immense value by serving as effective measures to gauge acquired



conceptual knowledge (Streveler, Litzinger, Miller, & Steif, 2008). They may be best described
as “research-based distracter driven multiple-choice instruments” (Lindell, Pea & Foster, 2007,
p. 14) featuring multiple-choice questions designed to test students’ understanding of concepts,
while making use of incorrect ‘distracter’ solutions as options to highlight common student
errors and misconceptions.

Touted as a unique tool of assessment finding utility in both the summative evaluation of student
learning as well as in the formative planning of instructional design (Reed-Rhoades & Imbrie,
2008), concept inventories are gaining increasing prominence within engineering education. The
most well-known of these is the Force-Concept Inventory (FCI) that was developed by Hestenes,
Wells, and Swackhamer (1992) focusing on Newtonian mechanics, which has applications not
only as a diagnostic tool to identify and clarify student misconceptions, but also as an accurate
and reliable indicator to evaluate teaching, in addition to being used as a introductory placement
test by colleges and universities.

Following on from this, a variety of concept inventories have been formulated across different
engineering subjects such as the Concept Assessment Tool for Statics (CATS) (Steif & Dantzler,
2005), the Statistics Concept Inventory (SCI) (Stone et al., 2003) and the Fluid Mechanics
Concept Inventory (FMCI) (Martin, Mitchell & Newell, 2003). Subsequent research has also
been undertaken through the administration of each of these inventories, in order to assess the
value and effectiveness of each. Steif & Hansen’s study (2006), for example, made use of the
Statics Concept Inventory to reveal significant correlations between performance scores from the
inventory and those from course examinations, with concept-specific inventory sub-scores
providing valuable insight into highlighting common misconceptions. Using a “lesson-study”
approach, Fraser, Pillay, Tjatindi, and Case (2007) assessed students’ difficulties with fluid
mechanics concepts through the use of computer simulations and the Fluid Mechanics Concept
Inventory, resulting in significant student improvement and positive feedback. In terms of
refinements, it was also found that the benefits of concept inventories can be sufficiently
enhanced by administering them online to ensure wider access and involvement across
universities and colleges (Steif & Hansen, 2007).

Research Question

Towards developing an understanding of the current state of computational literacy learning
outcomes in disciplinary engineering programs, we addressed the following research question:
What implicit or explicit computational literacy concepts or skills can be gleaned from course
descriptions? We focused on a single large public research university to trial our approach and
inform future work.



Methods

For this preliminary study, we chose a large, public research university in the Midwestern United
States. We collected course descriptions from 8 engineering disciplines within their school of
engineering and analyzed these entries based on the explicit or implicit computational content.

Data Collection

To identify a university, we conducted an initial search to determine available public data for
syllabi or course descriptions at major universities in the United States. We used the following
criteria to conduct this search:

● Large public research university in the United States
● Multiple undergraduate engineering programs
● Common first year engineering program or experience
● Available database of learning objectives, syllabi, or course descriptions

Based on this search, a database of course descriptions from the selected university was
identified as reasonably representative of similar programs based on the professional judgement
of the cross-disciplinary engineering faculty involved in the project. This institution has about
40,000 undergraduate students and is ranked within the top 100 engineering schools by US News
and World Report.

Data Analysis

For this qualitative study, we followed analytical techniques from Miles, Huberman, & Saldaña
(2013). Using a spreadsheet, we manually coded over 700 course catalog entries across
engineering majors. Through a mix of “in-vivo” and “descriptive” coding (Miles et al., 2013), we
flagged any entries about computational or data literacy skills and concepts as “implicit” or
“explicit”. This mixed approach was in part to mitigate the lack of detail in online course
descriptions and the differentiation in the use of terminology, for example, some course
descriptions may list a number of related disciplinary variables that are “measured” and this
would collapse to a descriptive code such as “measuring disciplinary-specific variables”. In other
cases, we were unable to collapse phrases into anything more descriptive than how they appeared
in the text, for example “application of computational methods to problem solutions” appeared in
a course description for a chemical engineering course. While this clearly indicates the
expectation that computational methods will be included, without additional information, we
cannot assume beyond that general claim.



The coding process was collaborative and iterative, often going back over majors we had already
discussed to reconsider the course content. We made analytical memorandums to track our
progress and decisions (Miles et al., 2013). After completing our coding of the course
descriptions in the spreadsheet, we aggregated and organized our codes to help build our
interpretations of cross-cutting concepts.

By operationalizing computation in our context, we mean applying mathematical or engineering
concepts to data on a computer. We purposely exclude word processing but include the use of
spreadsheets in this definition. We also excluded listings from independent studies and special
topics from our data, since course descriptions for such courses tend to be generic. Our case site
actually had programs focused solely on computation data and computer science. For this study,
we did not include these majors, but their existence affirms our motivation to establish a baseline
of computational skills and concepts in first year programs, as more of these types of majors
come into engineering.

Findings and Discussion

Extracting concepts from course descriptions

Course descriptions are limited by nature in what they can tell us and some were written in a
different style than others (e.g. talking about experiences versus listing topics). There is
disciplinary jargon that we need help unpacking to identify what the actionable concept or skill
might be (e.g. machines and power laboratory). The disciplines of civil, environmental,
transportation, and electrical engineering fell within the background knowledge of the
researchers on this project. We knew that certain topics would most likely be software-based
because of our experiences with these types of courses. Although we did periodically look up
unknown discipline-specific terms as we coded, this leads us to believe we may be missing items
from other disciplines and motivates our future work to engage with experts across these
different majors. There were less explicit codes for biological systems engineering and fewer
codes for applied engineering (business), but these programs had a lower number of courses
overall. It is also important to note that we only extracted course descriptions from a single
university for this study. Although we outline our decision-making process for choosing this
exemplar university, additional universities will be formally recruited as this project progresses.

Towards identifying cross-cutting concepts

Acknowledging the limitations of this preliminary investigation, we were still able to identify
several cross-cutting computational literacy concepts through the course descriptions. These fell
into the overarching theme of mathematical representations of real-world systems (e.g., matrix



analysis, mathematical modeling). Modeling is a foundational engineering concept, and when
this happens in the context of problem solving on a computer, there is an additional step of
mapping abstract representations to something a computer can represent. It is notable that
teaching mathematical modeling and problem solving are both challenging, even without the
addition of computing concepts (Wedelin, Adawi, Jahan & Andersson, 2015; Loch & Lamborn,
2016).

Cross-cutting themes:
● Optimization
● Modeling (e.g., mapping disciplinary specific problems to computer representations such

as mechanical drafting or circuit diagramming)
● Working with uncertainty (i.e., probability and statistics)
● The use of industry software
● Numerical methods

Each one of these will need to be further unpacked before they can inform specific skills that
might be included in an introductory course. For example, while “numerical methods” in one
form or another was a common reference, arguably most problems solved on a computer will be
done using numerical methods. In fact, this highlights the importance of identifying which
numerical methods might be most used in future courses so that we may lay the groundwork in
first-year courses.

Other themes could likely be further distilled into those that are embedded in engineering
problem solving in general, and those that are unique to problem solving on a computer. For
example, “working with uncertainty” is generally understood to be a fundamental requirement of
engineering as the real-world is an uncertain place. However, computers are deterministic by
design and thus we find ourselves in the predicament of representing imprecise data on a device
that is built on assumptions of exactness. This introduces a number of additional considerations
to the problem solving process when implemented on a computer that would not otherwise be
present, such as the effects of discretizing continuous time values, and increases the salience of
other engineering skills such as determining when “close” is “close enough”.

Conclusion and Future Work

This was the first step towards establishing a taxonomy. We found that course descriptions yield
limited insights into the assumed computational skills required in engineering courses. This
motivates the next phase of this project which will include a quantitative survey across
institutions as well as interviews with faculty members in the disciplines. We will use public
records to contact department heads of engineering departments at public research institutions,



asking that they share an invitation to participate with faculty in their department who teach core
disciplinary courses. Our interviews will be anchored in example problems identified by the
participants to be representational of problems covered in core disciplinary courses. Example
questions include:

● How would you define data literacy and computing literacy (in your discipline...in
general…)?

● What are some common mistakes/misconceptions that you see with student’s work for
these representational problems?

● Based on the process you have just described, can you summarize the computations or
data analysis skills that students are expected to perform to be successful in the class?

Both literature and the authors’ personal experiences suggest that the close relationships between
computational literacy, mathematical modeling, and problem solving skills present significant
challenges for teaching these skills, especially in a first-year course. Cognitive load theory
(Paas, Renkl & Sweller, 2003) is a useful framework for describing this challenge: As most
first-year students are still struggling with problem solving and mathematical modeling, these
skills require a significant amount of students’ finite cognitive energy. If for a given problem,
students are just managing to understand the context and relationships described by relevant
mathematical models, adding any additional load such as working in an unfamiliar computing
environment, can overwhelm students leading to frustration. One strategy for creating more
supportive learning environments would involve separating out problem solving and
mathematical modeling that is linked to the problem in general with those concepts specifically
linked to the computing context. For example, most traditional engineering problems are
described in terms of continuous time equations, but in transitioning these problems to use
measured data, they become discrete-time problems. This transformation is not trivial, and the
resulting equations, while similar, are not equivalent to the continuous time versions students
may be familiar with.

With only limited time in first-year courses to prepare students for success, it will be important to
identify a minimum set of computing skills that will best support most engineering disciplines.
The theory of threshold concepts can be useful to help decide which skills are included in a
first-year course. Male & Baillie (2014) characterize threshold concepts as those that are both
transformative and troublesome. Transformative in that mastery of these concepts results in a
significant reshaping of student viewpoints and abilities, and troublesome because these students
tend to struggle with these concepts. For example, mastering time and frequency domain
transformations leads to students recognizing that a given problem can have multiple
representations. Solutions that are complex in one domain may be straightforward in another.
Once identified, threshold concepts specific to computational problem solving become strong
candidates for inclusion in a first-year course.
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Appendix

Major Explicit Implicit

Biosystems
Engineering

● "geographic information
systems"

● "steady-state and stability
analysis"

● "sensors and instrumentation"
● "linear programming"
● "optimization techniques"
● "global position systems"
● "water budget analysis"
● "engineering economics"
● "design project related to food

and agricultural industries"
● "watershed modeling"
● "Geospatial data collection"
● modeling
● design

Civil and
Environ.
Engineering

● "structural analysis
computer software"

● "CAD software"
● "matrix methods of

structural
analysis...application
software"

● "Geometric design of
highways...CAD systems"

● "solving systems of
differential equations",
matrix?

● "programming methods"
● "Physical modeling"
● "numerical techniques"
● "visualizing the results"

● "engineering economics"
● "probability, statistics"
● transportation engineering

computation
● "constructability, cost, and

schedule"
● "statistics used in laboratory

analysis"
● design project
● "environmental measurements

laboratory" (Environmental)

Chemical
Engineering

● "Application of
computational methods to
problem solutions

● transport phenomena
● "computer-aided design

methods"
● mass transfer and

separations
● "process simulation"

● engineering statistics
● model building
● statistical quality control
● "integration of control theory with

modern practice"
● design of control systems
● "mathematical programming

methods for optimization"
● "flowsheet layout and



optimization"
● "instrumentation and control

systems"
● "application of statistics"

Electrical
and
Computer
Engineering

● embedded coding
● "computer-aided design"
● circuit layout
● CAD
● logic design tools
● "using standard software

packages"
● electrical modeling
● "SPICE software"
● modeling
● "hardware and software

verification"
● "SPICE macro-modeling"
● VLSI Design
● HDL design
● "Control laboratory"
● VLSI
● "simulation of nonlinear

control systems"
● "performance analysis and

testing of data converters"
● "simulation"
● power converters
● "cyber-physical systems"
● "discrete event simulation

projects"
● "computer projects"
● "analysis of real

physiologic signals"
● "projects laboratory in

communication systems"
● "Simulations"
● "microelectronic"
● "contemporary design

tools"

● applications of linear algebra
● "applications and design"
● "Measurement of the properties of

antennas and microwave
networks"

● "design of switched capacitor
circuits"

● robotics
● "machines and power laboratory"
● "biomedical imaging"
● "design"

Mechanical
Engineering

● "computer-aided
three-dimensional design"

● "Computer-based analysis
in support of design"

● "numerical methods"
● "heat transfer laboratory"
● "modeling of thermal equipment"
● "predictive models"



● machine elements and
mechanical systems

● "Advanced 3-D solid
modeling"

● "Computer based design
projects"

● thermal systems
● "Application of commercial

software to computational
fluid dynamics problems"

● "simulation and
optimization of thermal
systems"

● "finite element models"
● computer aided design
● "algorithms for constrained

and unconstrained
optimization"

● "Computational methods
for analysis, design, and
optimization of structural
component"

● "geometric modeling"
● "finite element analysis"
● "structural optimization"

● alternative energy systems
● "measurement of stress, strain,

vibration, and motion"
● "capstone design"

Applied
Engineering
(Business)

● "computational analysis
tools for large data sets" (E)

● "applied engineering sciences
curricular elements" (I)


